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Abstract: In the literature, extensions of common fuzzy sets have been proposed one after another. The recent addition
is spherical fuzzy sets theory, which is based on three independent membership parameters established on a unit sphere
with a restriction linked to their squared summation. This article uses the new extension that presents bigger domains
for each parameter for production design. A systematic approach for determining customer demands or requirements,
Quality Function Deployment (QFD) converts them into the final production to fulfill these demands in a decision-making
environment. In order to prevent information loss during the decision-making process, it offers a useful technique to
describe the linguistic analysis in terms of 2-tuples. This research introduces a novel decision-making method utilizing
the 2-tuple linguistic T -spherical fuzzy numbers (2TLT -SFNs) in order to select the best alternative to manufacturing a
linear delta robot. Taking into account the interaction between the attributes, we develop the 2TLT -SF Hamacher (2TLT -
SFH) operators by using innovative operational rules. These operators include the 2TLT -SFH weighted average (2TLT -
SFHWA) operator, 2TLT -SFH ordered weighted average (2TLT -SFHOWA) operator, 2TLT -SFH hybrid average (2TLT -
SFHHA) operator, 2TLT -SFH weighted geometric (2TLT -SFHWG) operator, 2TLT -SFH ordered weighted geometric
(2TLT -SFHOWG) operator, and 2TLT -SFH hybrid geometric (2TLT -SFHHG) operator. In addition, we discuss the
properties of 2TLT -SFH operators such as idempotency, boundedness, and monotonicity. We develop a novel approach
according to the CODAS (Combinative Distance-based Assessment) model in order to deal with the problems of the 2TLT -
SF multi-attribute group decision-making (MAGDM) environment. Finally, to validate the feasibility of the given strategy,
we employ a quantitative example to select the best alternative to manufacture a linear delta robot. The suggested
information-based decision-making methodology which is more extensively adaptable than existing techniques prevents
the risk of data loss and makes rational decisions.
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1. Introduction

Market dynamics and technology developments enable businesses to create new items with
success. These are the essentials for both startups and enterprises to enhance their present competitive
edge and for local firms to expand in a highly competitive climate. Akao [1] introduced QFD as a
valuable quality technique for converting CRs (customer requirements) into DRs (designing
requirements). QFD helps businesses in a variety of ways, including significantly improved customer
satisfaction and improved communication. The popular tool QFD was first used in industrial
procedures. Product quality, operational effectiveness, and financial performance of the firm may all
improve. Through the house of quality (HoQ), QFD manages the relationships between customer
requirements and design requirements. An HoQ consists of a number of rooms, each of which is
employed in the product design process. Several relationships between these rooms, such as
connections between design needs, are not taken into account in the literature. Engineering, control
theory mathematics, computer sciences, medical sciences, business and economics, social sciences,
human behaviors, and urban planning are just a few of the study fields where fuzzy set (FS) theory
has been used to produce effective answers under ambiguity. This paper describes the evaluation and
selection of linear delta robots in the 2TLT -SF environment using a unique MAGDM approach that
combines QFD with CODAS method and the 2TLT -SFSs.

The MAGDM complications are crucial aspects of decision theory in which we select the best
linear delta robot from a set of finite options based on the overall data. Because of the complexity
of real-life situations and the occurrence of vagueness in human judgments, MAGDM problems are
complex and challenging. In this context, it is generally believed that knowledge about alternatives
would be in the form of real numbers. However, due to the vagueness and inconsistency of the given
descriptions, it is difficult for decision makers (DMs) to offer their assessments in crisp values in our
immediate environment. Therefore, resolving this ambiguity is a big challenge for DMs. One of the
complexities in MAGDM is communicating attribute values in a logical manner. Zadeh’s [2] FS theory
has been widely used to deal with uncertain information due to the ambiguity of evaluative strategies
and the uncertainty of MAGDM problems. In FS, Zadeh only demonstrates the membership degree
(MD) in the given set. Unfortunately, the non-membership degree (NMD) is not discussed in FS. The
absolute uncertainty was not really resolved by FS theory. Consequently, Atanassov [3] introduced
the intuitionistic fuzzy set (IFS), which involves both MD and NMD. In some circumstances where
µ + ν ≥ 1, IFS cannot handle these situations. Yager [4] presented the Pythagorean fuzzy set (PyFS),
which is categorized with MD and NMD, ensuring that the square sum of MD and NMD is less than
or equal to one. Yager [5] also suggested the q-rung orthopair FS (q-ROFS), categorized by MD and
NMD, which ensures that the qth sum of MD and NMD is less than or equal to one. As a result, the
q-ROFS is better than IFS and PyFS for handling ambiguity in actual MAGDM problems. IFS, PyFS,
and q-ROFS deal with actual inaccuracy and attempt to solve MAGDM problems which would require
a human opinion.

The current study goal, according to Ali [6], is to investigate a novel q-rung orthopair fuzzy
scoring function and also to extend the assessment of alternatives and ranking according to
compromise solution (MARCOS) approach with unknown weight information to the setting of
q-ROFNs. The paper given by Ali et al. [7] offered a q-rung orthopair hesitant fuzzy stochastic
approach based on regret theory to represent the psychological behavior of DMs. However, these
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duplets only address two aspects of human perception: like and dislike. A human opinion, on the
other hand, measures the degree of preference. According to Cuong and Kreinovich [8] the MD and
NMD pairings, that constitute an IFS or its extended form, represent a human perspective, in which
the abstinence degree (AD) and refusal degree (RD) are mostly neglected, which entails the loss of
knowledge. As a result, they developed a picture fuzzy set (PFS) in the form of triplets MD, AD, and
NMD with the condition that the combined sum never exceeds 1. Gündogdu and Kahraman [9]
advanced PFS structure in the form of a spherical fuzzy set (SFS), that specified some aggregation
operators (AOs) with SF information for the multi-attribute decision-making (MADM) problems and
enhanced the assigning range of MD, AD, and NMD. Mahmood et al. [10] introduced the T -spherical
fuzzy set (T-SFS). The T -SFS is an extension of SFS and PFS. All membership, abstinence, and
non-membership grades in the T -SFS meet the condition 0 ≤ µq + ηq + νq ≤ 1 instead
of 0 ≤ µ2 + η2 + ν2 ≤ 1 as indicated by the SFS, and 0 ≤ µ + η + ν ≤ 1 as indicated by the PFS.
Mahnaz et al. [11] developed several generalized operational laws, especially Frank operational laws
for T -SFNs based on the Frank t-norm and t-conorm. Ali [12] presented a score function, which is a
formula for the transformation process of DMs’ weight information from the spherical fuzzy form to
the classical form. Using the benefits of T -SFSs, Garg et al. [13] defined various weighted averaging
and geometric power aggregation operations. Based on complex T -SFSs, Karaaslan and Dawood [14]
presented the Dombi operations, established several AOs based on Dombi operators, built a MADM
technique in the complex T -SF environment, and presented an algorithm for the suggested approach.
Naeem and Ali [15] investigated spherical fuzzy operational rules and their desired properties.

Moreover, maximum choice issues are ambiguous and fuzzy; it is difficult to describe the qualities
involved in these decision problems in crisp numbers, as opposed to qualitative data, which can be
directly stated using linguistic terms like excellent, great, or good. Zadeh [16] suggested the definition
of linguistic variables (LVs) since there have been accomplishments in research on linguistic MADM
issues. The 2TL representation model was introduced by Herrera and Martı́nez [17, 18].
Several 2TL-AOs and decision-making approaches have been proposed. Zhang et al. [19] developed
an approach to two-sided matching decision-making with multi-granular hesitant fuzzy linguistic
term sets to resolve two-sided matching problems. As a novel approach to MAGDM problems, Zhao
et al. [20] developed an enhanced TODIM strategy based on 2TL neutrosophic sets and the
cumulative prospect theory. Based on previous research results, the 2TLCq-ROF idea was put out by
Naz et al. [21] by fusing the intricate q-rung orthopair fuzzy set using 2-tuple linguistic concepts, such
as the fundamental definition, operational guidelines, scoring, and accuracy functions. By assessing
the reliability of the information, Chai et al. [22] introduced the notion of Z-uncertain probabilistic
linguistic variables (Z-UPLVs). Then the operating rules, normalizing, distance and similarity
measurements, and Z-UPLV comparative technique were established. Under the dual probabilistic
linguistic term sets, Saha et al. [23] used the ideas of consistency and similarity amongst DMs to
establish the decision-making’s subjective and objective weights, respectively. Through certain
counter instances, Ali et al. [24] demonstrated the limits of the existing distance measurements of
dual hesitant fuzzy sets. Akram et al. [25,26] developed a new decision-making approach to deal with
the MADM problems based on graph theory. Further, Naz et al. [27–31] as well as other
researchers [32–37] introduced several decision-making methods under generalized fuzzy scenarios.

The Hamacher operations, which involve the Hamacher product and Hamacher sum, were first
presented by Hamacher [38]. In contrast to the algebraic product and algebraic sum, the Hamacher
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product and the Hamacher sum are both excellent alternatives [39]. The Hamacher t-conorm and
t-norm are comprehensive and dynamic extensions of the algebraic and Einstein t-conorm and
t-norm [40]. Akram et al. [41] introduced the complex intuitionistic fuzzy (CIF) Hamacher weighted
averaging operator, CIF Hamacher ordered weighted averaging operator, CIF Hamacher weighted
geometric operator, and CIF Hamacher ordered weighted geometric operator under the CIF
environment. Pamucar et al. [42] proposed a novel WASPAS approach based on the fuzzy Hamacher
weighted averaging function and weighted geometric averaging function for the advantageous
prioritization of the sustainable supply chain of the electric ferry. Faizi et al. [43] introduced some
operational laws for intuitionistic 2TL terms based on Hamacher operations under certain critical
properties. They also introduced the intuitionistic 2TL Hamacher weighted average and the
intuitionistic 2TL Hamacher weighted geometric operators with the assistance of Hamacher
operations and intuitionistic 2TL terms. Garg et al. [44] presented the concept of the interval-valued
picture uncertain linguistic set to explore the theory, stated some basic operational laws, and
investigated their properties. Based on the stated laws, they defined several weighted and ordered
weighted generalized Hamacher AOs. Hadi et al. [45] proposed the Fermatean fuzzy Hamacher
(FFH) arithmetic and geometric AOs by inducing the Hamacher operations and FFS. In the first part,
they introduced the concepts of an FFH weighted average operator, an FFH ordered weighted average
operator and an FFH hybrid weighted operator. In the second part, they developed the FFH weighted
geometric operator, FFH ordered weighted geometric operator and FFH hybrid geometric operator.

Strategy implementation is a crucial part of solving MAGDM problems. For this strategy, DMs
used different methods: VIKOR, TOPISIS, EDAS, MABAC, etc. In order to aggregate complex data,
Ghorabaee et al. [46] developed the CODAS model. To determine the objective weight, Lei et al. [47]
presented the combined assessment of the objective criteria weights approach. The probabilistic
double hierarchy linguistic CODAS approach was developed and used for online shopping platform
evaluation. Simic et al. [48] used the PFSs to introduce a novel PF-CODAS approach to locate
multi-criteria automobile shredding facilities. In MAGDM, Wang [49] evaluated the teaching quality
of college English. Further, he developed a unique distance-based interval-valued intuitionistic fuzzy
CODAS approach based on the traditional CODAS method and interval-valued intuitionistic fuzzy
sets. Naz et al. [50] enhanced the CODAS approach by creating the 2TLq-ROF-CODAS model, that
not only accounts for human cognition’s uncertainties but also allows DMs a broader area to describe
their choices. For the purpose of resolving MAGDM problems, Akram et al. [51] devised a 2TL
Fermatean fuzzy CODAS technique using the Hamacher aggregation operators.

In the light of the above-mentioned study, there is an area of research that has to be filled in the
Hamacher operations and the related AOs for the fusion of 2TLT -SFS information. Due to the
characteristics that allow it to include the algebraic and Einstein operations, Hamacher operations are
more versatile than certain classical operations. The parameterized design of Hamacher operations
gives the AOs generality and the power to provide trustworthy results. The development of the
expanded CODAS approach for MAGDM based on 2TLT -SFSs and suitable Hamacher AOs is
strongly encouraged by the attractive theory of the CODAS method and its promise in linguistic
decision-making scenarios. This prompts us to think about creating 2TLT -SFS Hamacher AOs as part
of a comprehensive framework for processing 2TLT -SF information.

AIMS Mathematics Volume 8, Issue 2, 3428–3468.



3432

1.1. Motivation and objectives

The following points serve as a framework for the motivation of this research article: (1) We
utilize 2TLT -SFS because it offers a more comprehensive definition of fuzziness and, as a result, a
more accurate evaluation of such a decision-making process by allowing DMs to consider a wider
range of factors related to the addressed problems’ uncertainties, information gaps, and
inconsistencies between many expert groups. The 2TLT -SFS increases the versatility of T -SFS by
integrating 2TL and 2TLT -SF sets to represent the qualitative data into the 2TLT -SFNs. (2) The use
of the T -FS geometric aggregation operator made it simple to combine the opinions of experts and
customers. The spherical fuzzy arithmetic operator has been used, to sum up, both positive and
negative correlations. (3) The relationship between the input arguments can be described utilizing the
Hamacher operator. Hamacher operations are more flexible than certain standard operations due to
the parameters that allow them to cover algebraic and Einstein operations. The parameterized nature
of Hamacher operations endows the AOs with generality and efficiency in producing dependable
results. Furthermore, the Hamacher operator has one robust parameter to address the various
requirements in the information integrating process. There is limited study on using Hamacher
operations to build novel operators, according to an analysis of the 2TLT -SF-AOs. As a result, a
study on AOs utilizing Hamacher operations with 2TLT -SF information is required. (4) The CODAS
method is the most popular tool for solving the MAGDM problems. Moreover, there is a lack in the
application of the CODAS method with 2TLT -SFNs. Following is the contribution of this research
article according to the above objectives:

(1) By utilizing 2TLT -SFS, we propose the new AOs to fuse the given information. In the information
integrating process, these new operators minimize the impact of uncertain data and determine
the relationship among aggregated arguments, i.e., the 2TLT -SFHWA, 2TLT -SFHOWA, 2TLT -
SFHHA, 2TLT -SFHWG, 2TLT -SFHOWG, and 2TLT -SFHHG operators.

(2) In the 2TLT -SF environment, we propose a MAGDM approach based on the 2TLT -SFHWA and
2TLT -SFHWG AOs which is known as the 2TLT -SF-CODAS method.

(3) From real-world circumstances, several theorems, properties, and basic definitions of the suggested
information aggregation operators are deduced.

(4) A 2TLT -SF-CODAS technique is presented to rank the alternatives based on the 2TLT -SFHWA
as well as 2TLT -SFHWG operators. The assessment preferences of DMs are combined using a
unique MAGDM model.

(5) A numerical illustration to select the best linear delta robot is conducted to fuse the overall data.
The decision-making methods, sensitivity analysis, and comparative analysis are illustrated to
prove the accuracy and effectiveness of the proposed technique.

1.2. Organization

The remaining paper is organized in the following manner to accomplish the goal of this research
study. In Section 2, we recap the idea of LTS, 2TL terms, and T -SFS. In Section 3, we combine
the 2TLT -SFS with Hamacher operations and develop the 2TLT -SFHWA operator,
the 2TLT -SFHOWA operator, the 2TLT -SFHHA operator, the 2TLT -SFHWG operator,
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the 2TLT -SFHOWG operator, and the 2TLT -SFHHG operator. In Section 4, we present a novel
approach for MAGDM. In Section 5, in order to explain the techniques suggested in this paper, a
numerical example to select the best alternative for additive manufacturing of a linear delta robot is
described. Section 6 concludes the research article by giving future directions. The flowchart depicts
the framework of the proposed study (see Figure 1).

Figure 1. The framework of our study.

2. Preliminaries

In this section, some correlative basic concepts of LTS, 2TL terms, and T -SFS are recapped to
facilitate the next sections.

2.1. 2-Tuple linguistic representation model

In this subsection, the description about 2TL set is recapped.

Definition 1. [52] Let there exist a LTS S = {s ȷ | ȷ = 0, 1, . . . , τ} with odd cardinality, where s ȷ
indicates a possible linguistic term for a linguistic variable. For instance, LTS S having seven terms
can be described as follows:
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S={s0=none, s1=very low, s2=low, s3=medium, s4=high, s5=very high, s6=perfect}.
If s ȷ, sk ∈ S , then the LTS meets the following characteristics:

(i) The set is ordered: s ȷ > sk, if and only if ȷ > k.

(ii) Max operator: max(s ȷ, sk) = s ȷ, if and only if ȷ ≥ k.

(iii) Min operator: min(s ȷ, sk) = s ȷ, if and only if ȷ ≤ k.

(iv) Negative operator: Neg(s ȷ) = sk such that k = τ − ȷ.

The 2-tuple fuzzy linguistic representation model based on the idea of symbolic translation,
introduced by Herrera and Martı́nez [17, 18], is useful for representing the linguistic assessment
information by means of a 2-tuple (s ȷ, α ȷ), where s ȷ is a linguistic label from predefined LTS S and α ȷ
is the value of symbolic translation, and α ȷ ∈ [−0.5, 0.5).

Definition 2. [17,18] Let β be the result of an aggregation of the indices of a set of labels assessed in
LTS S , i.e., the result of a symbolic aggregation operation, β ∈ [0, τ], where τ is the cardinality of S .
Let ȷ = round(β) and α = β − ȷ be two values, such that, ȷ ∈ [0, τ] and α ∈ [−0.5, 0.5) then α is called
a symbolic translation.

Definition 3. [17,18] Let S = {s ȷ | ȷ = 0, . . . , τ} be a LTS and β ∈ [0, τ] is a number value representing
the aggregation result of linguistic symbolic. Then, the function ∆ used to obtain the 2TL information
equivalent to β is defined as:

∆ : [0, τ]→ S × [−0.5, 0.5), (2.1)

∆(β) =

s ȷ, ȷ = round(β)
α = β − ȷ, α ∈ [−0.5, 0.5).

(2.2)

Definition 4. [17, 18] Let S = {s ȷ | ȷ = 0, . . . , τ} be a LTS and (s ȷ, α ȷ) be a 2-tuple, there exists a
function ∆−1 that restores the 2-tuple to its equivalent numerical value β ∈ [0, τ] ⊂ R, where

∆−1 : S × [−0.5, 0.5)→ [0, τ], (2.3)
∆−1(s ȷ, α) = ȷ + α = β. (2.4)

Definition 5. [10] A triplet Γ = (m, i, n) is referred as a T-spherical fuzzy number (T-SFN) where m,
i and n denote respectively the MD, AD and NMD of the T-SFN Γ provided that for some q ∈ Z+, 0 ≤
mq + iq + nq ≤ 1. The RD in this case is defined as r = q√1 − (mq + iq + nq).

A T-SFN is a generalized form of existing fuzzy framework, and it reduces to:

(i) By setting q = 2, we obtain spherical fuzzy number (SFN).
(ii) By setting q = 1, we obtain picture fuzzy number (PFN).

(iii) By setting i = 0, we obtain q-rung orthopair fuzzy number (q-ROFN).
(iv) By setting i = 0 and q = 2, we obtain Pythagorean fuzzy number (PyFN).
(v) By setting i = 0 and q = 1, we obtain intuitionistic fuzzy number (IFN).

(vi) By setting i = n = 0 and q = 1, we obtain fuzzy number (FN).
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2.2. Hamacher t-norm and Hamacher t-conorm

To extend the existing operations of t-norm and t-conorm, Hamacher [38] introduced the Hamacher
product t-norm and Hamacher sum t-conorm as generalizations of t-norms and t-conorms, respectively,
as follows:

T H
ϱ (r, s) =

{ rs
ϱ+(1−ϱ)(r+s−rs) if ϱ > 0,

rs
r+s−rs if ϱ = 0,

(T ∗)H
ϱ (r, s) =

{ r+s−rs−(1−ϱ)rs
1−(1−ϱ)rs if ϱ > 0,

r+s−2rs
1−rs if ϱ = 0.

Clearly, when ϱ = 1, the Hamacher t-norm and t-conorm change into the algebraic t-norm and
t-conorm as follows:

P(r, s) = rs, P∗(r, s) = r + s − rs.

Again, when ϱ = 2, the Hamacher t-norm and t-conorm reduce to the Einstein t-norm and t-conorm [53]
as follows:

I(r, s) =
rs

1 + (1 − r)(1 − s)
, I∗(r, s) =

r + s
1 + rs

.

Inspired by the ideas of 2TL terms and T -SFS, Akram et al. [54] developed the new concept
of 2TLT -SFS as an extension of 2TL-PFS and 2TL-SFS. The mathematical representation
of 2TLT -SFS is described as follows:

Definition 6. [54] Let S = {s ȷ | ȷ = 0, 1, . . . , τ} be a LTS with odd cardinality. If
((sp, ℘), (sr,ℜ), (sl, £)) is defined for sp, sr, sl ∈ S , ℘,ℜ, £ ∈ [−0.5, 0.5), where
(sp, ℘), (sr,ℜ), and (sl, £) represent respectively the MD, AD and NMD by 2TLSs. A 2TL T-spherical
fuzzy set is defined as:

ℵ = {⟨x, ((sp(x), ℘(x)), (sr(x),ℜ(x)), (sl(x), £(x)))⟩ | x ∈ X}, (2.5)

where 0 ≤ ∆−1(sp, ℘) ≤ τ, 0 ≤ ∆−1(sr,ℜ) ≤ τ, 0 ≤ ∆−1(sl, £) ≤ τ,

and 0 ≤ (∆−1(sp, ℘))q + (∆−1(sr,ℜ))q + (∆−1(sl, £))q ≤ τq.

In order to compare any two 2TLT -SFNs, their score value and accuracy value are defined as
follows:

Definition 7. [54] Let P = ((sp, ℘), (sr,ℜ), (sl, £)) be a 2TLT-SFN. Then, the score function S of
a 2TLT-SFN P can be represented as:

S(P) = ∆
(
τ
2

(
1 +

(
∆−1(sp,℘)
τ

)q
−

(
∆−1(sl,£)
τ

)q))
, S(P) ∈ [0, τ], (2.6)

and its accuracy functionH is defined as:

H(P) = ∆
(
τ
((
∆−1(sp,℘)
τ

)q
+

(
∆−1(sl,£)
τ

)q))
, H(P) ∈ [0, τ]. (2.7)
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Definition 8. [54] Let P1 = ((sp1 , ℘1), (sr1 ,ℜ1), (sl1 , £1)) and P2 = ((sp2 , ℘2), (sr2 ,ℜ2), (sl2 , £2)) be
two 2TLT-SFNs; then, these two 2TLT-SFNs can be compared according to the following rules:

(1) If S(P1) > S(P2), then P1 ≻ P2;

(2) If S(P1) = S(P2), then

• IfH(P1) > H(P2), then P1 ≻ P2;
• IfH(P1) = H(P2), then P1 ∼ P2.

3. The 2TLT -SF Hamacher aggregation operators

We present a modified intersection and union on two 2TLT -SFNs P1 and P2 in terms of the
Hamacher product ⊗ and the Hamacher sum ⊕. In fact, some Hamacher operations, such as Hamacher
product and Hamacher sum of two 2TLT -SFNs P1 and P2, with ϱ > 0, i.e., Hamacher operational
laws for 2TLT -SFNs are defined as follows:

Definition 9. Let P1 = ((sp1 , ℘1), (sr1 ,ℜ1), (sl1 , £1)) and P2 = ((sp2 , ℘2), (sr2 ,ℜ2), (sl2 , £2)) be
two 2TLT-SFNs, with ϱ > 0, then the basic Hamacher operations between P1 and P2 are given as
follows:

1) ς̃1 ⊕ ς̃2 =



∆


τ



q

√√√√√√√√√√√√√√√
(
∆−1(sp1 ,℘1)

τ

)q
+

(
∆−1(sp2 ,℘2)

τ

)q
−

(
∆−1(sp1 ,℘1)

τ

)q (
∆−1(sp2 ,℘2)

τ

)q

− (1 − ϱ)
(
∆−1(sp1 ,℘1)

τ

)q (
∆−1(sp2 ,℘2)

τ

)q

1−(1−ϱ)
 ∆−1(sp1 ,℘1)

τ

q ∆−1(sp2 ,℘2)
τ

q




,

∆

τ


 ∆−1(sr1 ,ℜ1)
τ

 ∆−1(sr2 ,ℜ2)
τ


q

√
ϱ+(1−ϱ)

 ∆−1(sr1 ,ℜ1)
τ

q

+

 ∆−1(sr2 ,ℜ2)
τ

q

−

 ∆−1(sr1 ,ℜ1)
τ

q ∆−1(sr2 ,ℜ2)
τ

q


 ,

∆

τ


 ∆−1(sl1
,£1)

τ

 ∆−1(sl2
,£2)

τ


q

√
ϱ+(1−ϱ)

 ∆−1(sl1
,£1)

τ

q

+

 ∆−1(sl2
,£2)

τ

q

−

 ∆−1(sl1
,£1)

τ

q ∆−1(sl2
,£2)

τ

q






.
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2) ς̃1 ⊗ ς̃2 =



∆

τ


 ∆−1(sp1 ,℘1)
τ

 ∆−1(sp2 ,℘2)
τ


q

√
ϱ+(1−ϱ)

 ∆−1(sp1 ,℘1)
τ

q

+

 ∆−1(sp2 ,℘2)
τ

q

−

 ∆−1(sp1 ,℘1)
τ

q ∆−1(sp2 ,℘2)
τ

q


 ,

∆


τ



q

√√√√√√√√√√√√√√√
(
∆−1(sr1 ,ℜ1)

τ

)q
+

(
∆−1(sr2 ,ℜ2)

τ

)q
−

(
∆−1(sr1 ,ℜ1)

τ

)q (
∆−1(sr2 ,ℜ2)

τ

)q

− (1 − ϱ)
(
∆−1(sr1 ,ℜ1)

τ

)q (
∆−1(sr2 ,ℜ2)

τ

)q

1−(1−ϱ)
 ∆−1(sr1 ,ℜ1)

τ

q ∆−1(sr2 ,ℜ2)
τ

q




,

∆


τ



q

√√√√√√√√√√√√√√√
(
∆−1(sl1 ,£1)

τ

)q
+

(
∆−1(sl2 ,£2)

τ

)q
−

(
∆−1(sl1 ,£1)

τ

)q (
∆−1(sl2 ,£2)

τ

)q

− (1 − ϱ)
(
∆−1(sl1 ,£1)

τ

)q (
∆−1(sl2 ,£2)

τ

)q

1−(1−ϱ)
 ∆−1(sl1

,£1)
τ

q ∆−1(sl2
,£2)

τ

q







.

3) λς̃1 =



∆

τ
 q

√√√√√√ 1+(ϱ−1)
 ∆−1(sp1 ,℘1)

τ

qλ−1− ∆−1(sp1 ,℘1)
τ

qλ1+(ϱ−1)
 ∆−1(sp1 ,℘1)

τ

qλ+(ϱ−1)
1− ∆−1(sp1 ,℘1)

τ

qλ

 ,

∆

τ


q√ϱ

 ∆−1(sr1 ,ℜ1)
τ

λ
q

√1+(ϱ−1)
1− ∆−1(sr1 ,ℜ1)

τ

qλ+(ϱ−1)
 ∆−1(sr1 ,ℜ1)

τ

qλ


 ,

∆

τ


q√ϱ

 ∆−1(sl1
,£1)

τ

λ
q

√√1+(ϱ−1)

1− ∆−1(sl1
,£1)

τ

qλ+(ϱ−1)
 ∆−1(sl1

,£1)
τ

qλ






.
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4) ς̃1
λ =



∆

τ


q√ϱ

 ∆−1(sp1 ,℘1)
τ

λ
q

√1+(ϱ−1)
1− ∆−1(sp1 ,℘1)

τ

qλ+(ϱ−1)
 ∆−1(sp1 ,℘1)

τ

qλ


 ,

∆

τ
 q

√√√√√√ 1+(ϱ−1)
 ∆−1(sr1 ,ℜ1)

τ

qλ−1− ∆−1(sr1 ,ℜ1)
τ

qλ1+(ϱ−1)
 ∆−1(sr1 ,ℜ1)

τ

qλ+(ϱ−1)
1− ∆−1(sr1 ,ℜ1)

τ

qλ

 ,

∆

τ
 q

√√√√√√√ 1+(ϱ−1)
 ∆−1(sl1

,£1)
τ

qλ−1− ∆−1(sl1
,£1)

τ

qλ1+(ϱ−1)
 ∆−1(sl1

,£1)
τ

qλ+(ϱ−1)

1− ∆−1(sl1
,£1)

τ

qλ





.

Based on Hamacher operational laws for 2TLT -SFNs, we propose some 2TLT -SF Hamacher AOs
by using weighted average, weighted geometric, and hybrid operators, i.e., 2TLT -SFH weighted
average (2TLT -SFHWA) operator, 2TLT -SFH ordered weighted average (2TLT -SFHOWA)
operator, 2TLT -SFH hybrid average (2TLT -SFHHA) operator, 2TLT -SFH weighted geometric
(2TLT -SFHWG) operator, 2TLT -SFH ordered weighted geometric (2TLT -SFHOWG) operator,
and 2TLT -SFH hybrid geometric (2TLT -SFHHG) operator.

3.1. The 2TLT-SFHWA operator

In this subsection, for the purpose of addressing real-world issues, we take into account the
significance of the aggregated data and by utilizing the novel Hamacher operational laws in 2TLT -SF
environment, we propose the 2-tuple linguistic T -spherical fuzzy Hamacher weighted average
(2TLT -SFHWA) operator. Furthermore, we also discuss their properties and some special cases. We
define the 2TLT -SFHWA operator in terms of Definition 6 and the Hamacher operational laws of
Definition 9 as below:

Definition 10. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
then the 2TLT-SFHWA operator is defined as:

2TLT-SFHWAϖ (P1,P2, . . . ,Pn) = ⊕n
ȷ=1

(
ϖ ȷP ȷ

)
, (3.1)

where ϖ = (ϖ1, ϖ2, . . . , ϖn)T is the weight vector of P ȷ ( ȷ = 1, 2, . . . , n) , and ϖ ȷ > 0,
n∑
ȷ=1
ϖ ȷ = 1.

We derive the following theorem from Definition 10 using the 2TLT -SFH operations.

Theorem 1. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs, with
ϱ > 0. Then, for any q ≥ 0 the aggregated value by utilizing 2TLT-SFHWA operator is also a 2TLT-
SFN, and

2TLT-SFHWAϖ (P1,P2, . . . ,Pn) = ⊕n
ȷ=1

(
ϖ ȷP ȷ

)
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=



∆

τ
 q

√√√√√√ n∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ− n∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ
n∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ+(ϱ−1)
n∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ

 ,

∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

ϖȷ
q

√
n∏
ȷ=1

1+(ϱ−1)
1− ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ+(ϱ−1)
n∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ


 ,

∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

ϖȷ
q

√
n∏
ȷ=1

1+(ϱ−1)

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ+(ϱ−1)
n∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ






, (3.2)

where ϖ = (ϖ1, ϖ2, . . . , ϖn)T is the weight vector of P ȷ ( ȷ = 1, 2, . . . , n) , and ϖ ȷ > 0,
n∑
ȷ=1
ϖ ȷ = 1.

Proof. We use the mathematical induction principle to prove Eq (3.2).
For n = 2, by utilizing the operational laws (1) and (3) of Definition 9, we obtain the following result:

ϖ1P1 ⊕ϖ2P2 =



∆

τ
 q

√√√√√ 1+(ϱ−1)
 ∆−1(sp1 ,℘1)

τ

qϖ1
−

1− ∆−1(sp1 ,℘1)
τ

qϖ1

1+(ϱ−1)
 ∆−1(sp1 ,℘1)

τ

qϖ1
+(ϱ−1)

1− ∆−1(sp1 ,℘1)
τ

qϖ1


 ,

∆

τ


q√ϱ

 ∆−1(sr1 ,ℜ1)
τ

ϖ1

q

√1+(ϱ−1)
1− ∆−1(sr1 ,ℜ1)

τ

qϖ1
+(ϱ−1)

 ∆−1(sr1 ,ℜ1)
τ

qϖ1


 ,

∆

τ


q√ϱ

 ∆−1(sl1
,£1)

τ

ϖ1

q

√1+(ϱ−1)

1− ∆−1(sl1
,£1)

τ

qϖ1

+(ϱ−1)
 ∆−1(sl1

,£1)
τ

qϖ1


 ,
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⊕



∆

τ
 q

√√√√√ 1+(ϱ−1)
 ∆−1(sp2 ,℘2)

τ

qϖ2
−

1− ∆−1(sp2 ,℘2)
τ

qϖ2

1+(ϱ−1)
 ∆−1(sp2 ,℘2)

τ

qϖ2
+(ϱ−1)

1− ∆−1(sp2 ,℘2)
τ

qϖ2


 ,

∆

τ


q√ϱ

 ∆−1(sr2 ,ℜ2)
τ

ϖ2

q

√1+(ϱ−1)
1− ∆−1(sr2 ,ℜ2)

τ

qϖ2
+(ϱ−1)

 ∆−1(sr2 ,ℜ2)
τ

qϖ2


 ,

∆

τ


q√ϱ

 ∆−1(sl2
,£2)

τ

ϖ2

q

√1+(ϱ−1)

1− ∆−1(sl2
,£2)

τ

qϖ2

+(ϱ−1)
 ∆−1(sl2

,£2)
τ

qϖ2






=



∆

τ
 q

√√√√√√ 2∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ− 2∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ
2∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ+(ϱ−1)
2∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ

 ,

∆

τ


q√ϱ
2∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

ϖȷ
q

√
2∏
ȷ=1

1+(ϱ−1)
1− ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ+(ϱ−1)
2∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ


 ,

∆

τ


q√ϱ
2∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

ϖȷ
q

√
2∏
ȷ=1

1+(ϱ−1)

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ+(ϱ−1)
2∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ






.

The result in Eq (3.2) holds true for n = 2. Suppose the result is true for n = k, and

⊕k
ȷ=1

(
ϖ ȷP ȷ

)
=



∆

τ
 q

√√√√√√ k∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ− k∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ
k∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ+(ϱ−1)
k∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ

 ,

∆

τ


q√ϱ
k∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

ϖȷ
q

√
k∏
ȷ=1

1+(ϱ−1)
1− ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ+(ϱ−1)
k∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ


 ,

∆

τ


q√ϱ
k∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

ϖȷ
q

√
k∏
ȷ=1

1+(ϱ−1)

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ+(ϱ−1)
k∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ






.

When n = k + 1, by using the operational laws of Definition 9, we have:

⊕k+1
ȷ=1

(
ϖ ȷP ȷ

)
=

(
⊕k
ȷ=1

(
ϖ ȷP ȷ

))
⊕ (ϖk+1Pk+1)
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=



∆

τ
 q

√√√√√√ k∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ− k∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ
k∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ+(ϱ−1)
k∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ

 ,

∆

τ


q√ϱ
k∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

ϖȷ
q

√
k∏
ȷ=1

1+(ϱ−1)
1− ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ+(ϱ−1)
k∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ


 ,

∆

τ


q√ϱ
k∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

ϖȷ
q

√
k∏
ȷ=1

1+(ϱ−1)

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ+(ϱ−1)
k∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ






⊕



∆

τ
 q

√√√√√ 1+(ϱ−1)
 ∆−1(spk+1 ,℘k+1)

τ

qϖk+1
−

1− ∆−1(spk+1 ,℘k+1)
τ

qϖk+1

1+(ϱ−1)
 ∆−1(spk+1 ,℘k+1)

τ

qϖk+1
+(ϱ−1)

1− ∆−1(spk+1 ,℘k+1)
τ

qϖk+1


 ,

∆

τ


q√ϱ

 ∆−1(srk+1 ,ℜk+1)
τ

ϖk+1

q

√1+(ϱ−1)
1− ∆−1(srk+1 ,ℜk+1)

τ

qϖk+1
+(ϱ−1)

 ∆−1(srk+1 ,ℜk+1)
τ

qϖk+1


 ,

∆

τ


q√ϱ

 ∆−1(slk+1
,£k+1)

τ

ϖk+1

q

√1+(ϱ−1)

1− ∆−1(slk+1
,£k+1)

τ

qϖk+1

+(ϱ−1)
 ∆−1(slk+1

,£k+1)
τ

qϖk+1






.

=



∆

τ
 q

√√√√√√ k+1∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ−k+1∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ
k+1∏
ȷ=1

1+(ϱ−1)
 ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ+(ϱ−1)
k+1∏
ȷ=1

1− ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ

 ,

∆

τ


q√ϱ
k+1∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

ϖȷ
q

√
k+1∏
ȷ=1

1+(ϱ−1)
1− ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ+(ϱ−1)
k+1∏
ȷ=1

 ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ


 ,

∆

τ


q√ϱ
k+1∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

ϖȷ
q

√
k+1∏
ȷ=1

1+(ϱ−1)

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ+(ϱ−1)
k+1∏
ȷ=1

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ






.

Hence Eq (3.2) is also true for n = k + 1 and therefore, Eq (3.2) holds for all n. □

Based on the parameter ϱ, we can derive the following special cases of Theorem 1.
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Case 1. When ϱ = 1, 2TLT-SFHWA operator transforms to the 2TLT-SF weighted average operator.

Case 2. When ϱ = 2, 2TLT-SFHWA operator reduces to the 2TLT-SF Einstein weighted average
operator.

Theorem 2. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) and
P
′

ȷ = ((s′p ȷ, ℘
′
ȷ), (s′r ȷ,ℜ

′

ȷ), (s′l ȷ, £
′

ȷ)) ( ȷ = 1, 2, . . . , n) be two sets of 2TLT-SFNs; then the 2TLT-SFHWA
operator has following properties:

1) (Idempotency) If all 2TLT-SFNs P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) are equal, i.e.,
P ȷ = P = ((sp, ℘), (sr,ℜ), (sl, £)) for all ȷ, then

2TLT-SFHWAϖ (P1,P2, . . . ,Pn) = P.

Proof.

2TLT -SFHWA 1
n

(P1,P2, . . . ,Pk) = 2TLT -SFHWA 1
n

(P,P, . . . ,P)

=



∆

τ
 q

√√√√√√√ n∏
ȷ=1

(
1+(ϱ−1)

(
∆−1(sp ,℘)

τ

)q) 1
n
−

n∏
ȷ=1

(
1−

(
∆−1(sp ,℘)

τ

)q) 1
n

n∏
ȷ=1

(
1+(ϱ−1)

(
∆−1(sp ,℘)

τ

)q) 1
n
+(ϱ−1)

n∏
ȷ=1

(
1−

(
∆−1(sp ,℘)

τ

)q) 1
n


 ,

∆

τ


q√ϱ
n∏
ȷ=1

(
∆−1(sr ,ℜ)

τ

) 1
n

q

√√
n∏
ȷ=1

(
1+(ϱ−1)

(
1−

(
∆−1(sr ,ℜ)

τ

)q)) 1
n
+(ϱ−1)

n∏
ȷ=1

(
∆−1(sr ,ℜ)

τ

)q 1
n


 ,

∆

τ


q√ϱ
n∏
ȷ=1

(
∆−1(sl ,£)
τ

) 1
n

q

√√
n∏
ȷ=1

(
1+(ϱ−1)

(
1−

(
∆−1(sl ,£)
τ

)q)) 1
n
+(ϱ−1)

n∏
ȷ=1

(
∆−1(sl ,£)
τ

)q 1
n






=



∆

τ


(
1+(ϱ−1)

(
∆−1(sp ,℘)

τ

))
−

(
1−

(
∆−1(sp ,℘)

τ

))
(
1+(ϱ−1)

(
∆−1(sp ,℘)

τ

))
+(ϱ−1)

(
1−

(
∆−1(sp ,℘)

τ

))

 ,

∆

τ
 ϱ

(
∆−1(sr ,ℜ)

τ

)
(
1+(ϱ−1)

(
1−

(
∆−1(sr ,ℜ)

τ

)))
+(ϱ−1)

(
∆−1(sr ,ℜ)

τ

)

 ,

∆

τ
 ϱ

(
∆−1(sl ,£)
τ

)
(
1+(ϱ−1)

(
1−

(
∆−1(sl ,£)
τ

)))
+(ϱ−1)

(
∆−1(sl ,£)
τ

)




= ((sp, ℘), (sr,ℜ), (sl, £)) = P

□
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It is simple to follow the properties of boundedness, and monotonicity. As a result, their proofs
are omitted.

2) (Boundedness) Let P ȷ ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs, and let P− = min ȷP ȷ and
P+ = max ȷP ȷ, then

P− ≤ 2TLT-SFHWAϖ (P1,P2, . . . ,Pn) ≤ P+.

3) (Monotonicity) Let P ȷ and P
′

ȷ ( ȷ = 1, 2, . . . , n) be two collections of 2TLT-SFNs, if P ȷ ≤ P
′

ȷ, for
all ȷ, then

2TLT-SFHWAϖ (P1,P2, . . . ,Pn) ≤ 2TLT-SFHWAϖ
(
P
′

1,P
′

2, . . . ,P
′

n

)
.

3.2. The 2TLT-SFHOWA operator

The 2TLT -SFHWA aggregation operator weights the 2TLT -SFNs only. In the MAGDM
environment, there are some situations when the ordered positions of the 2TLT -SFNs are significantly
considered. The definition of ordered weighted averaging operators plays a significant role in these
situations, and we define the 2TLT -SF Hamacher ordered weighted average (2TLT -SFHOWA)
operator in terms of Definition 6 and the Hamacher operational laws of Definition 9 as below:

Definition 11. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
then the 2TLT-SFHOWA operator is defined as:

2TLT-SFHOWAw (P1,P2, . . . ,Pn) = ⊕n
ȷ=1

(
w ȷPσ( ȷ)

)
, (3.3)

where (σ (1) , σ (2) , . . . , σ (n)) is a permutation of (1, 2, . . . , n) , such that Pσ( ȷ−1) ≥ Pσ( ȷ) for all
ȷ = 2, . . . , n, and w = (w1,w2, . . . ,wn)T is the aggregation-associated weight vector such that

w ȷ ∈ [0, 1] and
n∑
ȷ=1

w ȷ = 1, ϱ > 0.

Based on Hamacher operations of the 2TLT -SF values described, we can derive the Theorem 3.

Theorem 3. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
where ϱ > 0. Then, for any q ≥ 0, the aggregated value by utilizing 2TLT-SFHOWA operator is also
a 2TLT-SFN, and

2TLT-SFHOWAw (P1,P2, . . . ,Pn) = ⊕n
ȷ=1

(
w ȷPσ( ȷ)

)
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=



∆

τ
 q

√√√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
spσ( ȷ) ,℘σ( ȷ)

)
τ


q

w ȷ

−
n∏
ȷ=1

1−
 ∆−1

(
spσ( ȷ) ,℘σ( ȷ)

)
τ


q

w ȷ

n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
spσ( ȷ) ,℘σ( ȷ)

)
τ


q

w ȷ

+(ϱ−1)
n∏
ȷ=1

1−
 ∆−1

(
spσ( ȷ) ,℘σ( ȷ)

)
τ


q

w ȷ


 ,

∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1
(
srσ( ȷ) ,ℜσ( ȷ)

)
τ


w ȷ

q

√√
n∏
ȷ=1

1+(ϱ−1)

1−
 ∆−1

(
srσ( ȷ) ,ℜσ( ȷ)

)
τ


q


w ȷ

+(ϱ−1)
n∏
ȷ=1

 ∆−1
(
srσ( ȷ) ,ℜσ( ȷ)

)
τ


qw ȷ


 ,

∆

τ


q√ϱ
n∏
ȷ=1

 ∆
−1

(
slσ( ȷ)

,£σ( ȷ)

)
τ


w ȷ

q

√√√√√√ n∏
ȷ=1

1+(ϱ−1)

1−
 ∆
−1

(
slσ( ȷ)

,£σ( ȷ)

)
τ


q


w ȷ

+(ϱ−1)
n∏
ȷ=1

 ∆
−1

(
slσ( ȷ)

,£σ( ȷ)

)
τ


qw ȷ






. (3.4)

Based on the parameter ϱ, we can derive the following special cases of Theorem 3.

Case 3. When ϱ = 1, 2TLT-SFHOWA operator transforms to the 2TLT-SF ordered weighted average
operator.

Case 4. When ϱ = 2, 2TLT-SFHOWA operator reduces to the 2TLT-SF Einstein ordered weighted
average operator.

The 2TLT -SFHOWA operator has the same properties as those proposed in Theorem 2.

3.3. The 2TLT-SFHHA operator

The 2TLT -SFHWA operator only weights while the 2TLT -SFHOWA operator weights the ordered
position of the 2TLT -SF arguments instead of the arguments themselves. We need to develop such
operators that discuss the ordered position as well as the argument itself. To address this problem,
we propose the concept of the 2-tuple linguistic T -spherical fuzzy Hamacher hybrid average (2TLT -
SFHHA) operator in terms of Definition 6 and the Hamacher operational laws of Definition 9 that takes
into account both the argument and its ordered position.

Definition 12. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
then the 2TLT-SFHHA operator is defined as:

2TLT-SFHHAw,ϖ (P1,P2, . . . ,Pn) = ⊕n
ȷ=1

(
w ȷṖσ( ȷ)

)
, (3.5)

where w = (w1,w2, . . . ,wn)T is the associated weighting vector such that w ȷ ∈ [0, 1] and
n∑
ȷ=1

w ȷ = 1,

and Ṗσ( ȷ) is the ȷth largest element of 2TLT-SF arguments Ṗ ȷ
(
˙̃ς ȷ =

(
nϖ ȷ

)
P ȷ, ȷ = 1, 2, . . . , n

)
, ϖ =

(ϖ1, ϖ2, . . . , ϖn)T is the weighted vector of 2TLT-SF arguments P ȷ, with ϖ ȷ ∈ [0, 1] and
n∑
ȷ=1
ϖ ȷ = 1,

and n is the balancing coefficient. Especially, if w = (1/n, 1/n, . . . , 1/n)T , then 2TLT-SFHHA is
reduced to the 2TLT-SFHWA operator; if ϖ = (1/n, 1/n, . . . , 1/n)T , then 2TLT-SFHHA is reduced to
the 2TLT-SFHOWA operator.
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Based on Hamacher sum operations of the 2TLT -SF values described, we can derive the Theorem 4.

Theorem 4. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
where ϱ > 0. Then, its aggregated value by utilizing 2TLT-SFHHA operator is also a 2TLT-SFN, and

2TLT-SFHHAw (P1,P2, . . . ,Pn) = ⊕n
ȷ=1

(
w ȷṖσ( ȷ)

)

=



∆

τ
 q

√√√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


q

w ȷ

−
n∏
ȷ=1

1−
 ∆−1

(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


q

w ȷ

n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


q

w ȷ

+(ϱ−1)
n∏
ȷ=1

1−
 ∆−1

(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


q

w ȷ


 ,

∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1
(
ṡrσ( ȷ) ,ℜ̇σ( ȷ)

)
τ


w ȷ

q

√√
n∏
ȷ=1

1+(ϱ−1)

1−
 ∆−1

(
ṡrσ( ȷ) ,ℜ̇σ( ȷ)

)
τ


q


w ȷ

+(ϱ−1)
n∏
ȷ=1

 ∆−1
(
ṡrσ( ȷ) ,ℜ̇σ( ȷ)

)
τ


qw ȷ


 ,

∆

τ


q√ϱ
n∏
ȷ=1

 ∆
−1

(
ṡlσ( ȷ)

,£̇σ( ȷ)

)
τ


w ȷ

q

√√√√√√ n∏
ȷ=1

1+(ϱ−1)

1−
 ∆
−1

(
ṡlσ( ȷ)

,£̇σ( ȷ)

)
τ


q


w ȷ

+(ϱ−1)
n∏
ȷ=1

 ∆
−1

(
ṡlσ( ȷ)

,£̇σ( ȷ)

)
τ


qw ȷ






. (3.6)

Based on parameter ϱ, we can obtain the following special cases of Theorem 4.

Case 5. When ϱ = 1, 2TLT-SFHHA operator transforms to the 2TLT-SF hybrid average operator.

Case 6. When ϱ = 2, 2TLT-SFHHA operator reduces to the 2TLT-SF Einstein hybrid average
operator.

The 2TLT -SFHHA operator has the same properties as those proposed in Theorem 2.

3.4. The 2TLT-SFHWG operators

In this subsection, for the purpose of addressing real-world issues, we take into account the
significance of the aggregated data. We propose the 2-tuple linguistic T -spherical fuzzy Hamacher
weighted geometric (2TLT -SFHWG) operator in terms of Definition 6 and the Hamacher operational
laws of Definition 9.

Definition 13. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
then the 2TLT-SFHWG operator is defined as:

2TLT-SFHWGϖ (P1,P2, . . . ,Pn) = ⊗n
ȷ=1

(
P ȷ

)ϖ ȷ
, (3.7)

where ϖ = (ϖ1, ϖ2, . . . , ϖn)T is the weight vector of P ȷ ( ȷ = 1, 2, . . . , n) , and ϖ ȷ > 0,
n∑
ȷ=1
ϖ ȷ = 1.

Using the 2TLT -SFH operations, we deduce the following Theorem from Definition 13.
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Theorem 5. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
where ϱ > 0. Then, its aggregated value by utilizing 2TLT-SFHWG operator is also a 2TLT-SFN, and

2TLT-SFHWGϖ (P1,P2, . . . ,Pn) = ⊗n
ȷ=1

(
P ȷ

)ϖ ȷ

=



∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1(sp ȷ ,℘ ȷ)
τ

ϖȷ
q

√
n∏
ȷ=1

1+(ϱ−1)
1− ∆−1(sp ȷ ,℘ ȷ)

τ

qϖȷ+(ϱ−1)
n∏
ȷ=1

 ∆−1(sp ȷ ,℘ ȷ)
τ

qϖȷ


 ,

∆

τ
 q

√√√√√√ n∏
ȷ=1

1+(ϱ−1)
 ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ− n∏
ȷ=1

1− ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ
n∏
ȷ=1

1+(ϱ−1)
 ∆−1(sr ȷ ,ℜ ȷ)

τ

qϖȷ+(ϱ−1)
n∏
ȷ=1

1− ∆−1(sr ȷ ,ℜ ȷ)
τ

qϖȷ

 ,

∆

τ
 q

√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ− n∏
ȷ=1

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ
n∏
ȷ=1

1+(ϱ−1)

 ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ+(ϱ−1)
n∏
ȷ=1

1− ∆−1(sl ȷ ,£ ȷ)
τ

qϖȷ





. (3.8)

Based on the parameter ϱ, we can derive the following special cases of Theorem 5.

Case 7. When ϱ = 1, 2TLT-SFHWG operator transforms to the 2TLT-SF weighted geometric operator.

Case 8. When ϱ = 2, 2TLT-SFHWG operator reduces to the 2TLT-SF Einstein weighted geometric
operator.

The 2TLT -SFHWG operator has the same properties as those proposed in Theorem 2.

3.5. The 2TLT-SFHOWG operator

The 2TLT -SFHWG aggregation operator weights the 2TLT -SFNs only. In MAGDM problem,
there are some situations when the ordered positions of the 2TLT -SFNs are significantly considered.
The definition of ordered weighted geometric operator plays a significant role in these situations, and
we define the 2-tuple linguistic T -spherical fuzzy Hamacher ordered weighted geometric
(2TLT -SFHOWG) operator in terms of Definition 6 and the Hamacher operational laws of
Definition 9.

Definition 14. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
then the 2TLT-SFHOWG operator is defined as:

2TLT-SFHOWGw (P1,P2, . . . ,Pn) = ⊗n
ȷ=1

(
Pσ( ȷ)

)w ȷ
, (3.9)

where (σ (1) , σ (2) , . . . , σ (n)) is a permutation of (1, 2, . . . , n), such that Pσ( ȷ−1) ≥ Pσ( ȷ) for all
ȷ = 2, . . . , n, and w = (w1,w2, . . . ,wn)T is the aggregation-associated weight vector such that

w ȷ ∈ [0, 1] and
n∑
ȷ=1

w ȷ = 1.
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Theorem 6. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
where ϱ > 0. Then, its aggregated value by utilizing 2TLT-SFHOWG operator is also a 2TLT-SFN,
and

2TLT-SFHOWGw (P1,P2, . . . ,Pn) = ⊗n
ȷ=1

(
Pσ( ȷ)

)w ȷ

=



∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1
(
spσ( ȷ) ,℘σ( ȷ)

)
τ


w ȷ

q

√√
n∏
ȷ=1

1+(ϱ−1)

1−
 ∆−1

(
spσ( ȷ) ,℘σ( ȷ)

)
τ


q


w ȷ

+(ϱ−1)
n∏
ȷ=1

 ∆−1
(
spσ( ȷ) ,℘σ( ȷ)

)
τ


qw ȷ


 ,

∆

τ
 q

√√√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
srσ( ȷ) ,ℜσ( ȷ)

)
τ


q

w ȷ

−
n∏
ȷ=1

1−
 ∆−1

(
srσ( ȷ) ,ℜσ( ȷ)

)
τ


q

w ȷ

n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
srσ( ȷ) ,ℜσ( ȷ)

)
τ


q

w ȷ

+(ϱ−1)
n∏
ȷ=1

1− ∆−1(sr ȷ ,ℜ ȷ)
τ

qw ȷ


 ,

∆

τ


q

√√√√√√√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆
−1

(
slσ( ȷ)

,£σ( ȷ)

)
τ


q

w ȷ

−
n∏
ȷ=1

1−
 ∆
−1

(
slσ( ȷ)

,£σ( ȷ)

)
τ


q

w ȷ

n∏
ȷ=1

1+(ϱ−1)

 ∆
−1

(
slσ( ȷ)

,£σ( ȷ)

)
τ


q

w ȷ

+(ϱ−1)
n∏
ȷ=1

1− ∆−1(sl ȷ ,£ ȷ)
τ

qw ȷ






. (3.10)

Case 9. When ϱ = 1, 2TLT-SFHOWG operator transforms to the 2TLT-SF ordered weighted
geometric operator.

Case 10. When ϱ = 2, 2TLT-SFHOWG operator reduces to the 2TLT-SF Einstein ordered weighted
geometric operator.

The 2TLT -SFHOWG operator has the same properties as those proposed in Theorem 2.

3.6. The 2TLT-SFHHG operator

The 2TLT -SFHOWG operator weights the ordered positions of the 2TLT -SF arguments instead of
the arguments themselves. As a result, weights in the 2TLT -SFHWG and 2TLT -SFHOWG operators
describe different aspects. However, only one of them is taken into account by both operators. We need
to develop such operators that discuss the ordered position as well as the argument itself. To address this
problem, in the following subsection, we propose the 2-tuple linguistic T -spherical fuzzy Hamacher
hybrid geometric (2TLT -SFHHG) operator in terms of Definition 6 and the Hamacher operational laws
of Definition 9.

Definition 15. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs,
then the 2TLT-SFHHG operator is defined as:

2TLT-SFHHGw,ϖ (P1,P2, . . . ,Pn) = ⊗n
ȷ=1

(
Ṗσ( ȷ)

)w ȷ
, (3.11)

where w = (w1,w2, . . . ,wn)T is the associated weighting vector, with w ȷ ∈ [0, 1],
n∑
ȷ=1

w ȷ = 1, and Ṗσ( ȷ)

is the ȷth largest element of 2TLT-SF arguments Ṗ ȷ

(
Ṗ ȷ =

(
P ȷ

)nϖ ȷ
, ȷ = 1, 2, . . . , n

)
,
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ϖ = (ϖ1, ϖ2, . . . , ϖn) is the weighted vector of 2TLT-SF arguments P ȷ, with ϖ ȷ ∈ [0, 1] and
n∑
ȷ=1
ϖ ȷ = 1, and n is the balancing coefficient, ϱ > 0. Especially, if w = (1/n, 1/n, . . . , 1/n)T , then

2TLT-SFHHG is reduced to the 2TLT-SFHWG operator; if ϖ = (1/n, 1/n, . . . , 1/n)T , then
2TLT-SFHHG is reduced to the 2TLT-SFHOWG operator.

Based on Hamacher product operations of the 2TLT -SF values described, we can derive the
Theorem 7.

Theorem 7. Let P ȷ = ((sp ȷ, ℘ ȷ), (sr ȷ,ℜ ȷ), (sl ȷ, £ ȷ)) ( ȷ = 1, 2, . . . , n) be a collection of 2TLT-SFNs, with
ϱ > 0. Then, its aggregated value by utilizing 2TLT-SFHHG operator is also a 2TLT-SFN, and

2TLT-SFHHGw,ϖ (P1,P2, . . . ,Pn) = ⊗n
ȷ=1

(
Ṗσ( ȷ)

)w ȷ

=



∆

τ


q√ϱ
n∏
ȷ=1

 ∆−1
(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


w ȷ

q

√√
n∏
ȷ=1

1+(ϱ−1)

1−
 ∆−1

(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


q


w ȷ

+(ϱ−1)
n∏
ȷ=1

 ∆−1
(
ṡpσ( ȷ) ,℘̇σ( ȷ)

)
τ


qw ȷ


 ,

∆

τ
 q

√√√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
ṡrσ( ȷ) ,ℜ̇σ( ȷ)

)
τ


q

w ȷ

−
n∏
ȷ=1

1−
 ∆−1

(
ṡrσ( ȷ) ,ℜ̇σ( ȷ)

)
τ


q

w ȷ

n∏
ȷ=1

1+(ϱ−1)

 ∆−1
(
ṡrσ( ȷ) ,ℜ̇σ( ȷ)

)
τ


q

w ȷ

+(ϱ−1)
n∏
ȷ=1

1− ∆−1(ṡr ȷ ,ℜ̇ ȷ)
τ

qw ȷ


 ,

∆

τ


q

√√√√√√√√√√√√ n∏
ȷ=1

1+(ϱ−1)

 ∆
−1

(
ṡlσ( ȷ)

,£̇σ( ȷ)

)
τ


q

w ȷ

−
n∏
ȷ=1

1−
 ∆
−1

(
ṡlσ( ȷ)

,£̇σ( ȷ)

)
τ


q

w ȷ

n∏
ȷ=1

1+(ϱ−1)

 ∆
−1

(
ṡlσ( ȷ)

,£̇σ( ȷ)

)
τ


q

w ȷ

+(ϱ−1)
n∏
ȷ=1

1− ∆−1(ṡl ȷ ,£̇ ȷ)
τ

qw ȷ






. (3.12)

We can derive the following special cases of Theorem 7 based on the parameter ϱ.

Case 11. When ϱ = 1, 2TLT-SFHHG operator transforms to the 2TLT-SF hybrid geometric (2TLT-
SFHG) operator.

Case 12. When ϱ = 2, 2TLT-SFHHG operator reduces to the 2TLT-SF Einstein hybrid geometric
(2TLT-SFEHG) operator.

The 2TLT -SFHHG operator has the same properties as those proposed in Theorem 2.

4. A novel approach for MAGDM within 2TLT -SF environment

In this section, we present a new method to deal with MAGDM problems. The proposed method is
known as 2TLT -SF-CODAS model based on 2TLT -SFHWA and 2TLT -SFHWG operators by
considering the flexibility of 2TLT -SFNs. The desirability of alternatives is calculated using two
measures in this method. The largest and most important measurement is the Euclidean distance (ED)
between alternatives and the negative-ideal solution (NIS) and the second measure is the Hamming
distance (HD). It is clear that the alternative which has greater distance from the NIS is more
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desirable. The ED and HD measures are used for the relative assessment (RA) of alternatives in order
to construct the RA based matrix to fuse the information.

Suppose there are m alternatives A = {A1, A2, . . . , Am}, n attributes ℏ = {ℏ1, ℏ2, . . . , ℏn}, and g experts
E = {e1, e2, . . . , eg}, and let ϖ = (ϖ1, ϖ2, . . . , ϖn)T and ϖ′ = (ϖ′1, ϖ

′
2, . . . , ϖ

′
g)T , respectively be the

weighting vector of the attributes and weighting vector of the experts satisfyingϖ ȷ ∈ [0, 1],ϖ′ℓ ∈ [0, 1],∑n
ȷ=1ϖ ȷ = 1, and

g∑
ℓ=1
ϖ′ℓ = 1. The technique of implementing the 2TLT -SF-CODAS approach is

described in the following steps:

Step 1. Switch the linguistic information into 2TLT -SFNs rℓı ȷ = ((spℓı ȷ, ℘
ℓ
ı ȷ), (srℓı ȷ,ℜ

ℓ
ı ȷ), (slℓı ȷ, £

ℓ
ı ȷ)) (ℓ =

1, 2, . . . , g).

Step 2. According to 2TLT -SFNs rℓı ȷ = ((spℓı ȷ, ℘
ℓ
ı ȷ), (srℓı ȷ,ℜ

ℓ
ı ȷ), (slℓı ȷ, £

ℓ
ı ȷ))(ℓ = 1, 2, . . . , g) and by utilizing

Eqs (3.2) and (3.8), independent panel evaluations can be combined to form the fused 2TLT -SFNs
matrix rı ȷ = ((spı ȷ, ℘ı ȷ), (srı ȷ,ℜı ȷ), (slı ȷ, £ı ȷ)) as:

R = [rı ȷ]m×n =


r11 r12 . . . r1n

r21 r22 . . . r2n
...

...
. . .

...

rm1 rm2 . . . rmn

 (4.1)

Step 3. Calculate the weighted 2TLT -SFNs matrix as follows:

tı ȷ = ϖ ȷ ⊗ rı ȷ, (4.2)

where ϖ ȷ means the attribute weight of ℏ ȷ, and 0 ≤ ϖ ȷ ≤ 1,
n∑
ȷ=1
ϖ ȷ = 1.

Step 4. Calculate the NIS by using 2TLT -SFNs’ score and accuracy functions (if the score functions
are similar, the accuracy functions are used to rank the 2TLT -SFNs):

NIS = [NIS ȷ]1×n; (4.3)

NIS ȷ = min
ı

S (tı ȷ). (4.4)

Step 5. Calculate the weighted EDı and HDı as follows:

EDı =
n∑
ȷ=1

ED(tı ȷ,NIS ȷ), (4.5)

HDı =
n∑
ȷ=1

HD(tı ȷ,NIS ȷ), (4.6)

where HD and ED of two 2TLT -SFNs P1 = ((sp1 , ℘1), (sr1 ,ℜ1), (sl1 , £1)) and
P2 = ((sp2 , ℘2), (sr2 ,ℜ2), (sl2 , £2)), defined as:
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HD(P1,P2) = ∆

τ3


∣∣∣∣∣(∆−1(sp1 ,℘1)
τ

)q
−

(
∆−1(sp2 ,℘2)

τ

)q∣∣∣∣∣ + ∣∣∣∣∣(∆−1(sr1 ,ℜ1)
τ

)q
−

(
∆−1(sr2 ,ℜ2)

τ

)q∣∣∣∣∣
+

∣∣∣∣∣(∆−1(sl1 ,£1)
τ

)q
−

(
∆−1(sl2 ,£2)

τ

)q∣∣∣∣∣

 , (4.7)

ED(P1,P2) = ∆

τ3


∣∣∣∣∣(∆−1(sp1 ,℘1)
τ

)q
−

(
∆−1(sp2 ,℘2)

τ
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Step 6. In the following equations, build the relative assessment matrix RA:

RA = [hıℓ]m×m; (4.9)

hıℓ = (EDı − EDℓ) + (g(EDı − EDℓ) × (HDı − HDℓ)), (4.10)

where ℓ ∈ {1, 2, 3, · · · ,m} and g denotes a significant function that could be designed:

g(θ) =
{

1 if |θ| ≥ ℑ,
0 if |θ| < ℑ,

(4.11)

where ℑ ∈ [0.01, 0.05] given by DMs. In our study, ℑ = 0.02.

Step 7. Derive the average solution (AS ı) by using:

AS ı =
m∑
ℓ=1

hıℓ. (4.12)

Step 8. On the basis of computing outcomes of AS ı, all the alternatives can be ranked. The best option
has the highest evaluation score.

5. Numerical illustration

We choose a case study that focuses on computational architecture and dimensional synthesis of
the parallel linear delta robot for additive manufacturing to explain our proposed novel methodology.
According to the research, various parallel robots have been introduced, with many of these
architectures being genuinely innovative. However, the linear delta robot has by far the most common,
has used in pick and place operations, packaging, welding, computer numerical control operations,
and additive manufacturing over the years. Two platforms make up a linear delta robot with three
degrees of freedom. Each kinematic chain is created by links parallelogram with T -spherical joints,
and one of the platforms is typically described as mobile. Because of their low inertia, precision, and
speed, linear delta robots of this kind perform exceptionally well. Despite both of these benefits, the
absence of linear delta robotics result in a decline in working areas. Many experiments have focused
on the dimensional optimization of linear delta robots to solve this problem, which assures good
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results. Regarding that, due to the production group’s familiarity with additive manufacturing
systems, the customer specifications are established. In their survey, they list 29 consumers and
design criteria that have significant and minor effects on the design of linear delta robots. The most
significant customer specifications, according to the article, are the robot capability segment, printing
standard, speed burst, massive workspace, long ongoing cycle, and printing with various materials.

In our study, the selected customer requirements (what is) and the design requirements (how is) of
the linear delta robots for additive manufacturing are arranged on the decision-making matrix.
Comprehensive above, the set of seven alternatives A = {A1, A2, . . . A7} is evaluated by four experts
E = {e1, e2, e3, e4} which are composed of experienced engineers and customers in additive
manufacturing at each evaluation stage having weights ϖ′ = (0.2, 0.4, 0.3, 0.1)T . The four experts use
the four attributes such as pace of movement (ℏ1), temperature regulation array (ℏ2), system total cost
(ℏ3), and protection criteria (ℏ4) with weighting vector ϖ = (0.17, 0.31, 0.27, 0.25)T to select the best
alternatives for additive manufacturing of linear delta robot.

The linguistic variables of 2TLT -SFNs are recorded in Table 1.

Table 1. Linguistic variables and their 2TLT -SFNs.

Linguistic variables 2TLT -SFNs
Absolutely very high (AVH) ((s8, 0), (s0, 0), (s0, 0))
Extremely high (EH) ((s7, 0), (s1, 0), (s1, 0))
Very high (VH) ((s6, 0), (s2, 0), (s2, 0))
Medium high (MH) ((s5, 0), (s3, 0), (s3, 0))
Equal (E) ((s4, 0), (s4, 0), (s4, 0))
Medium low (ML) ((s3, 0), (s3, 0), (s5, 0))
Very low (VL) ((s2, 0), (s2, 0), (s6, 0))
Extremely low (EL) ((s1, 0), (s1, 0), (s7, 0))
Absolutely very low (AVL) ((s0, 0), (s0, 0), (s8, 0))

Establish the 2TLT -SF evaluation matrix Rℓ = [rℓı ȷ]7×4(ℓ = 1, 2, 3, 4) in Table 2 based on linguistic
variables listed in Table 1, which are the assessments of four DMs.
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Table 2. Linguistic assessing matrix by four DMs.

Experts Alternatives Attributes

ℏ1 ℏ2 ℏ3 ℏ4

e1

A1 ML VL E MH
A2 EH E MH VH
A3 E EH VH EH
A4 VL VH EH EL
A5 ML EH EL VL
A6 EL EH MH VH
A7 VH EL MH VL

e2

A1 VL EL E ML
A2 E MH ML VL
A3 E ML VL EL
A4 ML VL EL E
A5 EH MH EH VL
A6 VL MH EL MH
A7 EL MH E VL

e3

A1 VL MH EL MH
A2 EL MH E VL
A3 MH EH VL E
A4 E VL EL MH
A5 EH E EH MH
A6 VL EL E ML
A7 E MH ML VL

e4

A1 EL VH EL VH
A2 EL VH MH MH
A3 VH MH VH EL
A4 EL EH MH VH
A5 VH EL MH VL
A6 ML VL E MH
A7 EH E MH VH

Transformation of the linguistic decision matrix given in Table 2 into 2TLT -SF decision matrix
shown in Table 3.
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Table 3. The assessing matrix with 2TLT -SFNs.
Experts Alternatives Attributes

ℏ1 ℏ2 ℏ3 ℏ4

e1

A1 ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0))
A2 ((s7, 0), (s1, 0), (s1, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s6, 0), (s2, 0), (s2, 0))
A3 ((s4, 0), (s4, 0), (s4, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s7, 0), (s1, 0), (s1, 0))
A4 ((s2, 0), (s2, 0), (s6, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s1, 0), (s1, 0), (s7, 0))
A5 ((s3, 0), (s3, 0), (s5, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s2, 0), (s2, 0), (s6, 0))
A6 ((s1, 0), (s1, 0), (s7, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s6, 0), (s2, 0), (s2, 0))
A7 ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s2, 0), (s2, 0), (s6, 0))

e2

A1 ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s3, 0), (s3, 0), (s5, 0))
A2 ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0))
A3 ((s4, 0), (s4, 0), (s4, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0))
A4 ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s4, 0), (s4, 0), (s4, 0))
A5 ((s7, 0), (s1, 0), (s1, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s2, 0), (s2, 0), (s6, 0))
A6 ((s2, 0), (s2, 0), (s6, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0))
A7 ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s2, 0), (s2, 0), (s6, 0))

e3

A1 ((s2, 0), (s2, 0), (s6, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0))
A2 ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s2, 0), (s2, 0), (s6, 0))
A3 ((s5, 0), (s3, 0), (s3, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s4, 0), (s4, 0), (s4, 0))
A4 ((s4, 0), (s4, 0), (s4, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0))
A5 ((s7, 0), (s1, 0), (s1, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s5, 0), (s3, 0), (s3, 0))
A6 ((s2, 0), (s2, 0), (s6, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s3, 0), (s3, 0), (s5, 0))
A7 ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0))

e4

A1 ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0))
A2 ((s1, 0), (s1, 0), (s7, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s5, 0), (s3, 0), (s3, 0))
A3 ((s6, 0), (s2, 0), (s2, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0))
A4 ((s1, 0), (s1, 0), (s7, 0)) ((s7, 0), (s1, 0), (s1, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s6, 0), (s2, 0), (s2, 0))
A5 ((s6, 0), (s2, 0), (s2, 0)) ((s1, 0), (s1, 0), (s7, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s2, 0), (s2, 0), (s6, 0))
A6 ((s3, 0), (s3, 0), (s5, 0)) ((s2, 0), (s2, 0), (s6, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0))
A7 ((s7, 0), (s1, 0), (s1, 0)) ((s4, 0), (s4, 0), (s4, 0)) ((s5, 0), (s3, 0), (s3, 0)) ((s6, 0), (s2, 0), (s2, 0))

5.1. Results of the case study

5.1.1. Decision-making procedure based on the 2TLT -SFHWA operator

The proposed methodology is used to evaluate seven different additive manufacturing alternatives
(linear delta robots) by utilizing 2TLT -SFHWA operator.

Individual expert assessments can be integrated into the collective assessing matrix with 2TLT -SFNs,
according to Tables 2 and 3 and Eq (3.2) (see Table 4).

AIMS Mathematics Volume 8, Issue 2, 3428–3468.



3454

Table 4. Combined assessing matrix with 2TLT -SFNs.

ℏ1 ℏ2

A1 ((s2, 0.2882), (s2, 0.0246), (s6,−0.0998)) ((s4, 0.1942), (s2,−0.2868), (s5,−0.1698))
A2 ((s5,−0.0836), (s2,−0.2521), (s4,−0.0391)) ((s5,−0.0183), (s3, 0.0543), (s3, 0.0543))
A3 ((s5,−0.3529), (s3, 0.4295), (s3, 0.4295)) ((s6, 0.0437), (s2,−0.2657), (s2, 0.1465))
A4 ((s3, 0.2495), (s3,−0.2914), (s5, 0.0654)) ((s5,−0.2730), (s2,−0.1338), (s4, 0.1460))
A5 ((s7,−0.4228), (s1, 0.3360), (s1, 0.4866)) ((s5, 0.3488), (s2, 0.3599), (s3,−0.1022))
A6 ((s2, 0.1000), (s2,−0.1862), (s6, 0.1054)) ((s5, 0.2104), (s2,−0.3349), (s3, 0.4588))
A7 ((s5,−0.1153), (s2,−0.2537), (s4,−0.0426)) ((s5,−0.3727), (s2, 0.4831), (s4,−0.2679))

ℏ3 ℏ4

A1 ((s4,−0.4865), (s2, 0.3095), (s5, 0.1349)) ((s5,−0.3511), (s3,−0.1185), (s4,−0.4453))
A2 ((s4, 0.1365), (s3, 0.2730), (s4, 0.0278)) ((s4, 0.2246), (s2, 0.0831), (s5,−0.4014))
A3 ((s4, 0.4229), (s2,−0.0000), (s4, 0.4269)) ((s5,−0.1421), (s2,−0.4797), (s4, 0.2236))
A4 ((s5,−0.1796), (s1, 0.1165), (s5,−0.3396)) ((s5,−0.4931), (s3,−0.3965), (s4,−0.0920))
A5 ((s7,−0.4936), (s1, 0.1165), (s2,−0.3115)) ((s4,−0.2766), (s2, 0.2596), (s5,−0.0447))
A6 ((s4,−0.1340), (s2, 0.1777), (s5,−0.1301)) ((s5,−0.0746), (s3,−0.2326), (s3, 0.2416))
A7 ((s4, 0.1984), (s3, 0.3691), (s4,−0.0636)) ((s3, 0.4108), (s2,−0.0000), (s5, 0.4542))

Determine the weighted assessing matrix with 2TLT -SFNs (see Table 5).

Table 5. Combined weighted assessing matrix with 2TLT -SFNs.

ℏ1 ℏ2

A1 ((s1, 0.4702), (s6, 0.3336), (s8,−0.4036)) ((s3, 0.1509), (s5,−0.0381), (s7,−0.1583))
A2 ((s3, 0.2067), (s6, 0.1773), (s7, 0.0988)) ((s4,−0.2312), (s6,−0.0645), (s6,−0.0645))
A3 ((s3, 0.0212), (s7,−0.0728), (s7,−0.0728)) ((s5,−0.3410), (s5,−0.0196), (s5, 0.3206))
A4 ((s2, 0.0926), (s7,−0.3452), (s7, 0.4020)) ((s4,−0.4335), (s5, 0.0950), (s7,−0.4749))
A5 ((s4, 0.4829), (s6,−0.0986), (s6, 0.0094)) ((s4, 0.0667), (s5, 0.4794), (s6,−0.1607))
A6 ((s1, 0.3491), (s6, 0.2161), (s8,−0.3592)) ((s4,−0.0465), (s5,−0.0824), (s6, 0.1690))
A7 ((s3, 0.1850), (s6, 0.1763), (s7, 0.0979)) ((s3, 0.4878), (s6,−0.4335), (s6, 0.3159))

ℏ3 ℏ4

A1 ((s3,−0.4585), (s6,−0.2798), (s7, 0.0975)) ((s3, 0.3242), (s6, 0.1976), (s7,−0.4686))
A2 ((s3, 0.0021), (s6, 0.2847), (s7,−0.3529)) ((s3, 0.0100), (s6,−0.2852), (s7,−0.0342))
A3 ((s3, 0.2168), (s6,−0.4978), (s7,−0.1812)) ((s3, 0.4815), (s5, 0.2818), (s7,−0.1806))
A4 ((s4,−0.4811), (s5,−0.2988), (s7,−0.0862)) ((s3, 0.2186), (s6, 0.0422), (s7,−0.3118))
A5 ((s5,−0.0728), (s5,−0.2988), (s5, 0.2566)) ((s3,−0.3555), (s6,−0.1682), (s7, 0.0971))
A6 ((s3,−0.1993), (s6,−0.3700), (s7,−0.0035)) ((s4,−0.4669), (s6, 0.1352), (s6, 0.3827))
A7 ((s3, 0.0481), (s6, 0.3339), (s7,−0.3943)) ((s2, 0.4197), (s6,−0.3431), (s7, 0.2695))
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Calculate the NIS by Eq (4.4):

NIS = ((s1, 0.3491), (s6, 0.2161), (s8,−0.3592)), ((s3, 0.1509), (s5,−0.0381), (s7,−0.1583)),
((s3,−0.4585), (s6,−0.2798), (s7, 0.0975)), ((s2, 0.4197), (s6,−0.3431), (s7, 0.2695)).

Calculate the EDı and HDı:

HD1 = 0.1390, HD2 = 0.3531, HD3 = 0.4354, HD4 = 0.2865,

HD5 = 0.6177, HD6 = 0.2266, HD7 = 0.2627,

ED1 = 0.2051, ED2 = 0.5469, ED3 = 0.6644, ED4 = 0.4241,

ED5 = 0.9607, ED6 = 0.3753, ED7 = 0.4065.

Determine the RA matrix (see Table 6).

Table 6. Relative assessment matrix (RA).

A1 A2 A3 A4 A5 A6 A7

A1 0.0000 −0.5559 −0.7557 −0.3665 −1.2344 −0.2578 −0.3251
A2 0.5559 0.0000 −0.1998 0.1895 −0.6784 0.2981 0.2308
A3 0.7557 0.1998 0.0000 0.3892 −0.4786 0.4979 0.4306
A4 0.3665 −0.1895 −0.3892 0.0000 −0.8679 0.1087 0.0176
A5 1.2344 0.6784 0.4786 0.8679 0.0000 0.9765 0.9092
A6 0.2578 −0.2981 −0.4979 −0.1087 −0.9765 0.0000 −0.0673
A7 0.3251 −0.2308 −0.4306 −0.0176 −0.9092 0.0673 0.0000

Derive the AS ı by using Eq (4.12). The results of AS ı are as follows:

AS 1 = 3.4954, AS 2 = −0.3961, AS 3 = −1.7946, AS 4 = 0.9538,

AS 5 = −5.1450, AS 6 = 1.6907, AS 7 = 1.1957.

On the basis of computing results of AS ı, all the alternatives can be ranked. The ranking of alternatives
is as follows: A1 > A6 > A7 > A4 > A2 > A3 > A5. So, A1 is the best alternative.

5.1.2. Decision-making procedure based on the 2TLT -SFHWG operator

Individual expert assessments can be integrated into the collective assessing matrix with 2TLT -SFNs,
according to Tables 2 and 3 and Eq (3.8) (see Table 7).
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Table 7. Combined assessing matrix with 2TLT -SFNs.

ℏ1 ℏ2

A1 ((s2, 0.0246), (s2, 0.2882), (s6,−0.0160)) ((s2, 0.2562), (s2, 0.3278), (s6,−0.0258))
A2 ((s3,−0.3600), (s3, 0.1730), (s6,−0.2537)) ((s5,−0.1177), (s3, 0.2305), (s3, 0.2305))
A3 ((s4, 0.4698), (s4,−0.3443), (s4,−0.3443)) ((s5, 0.0137), (s3,−0.4724), (s4,−0.0188))
A4 ((s3,−0.2914), (s3, 0.2495), (s5, 0.3693)) ((s3,−0.1136), (s2,−0.0487), (s5, 0.4761))
A5 ((s6, 0.0159), (s2, 0.0707), (s3, 0.3231)) ((s4, 0.3597), (s3, 0.2269), (s4, 0.3120))
A6 ((s2,−0.1862), (s2, 0.1000), (s6, 0.1900)) ((s3, 0.1082), (s2, 0.4206), (s5, 0.4674))
A7 ((s3,−0.2977), (s3,−0.0177), (s6,−0.2863)) ((s4,−0.4097), (s3, 0.0096), (s5,−0.1281))

ℏ3 ℏ4

A1 ((s2, 0.3095), (s4,−0.4865), (s6,−0.1816)) ((s4, 0.1838), (s3,−0.0625), (s4, 0.1135))
A2 ((s4,−0.1739), (s3, 0.3951), (s4, 0.3162)) ((s3,−0.2349), (s2, 0.1769), (s5, 0.4896))
A3 ((s3,−0.1754), (s2,−0.0000), (s5, 0.4787)) ((s2, 0.2977), (s3,−0.0468), (s6, 0.0232))
A4 ((s2,−0.2189), (s2,−0.2712), (s6, 0.4568)) ((s3, 0.4183), (s3, 0.3590), (s5,−0.0260))
A5 ((s5,−0.1061), (s2,−0.2712), (s5,−0.3091)) ((s3,−0.3501), (s2, 0.4392), (s6,−0.4887))
A6 ((s2, 0.4221), (s3, 0.2932), (s6,−0.2304)) ((s4, 0.4898), (s3,−0.1292), (s4,−0.1236))
A7 ((s4,−0.0636), (s4,−0.4988), (s4, 0.1984)) ((s2, 0.2445), (s2,−0.0000), (s6,−0.1581))

Determine the weighted assessing matrix with 2TLT -SFNs (see Table 8).

Table 8. Combined weighted assessing matrix with 2TLT -SFNs.

ℏ1 ℏ2

A1 ((s6, 0.3336), (s1, 0.4702), (s4,−0.0106)) ((s5, 0.4034), (s2,−0.2618), (s5,−0.4025))
A2 ((s7,−0.3742), (s2, 0.0426), (s4,−0.1934)) ((s7,−0.1355), (s2, 0.4160), (s2, 0.4160))
A3 ((s7, 0.2462), (s2, 0.3584), (s2, 0.3584)) ((s7,−0.0788), (s2,−0.1126), (s3,−0.0129))
A4 ((s7,−0.3452), (s2, 0.0926), (s4,−0.4718)) ((s6,−0.1677), (s1, 0.4564), (s4, 0.1719))
A5 ((s8,−0.3784), (s1, 0.3301), (s2, 0.1406)) ((s7,−0.3721), (s2, 0.4136), (s3, 0.2418))
A6 ((s6, 0.2161), (s1, 0.3491), (s4, 0.1534)) ((s6,−0.0324), (s2,−0.1923), (s4, 0.1646))
A7 ((s7,−0.3478), (s2,−0.0811), (s4,−0.2182)) ((s6, 0.2406), (s2, 0.2496), (s4,−0.3187))

ℏ3 ℏ4

A1 ((s6,−0.2798), (s3,−0.4585), (s4, 0.3172)) ((s7,−0.1968), (s2, 0.0808), (s3,−0.0716))
A2 ((s7,−0.4445), (s2, 0.4548), (s3, 0.1362)) ((s6, 0.1339), (s2,−0.4600), (s4,−0.0284))
A3 ((s6, 0.0398), (s1, 0.4422), (s4, 0.0372)) ((s6,−0.1435), (s2, 0.0916), (s4, 0.4102))
A4 ((s5, 0.3324), (s1, 0.2464), (s5,−0.1195)) ((s6, 0.4680), (s2, 0.3823), (s4,−0.4303))
A5 ((s7, 0.0058), (s1, 0.2464), (s3, 0.4202)) ((s6, 0.0689), (s2,−0.2738), (s4,−0.0112))
A6 ((s6,−0.2057), (s2, 0.3799), (s4, 0.2763)) ((s7,−0.0758), (s2, 0.0334), (s3,−0.2442))
A7 ((s7,−0.3943), (s3,−0.4673), (s3, 0.0481)) ((s6,−0.1775), (s1, 0.4147), (s4, 0.2576))
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Calculate the NIS by Eq (4.4):

NIS = ((s6, 0.2161), (s1, 0.3491), (s4, 0.1534)), ((s5, 0.4034), (s2,−0.2618), (s5,−0.4025)),
((s5, 0.3324), (s1, 0.2464), (s5,−0.1195)), ((s6,−0.1435), (s2, 0.0916), (s4, 0.4102)).

Calculate the EDı and HDı:

HD1 = 0.1590, HD2 = 0.3472, HD3 = 0.3416, HD4 = 0.1532,

HD5 = 0.4836, HD6 = 0.2107, HD7 = 0.2620,

ED1 = 0.2551, ED2 = 0.5748, ED3 = 0.6019, ED4 = 0.2512,

ED5 = 0.8818, ED6 = 0.3489, ED7 = 0.4248.

Determine the RA matrix (see Table 9).

Table 9. Relative assessment matrix (RA).

.

A1 A2 A3 A4 A5 A6 A7

A1 0.0000 −0.5079 −0.5294 0.0038 −0.9514 −0.1456 −0.2728
A2 0.5079 0.0000 −0.0214 0.5176 −0.4435 0.3624 0.2352
A3 0.5294 0.0214 0.0000 0.5390 −0.4221 0.3838 0.2566
A4 −0.0038 −0.5176 −0.5390 0.0000 −0.9610 −0.1552 −0.2824
A5 0.9514 0.4435 0.4221 0.9610 0.0000 0.8058 0.6787
A6 0.1456 −0.3624 −0.3838 0.1552 −0.8058 0.0000 −0.1272
A7 0.2728 −0.2352 −0.2566 0.2824 −0.6787 0.1272 0.0000

Derive the AS ı by using Eq (4.12). The results of AS ı are as follows:

AS 1 = 2.4032, AS 2 = −1.1582, AS 3 = −1.3080, AS 4 = 2.4590,

AS 5 = −4.2625, AS 6 = 1.3784, AS 7 = 0.4882.

On the basis of computing results of AS ı, all the alternatives can be ranked. The ranking of alternatives
is as follows: A4 > A1 > A6 > A7 > A2 > A3 > A5. So, A4 is the best alternative.

5.2. Parametric analysis

The parameter ϱ is used in this research study to explain the interdependence of distinct
quantifiable attributes and the various numerical values of parameters ϱ illustrate the various
decision-making possibilities and circumstances. Under the supposition of preserving q (q = 4), the
parameter ϱ is given alternate numerical values using the numerical illustration data in Table 3.
Numerous rating scoring outcomes for optimal linear delta robot selection are achieved by adjusting
the numerical value of the parameter ϱ and the outcomes are shown in Tables 10 and 11 by utilizing
the 2TLT -SFHWA. The scoring values of each linear delta robot vary depending on the value of
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parameter ϱ and the derived results are roughly the same. When we allocate distinguishable numerical
values to the parameter ϱ, the best alternatives are A1 and A4. The order of the results of the analysis
tends to vary when ϱ = 1, 2, 3, 5, 7, 9, 13, 17, 21 by utilizing the 2TLT -SFHWA and 2TLT -SFHWG
operators. As a result, updating the numerical value of ϱ influences the outcomes for the optimal
selection of linear delta robots. The DMs can change the numerical value of parameter ϱ to
accommodate the complex scenario and achieve the evaluation results during the actual
decision-making procedure. We can also summarize from the appraisal scoring results as shown in
Tables 12 and 13 for the 2TLT -SFHWG AOs proposed in this research study are the best approaches
to summarize aggregated decision information by the 2TLT -SFNs because these two operators make
the information aggregation procedure more credible with parameters. When
q = 1, 2, 3, 5, 7, 9, 13, 17, 21, the achieved results vary depending on whether the 2TLT -SFHWA
or 2TLT -SFHWG operator is used. By allocating numerical values to parameter q, the range of
explaining decision information is expanded and reduces the loss of important aggregated
information. Graphical representation of the variation of parameters is given in Figures 2–5.

Table 10. The numerical results and ranking by 2TLT -SFHWA operator (q = 4 and ϱ varies).
Parameters AS (A1) AS (A2) AS (A3) AS (A4) AS (A5) AS (A6) AS (A7) Ranking
ϱ = 1 3.4831 −0.3715 −1.8540 0.8634 −5.0189 1.7104 1.1875 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 2 3.4923 −0.3846 −1.8153 0.9268 −5.1101 1.6948 1.1962 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 3 3.4958 −0.3964 −1.7948 0.9541 −5.1450 1.6908 1.1955 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 5 3.4966 −0.4117 −1.7712 0.9795 −5.1723 1.6877 1.1915 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 7 3.4951 −0.4213 −1.7573 0.9916 −5.1820 1.6860 1.1878 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 9 3.4933 −0.4280 −1.7478 0.9988 −5.1858 1.6849 1.1848 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 13 3.4898 −0.4371 −1.7356 1.0067 −5.1874 1.6833 1.1803 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 17 3.4869 −0.4431 −1.7280 1.0110 −5.1862 1.6824 1.1771 A1 > A6 > A7 > A4 > A2 > A3 > A5

ϱ = 21 3.4845 −0.4476 −1.7227 1.0136 −5.1842 1.6817 1.1746 A1 > A6 > A7 > A4 > A2 > A3 > A5

Table 11. The numerical results and ranking by 2TLT -SFHWA operator (ϱ = 3 and q varies).
Parameters AS (A1) AS (A2) AS (A3) AS (A4) AS (A5) AS (A6) AS (A7) Ranking
q = 1 1.9000 −0.1896 −0.8213 0.6508 −3.2680 0.9733 0.7547 A1 > A6 > A7 > A4 > A2 > A3 > A5

q = 2 2.6047 −0.2225 −1.2111 0.6077 −4.1377 1.3567 1.0020 A1 > A6 > A7 > A4 > A2 > A3 > A5

q = 3 3.1517 −0.3146 −1.5376 0.7417 −4.7671 1.5722 1.1537 A1 > A6 > A7 > A4 > A2 > A3 > A5

q = 5 3.6567 −0.4919 −1.9713 1.1082 −5.2307 1.7637 1.1653 A1 > A6 > A4 > A7 > A2 > A3 > A5

q = 7 3.6609 −0.6887 −2.1158 1.1379 −4.8449 1.8733 0.9772 A1 > A6 > A4 > A7 > A2 > A3 > A5

q = 9 3.4580 −0.8187 −2.0821 0.9231 −4.1716 1.9635 0.7278 A1 > A6 > A4 > A7 > A2 > A3 > A5

q = 13 2.8745 −0.9414 −1.8504 0.5271 −2.9162 2.0177 0.2887 A1 > A6 > A7 > A4 > A2 > A3 > A5

q = 17 2.3273 −0.9403 −1.5654 0.2710 −2.0402 1.9500 −0.0025 A1 > A6 > A4 > A7 > A2 > A3 > A5

q = 21 1.8764 −0.8708 −1.2901 0.1166 −1.4694 1.8090 −0.1716 A1 > A6 > A4 > A7 > A2 > A3 > A5
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Figure 2. Numerical results of linear delta robots Aı (ı = 1, 2, . . . , 7), when q = 4, based on
the 2TLT -SFHWA operator.

Figure 3. Numerical results of linear delta robots Aı (ı = 1, 2, . . . , 7), when ϱ = 3, based on
the 2TLT -SFHWA operator.
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Table 12. The numerical results and ranking by 2TLT -SFHWG operator (q = 4 and ϱ varies).
Parameters AS (A1) AS (A2) AS (A3) AS (A4) AS (A5) AS (A6) AS (A7) Ranking
ϱ = 1 2.2916 −1.2712 −1.2414 2.4050 −3.9265 1.3491 0.3933 A4 > A1 > A6 > A7 > A3 > A2 > A5

ϱ = 2 2.3716 −1.1985 −1.2812 2.4467 −4.1628 1.3716 0.4527 A4 > A1 > A6 > A7 > A2 > A3 > A5

ϱ = 3 2.4035 −1.1580 −1.3081 2.4592 −4.2626 1.3782 0.4879 A4 > A1 > A6 > A7 > A2 > A3 > A5

ϱ = 5 2.4120 −1.1224 −1.3811 2.4453 −4.3586 1.3641 0.6406 A4 > A1 > A6 > A7 > A2 > A3 > A5

ϱ = 7 2.4246 −1.1051 −1.3737 2.4429 −4.4053 1.3648 0.6519 A4 > A1 > A6 > A7 > A2 > A3 > A5

ϱ = 9 2.4339 −1.0931 −1.3784 2.4410 −4.4308 1.3670 0.6603 A4 > A1 > A6 > A7 > A2 > A3 > A5

ϱ = 13 2.4462 −1.0781 −1.3893 2.4368 −4.4579 1.3712 0.6711 A1 > A4 > A6 > A7 > A2 > A3 > A5

ϱ = 17 2.4541 −1.0690 −1.3989 2.4329 −4.4717 1.3748 0.6778 A1 > A4 > A6 > A7 > A2 > A3 > A5

ϱ = 21 2.4598 −1.0628 −1.4075 2.4297 −4.4798 1.3779 0.6826 A1 > A4 > A6 > A7 > A2 > A3 > A5

Table 13. The numerical results and ranking by 2TLT -SFHWG operator (ϱ = 3 and q varies).
Parameters AS (A1) AS (A2) AS (A3) AS (A4) AS (A5) AS (A6) AS (A7) Ranking
q = 1 1.4064 −1.0238 −0.6081 1.4690 −1.9474 0.6890 0.0150 A4 > A1 > A6 > A7 > A3 > A2 > A5

q = 2 1.8974 −1.0977 −0.9217 1.8822 −2.9046 0.9277 0.2165 A1 > A4 > A6 > A7 > A3 > A2 > A5

q = 3 2.2310 −1.1747 −1.1968 2.2455 −3.7137 1.1830 0.4257 A4 > A1 > A6 > A7 > A2 > A3 > A5

q = 5 2.4085 −1.0531 −1.3988 2.4981 −4.5474 1.4624 0.6303 A4 > A1 > A6 > A7 > A2 > A3 > A5

q = 7 2.1986 −0.7340 −1.4160 2.3257 −4.6386 1.4582 0.8061 A4 > A1 > A6 > A7 > A2 > A3 > A5

q = 9 1.8874 −0.4018 −1.3185 2.0297 −4.4197 1.3375 0.8856 A4 > A1 > A6 > A7 > A2 > A3 > A5

q = 13 1.3345 0.0678 −1.0366 1.4443 −3.7160 1.0133 0.8928 A4 > A1 > A6 > A7 > A2 > A3 > A5

q = 17 0.9289 0.2723 −0.7372 1.0235 −3.0235 0.7587 0.7773 A4 > A1 > A7 > A6 > A2 > A3 > A5

q = 21 0.6744 0.3301 −0.4810 0.7208 −2.4417 0.5698 0.6276 A4 > A1 > A7 > A6 > A2 > A3 > A5

Figure 4. Numerical results of linear delta robots Aı (ı = 1, 2, . . . , 7), when q = 4, based on
the 2TLT -SFHWG operator.
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Figure 5. Numerical results of linear delta robots Aı (ı = 1, 2, . . . , 7), when ϱ = 3, based on
the 2TLT -SFHWG operator.

The score values of each chosen alternative change depending on the value of the parameter, but
the resultant outcomes are roughly the same. The ranking order of the alternatives varies due to the
basic behavior variation of parameter ϱ and values of q. Even so, in most cases, the most appropriate
alternatives are the same as shown in Tables 10–13 and Figures 2–5.

5.3. Comparative analysis

We employ specific validated approaches to deal with the suggested MAGDM problem under this
subsection, and we assess the results with developed approach to verify if it is feasible and successful.
We compute the evaluation results for the selection of optimal alternative for the manufacturing of
linear delta robots by using the different existing and proposed approaches. Tables 14 and 15
summarize the output of the comparison among the developed 2TLT -SF-CODAS approach and
existing 2-tuple linguistic picture fuzzy (2TLPF-CODAS), 2-tuple linguistic spherical fuzzy
(2TLSF-CODAS), 2-tuple linguistic neutrosophic fuzzy-EDAS (2TLNF-EDAS), 2-tuple linguistic
neutrosophic fuzzy-CODAS (2TLNF-CODAS), 2-tuple linguistic Pythagorean fuzzy-CODAS
(2TLPyF-CODAS), and 2-tuple linguistic IF-TOPSIS methodologies. Further details can be seen in
Figures 6 and 7, where the black dotted line represents the average.

Table 14. Evaluation outcomes by utilizing different methodologies based on 2TLT -
SFHWA.

Methods AS (A1) AS (A2) AS (A3) AS (A4) AS (A5) AS (A6) AS (A7) Ranking
2TLT -SF-CODAS 3.4954 −0.3961 −1.7946 0.9538 −5.1450 1.6907 1.1957 A1 > A6 > A7 > A4 > A2 > A3 > A5

2TLPyF-CODAS 1.9000 −0.1896 −0.8213 0.6508 −3.2680 0.9733 0.7547 A1 > A6 > A7 > A4 > A2 > A3 > A5

2TLSF-CODAS 2.6047 −0.2225 −1.2111 0.6077 −4.1377 1.3567 1.0020 A1 > A6 > A7 > A4 > A2 > A3 > A5

Wang et al. (2TLNF-EDAS) [55] 0.0601 0.4553 0.6549 0.3101 0.9080 0.2872 0.2824 A5 > A3 > A2 > A4 > A6 > A7 > A1

Wang et al. (2TLNF-CODAS) [56] 2.0344 −0.1034 −0.9949 0.3313 −3.1281 1.0464 0.8144 A1 > A6 > A7 > A4 > A2 > A3 > A5

He et al. (2TLPyF-CODAS) [57] 2.7174 −0.2180 −1.3401 0.5074 −4.0869 1.4011 1.0192 A1 > A6 > A7 > A4 > A2 > A3 > A5

Cheng et al. (2TL-IF-TOPSIS) [58] 0.9633 0.6091 −0.3543 3.4739 0.4190 −0.2955 0.6484 A4 > A1 > A7 > A2 > A5 > A6 > A3
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Table 15. Evaluation outcomes by utilizing different methodologies based on 2TLT -
SFHWG.

Methods AS (A1) AS (A2) AS (A3) AS (A4) AS (A5) AS (A6) AS (A7) Ranking
2TLT -SF-CODAS 2.4032 −1.1582 −1.3080 2.4590 −4.2625 1.3784 0.4882 A4 > A1 > A6 > A7 > A3 > A2 > A5

2TLPyF-CODAS 1.4064 −1.0238 −0.6081 1.4690 −1.9474 0.6890 0.0150 A4 > A1 > A6 > A7 > A3 > A2 > A5

2TLSF-CODAS 1.8974 −1.0977 −0.9217 1.8822 −2.9046 0.9277 0.2165 A1 > A4 > A6 > A7 > A3 > A2 > A5

Wang et al. (2TLNF-EDAS) [55] 0.1417 0.7275 0.6142 0.1212 0.9309 0.3114 0.4634 A5 > A2 > A3 > A7 > A6 > A1 > A4

Wang et al. (2TLNF-CODAS) [56] 1.3370 −1.3686 −0.3996 1.5099 −1.5397 0.7602 −0.2993 A4 > A1 > A6 > A7 > A3 > A2 > A5

He et al. (2TLPyF-CODAS) [57] 1.8476 −1.3024 −0.8093 1.9762 −2.7222 0.9890 0.02111 A4 > A1 > A6 > A7 > A3 > A2 > A5

Cheng et al. (2TL-IF-TOPSIS) [58] 4.5163 1.0554 1.0072 −2.1783 0.8445 1.6610 1.1012 A1 > A6 > A7 > A2 > A3 > A5 > A4

There are certain differences in the priority order of alternatives because of the fundamental
behavior of several aggregating methodologies. However, as demonstrated in Tables 14 and 15, the
most appropriate alternatives are the same in both the present and existing techniques. Hence, from
the comparison results with existing 2TLPF-CODAS, 2TLSF-CODAS, 2TLNF-EDAS,
2TLNF-CODAS, 2TLPyF-CODAS, and 2TL-IF-TOPSIS methodologies, we can conclude that the
best alternatives for the manufacturing of linear delta robot are same. In a summary, the strategy we
propose is broad and applicable to solve MAGDM problems with 2TLT -SFNs.

2TLPFS is the special case of 2TLT -SFS when q = 1. We obtained the same ranking results
when comparing the proposed method to the 2TLPF-CODAS method. However, slightly different
ranking results are obtained when comparing the proposed method to 2TLT -SF-CODAS method, but
the preferred alternative is A1 or A4. The range of the 2TLSFS is wider than 2TLPFS but limited
in comparison to 2TLT -SFS as it is the special case of 2TLT -SFS when q = 2. Consequently, the
proposed approach is more intuitive.

Figure 6. Comparative outcomes with 2TLT -SFHWA operator.
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Figure 7. Comparative outcomes with 2TLT -SFHWG operator.

6. Conclusions

The practical implications of the paper are as follows. Experts can relate the language words listed
in Table 2 to the 2TLT -SF-QFD model that has been suggested. When people are unsure about two
succeeding phrases, they could give intermediate language terms. Their appropriate numerical values
were easily extracted from the paper’s linguistic scales in Table 3. The use of the 2TLT -SF geometric
aggregation operator made it simple to combine the opinions of experts and customers. The 2TLT -SF
arithmetic operator has been used, to sum up, both positive and negative correlations. In contrast to
the majority of QFD articles, the suggested model incorporates all of the functions at an HoQ. HoQ
implements competitive advantage analysis for both CRs and DRs. The innovative
methods 2TLT -SF-QFD and 2TLT -SF-CODAS are used to assess a company’s position among its
rivals. The 2TLT -Spherical fuzzy sets take ambiguity and imprecision in linear delta robot design into
account. Assigning membership, nonmembership, and reluctance separately takes place inside a
wider domain. The process of developing a linear delta robot is extensive and is dependent on several
clients and design criteria. The suggested model might incorporate all of the many tasks carried out
by the HoQ, such as the relationships between customer needs and design specifications and
competitive studies from the perspectives of both consumers and specialists. The HoQ can employ
linguistic expressions thanks to this concept. It could also consider the degrees of hesitation that
customers or experts exhibit while giving assessments on a linguistic scale. The fuzzy set
theory-based numerical analysis can include linguistic concepts. The concept has been used to build
linear delta robot technology with success. Existing decision-making strategies in the literature were
incapable of dealing with 2-tuple linguistic T -Spherical fuzzy information. In response, we developed
a new MAGDM approach in order to overcome MAGDM problems in the 2TLT -SF environment. We
introduced novel aggregation operators, given the correlation structure among arguments. The 2TL
terms can better reflect human perceptions and T -SFSs are more reliable due to the qth power of MD,
AD, and NMD. Consequently, we have expanded the arithmetic mean, geometric mean, and hybrid
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operators into the 2TLT -SF environment and utilized Hamacher operational rules to propose six
novels AOs which are: the 2TLT -SFHWA operator, 2TLT -SFHOWA operator, 2TLT -SFHHA
operator, 2TLT -SFHWG operator, 2TLT -SFHOWG operator, and 2TLT -SFHHG operator.
Additionally, we have developed a novel decision-making technique entitled the 2TLT -SF-CODAS
approach to work out 2TLT -SF-MAGDM problems. Finally, we solved the problem of selecting the
best alternatives for additive manufacturing of linear delta robot by using our newly developed
MAGDM approach. Since this approach efficiently represents the interaction among the many given
arguments as well as provides more space for DMs to communicate their fuzzy knowledge, our
proposed approach is more generic and versatile than other approaches. The limitation of the study is
that the levels of linguistic scale may not be sufficient for experts to assign. Consequently, extra levels
might be incorporated into the scale to take into account the range of possible expert opinions.
Depending on the technique described in our investigations, the following aspects can be pursued in
future research. As fundamental concepts, the 2TLT -SFS notion and its corresponding concepts can
be further extended, for example, the identification of the similarity and distance assessment
between 2TLT -SFSs can reveal additional aspects of fuzzy information. Our approach can also be
applied to medical diagnoses, purchasing choices, and potential investment evaluation like [59–63].

Acknowledgments

The research of Santos-Garcı́a was funded by the Spanish project ProCode-UCM
(PID2019-108528RB-C22) from the Ministerio de Ciencia e Innovación.

Conflict of interest

The authors declare no conflict of interest.

References

1. Y. Akao, Development history of quality function deployment, Customer Driven Approach Qual.
Plann. Deployment, 339 (1994), 90.

2. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353.
https://doi.org/10.1142/9789814261302 0021

3. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96.
https://doi.org/10.1016/S0165-0114(86)80034-3

4. R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst.,
22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989

5. R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230.
https://doi.org/10.1109/TFUZZ.2016.2604005

6. J. Ali, A q-rung orthopair fuzzy MARCOS method using novel score function and its application
to solid waste management, Appl. Intell., 52 (2022), 8770–8792. https://doi.org/10.1007/s10489-
021-02921-2

AIMS Mathematics Volume 8, Issue 2, 3428–3468.

http://dx.doi.org/https://doi.org/10.1142/9789814261302_0021
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(86)80034-3
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2013.2278989
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2016.2604005
http://dx.doi.org/https://doi.org/10.1007/s10489-021-02921-2
http://dx.doi.org/https://doi.org/10.1007/s10489-021-02921-2


3465

7. J. Ali, Z. Bashir, T. Rashid, W. K. Mashwani, A q-rung orthopair hesitant fuzzy stochastic method
based on regret theory with unknown weight information, J. Amb. Intel. Hum. Comp., 2022.
https://doi.org/10.1007/s12652-022-03746-8

8. B. C. Cuong, V. Kreinovich, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2014), 409–420.
https://doi.org/10.15625/1813-9663/30/4/5032
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38. H. Hamacher, Über logische Verknünpfungenn unssharfer Aussagen und deren zugenhörige
Bewertungs-funktione, Prog. Cybern. Syst. Res., 3 (1978), 276–288.

39. G. Wei, M. Lu, X. Tang, Y. Wei, Pythagorean hesitant fuzzy Hamacher aggregation operators and
their application to multiple attribute decision making, Int. J. Intell. Syst., 33 (2018), 1197–1233.
https://doi.org/10.1002/int.21978

40. G. Deschrijver, C. Cornelis, E. E. Kerre, On the representation of intuitionistic fuzzy t-norms and
t-conorms, IEEE T. Fuzzy Syst., 12 (2004), 45–61. https://doi.org/10.1109/TFUZZ.2003.822678

41. M. Akram, X. Peng, A. Sattar, A new decision-making model using complex
intuitionistic fuzzy Hamacher aggregation operators, Soft Comput., 25 (2021), 7059–7086.
https://doi.org/10.1007/s00500-021-05658-9

42. D. Pamucar, M. Deveci, I. Gokasar, M. Popovic, Fuzzy Hamacher WASPAS decision-
making model for advantage prioritization of sustainable supply chain of electric ferry
implementation in public transportation, Environ. Dev. Sustain., 24 (2022), 7138–7177.
https://doi.org/10.1007/s10668-021-01742-0

43. S. Faizi, W. Sałabun, S. Nawaz, A. ur Rehman, J. Watróbski, Best-Worst method and Hamacher
aggregation operations for intuitionistic 2-tuple linguistic sets, Expert Syst. Appl., 181 (2021),
115088. https://doi.org/10.1016/j.eswa.2021.115088

44. H. Garg, Z. Ali, T. Mahmood, Interval-valued picture uncertain linguistic generalized Hamacher
aggregation operators and their application in multiple attribute decision-making process, Arab. J.
Sci. Eng., 46 (2021), 10153–10170. https://doi.org/10.1007/s13369-020-05313-9

45. A. Hadi, W. Khan, A. Khan, A novel approach to MADM problems using Fermatean
fuzzy Hamacher aggregation operators, Int. J. Intell. Syst., 36 (2021), 3464–3499.
https://doi.org/10.1002/int.22423

46. M. K. Ghorabaee, E. K. Zavadskas, Z. Turskis, J. Antucheviciene, A new combinative distance-
based assessment (CODAS) method for multi-criteria decision-making, Econ. Comput. Econ. Cyb.,
50 (2016), 25–44.

47. F. Lei, G. Wei, X. Chen, Model-based evaluation for online shopping platform with probabilistic
double hierarchy linguistic CODAS method, Int. J. Intell. Syst., 36 (2021), 5339–5358.
https://doi.org/10.1002/int.22514

48. V. Simic, S. Karagoz, M. Deveci, N. Aydin, Picture fuzzy extension of the CODAS method
for multi-criteria vehicle shredding facility location, Expert Syst. Appl., 175 (2021), 114644.
https://doi.org/10.1016/j.eswa.2021.114644

49. Q. Wang, Research on teaching quality evaluation of college english based on the CODAS method
under interval-valued intuitionistic fuzzy information, J. Intell. Fuzzy Syst., 41 (2021), 1499–1508.
https://doi.org/10.3233/JIFS-210366

50. S. Naz, M. Akram, A. Sattar, M. M. A. Al-Shamiri, 2-tuple linguistic q-rung orthopair fuzzy
CODAS approach and its application in arc welding robot selection, AIMS Mathematics, 7 (2022),
17529–17569. https://doi.org/10.3934/math.2022966

51. M. Akram, Z. Niaz, F. Feng, Extended CODAS method for multi-attribute group decision-making
based on 2-tuple linguistic Fermatean fuzzy Hamacher aggregation operators, Granular Comput.,
2022. https://doi.org/10.1007/s41066-022-00332-3

AIMS Mathematics Volume 8, Issue 2, 3428–3468.

http://dx.doi.org/https://doi.org/10.1002/int.21978
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2003.822678
http://dx.doi.org/https://doi.org/10.1007/s00500-021-05658-9
http://dx.doi.org/https://doi.org/10.1007/s10668-021-01742-0
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.115088
http://dx.doi.org/https://doi.org/10.1007/s13369-020-05313-9
http://dx.doi.org/https://doi.org/10.1002/int.22423
http://dx.doi.org/https://doi.org/10.1002/int.22514
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2021.114644
http://dx.doi.org/https://doi.org/10.3233/JIFS-210366
http://dx.doi.org/https://doi.org/10.3934/math.2022966
http://dx.doi.org/https://doi.org/10.1007/s41066-022-00332-3


3468

52. F. Herrera, E. Herrera-Viedma, Linguistic decision analysis: Steps for solving decision problems
under linguistic information, Fuzzy Set. Syst., 115 (2000), 67–82. https://doi.org/10.1016/S0165-
0114(99)00024-X

53. W. Wang, X. Liu, Intuitionistic fuzzy geometric aggregation operators based on Einstein
operations, Int. J. Intell. Syst., 26 (2011), 1049–1075. https://doi.org/10.1002/int.20498

54. M. Akram, S. Naz, F. Feng, A. Shafiq, Assessment of hydropower plants in Pakistan: Muirhead
mean-based 2-tuple linguistic t-spherical fuzzy model combining SWARA with COPRAS, Arab.
J. Sci. Eng., 2022. https://doi.org/10.1007/s13369-022-07081-0

55. P. Wang, J. Wang, G. Wei, EDAS method for multiple criteria group decision making under
2-tuple linguistic neutrosophic environment, J. Intell. Fuzzy Syst., 37 (2019), 1597–1608.
https://doi.org/10.3233/JIFS-179223

56. P. Wang, J. Wang, G. Wei, J. Wu, C. Wei, Y. Wei, CODAS method for multiple attribute group
decision making under 2-tuple linguistic neutrosophic environment, Informatica, 31 (2020), 161–
184. https://doi.org/10.1007/s13042-020-01208-1

57. T. He, S. Zhang, G. Wei, R. Wang, J. Wu, C. Wei, CODAS method for 2-tuple linguistic
Pythagorean fuzzy multiple attribute group decision making and its application to financial
management performance assessment, Technol. Econ. Dev. Eco., 26 (2020), 920–932.
https://doi.org/10.3846/tede.2020.11970

58. P. Cheng, B. Zhou, Z. Chen, J. Tan, The TOPSIS method for decision making with 2-tuple linguistic
intuitionistic fuzzy sets, IAEAC, 2017, 1603–1607. https://doi.org/10.1109/IAEAC.2017.8054284

59. I. Petrovic, M. Kankaras, A hybridized IT2FS-DEMATEL-AHP-TOPSIS multicriteria decision
making approach: Case study of selection and evaluation of criteria for determination of
air traffic control radar position, Decis. Mak. Appl. Manage. Eng., 3 (2020), 146–164.
https://doi.org/10.31181/dmame2003134p

60. G. Ali, M. Afzal, M. Asif, A. Shazad, Attribute reduction approaches under interval-
valued q-rung orthopair fuzzy soft framework, Appl. Intell., 52 (2022), 8975–9000.
https://doi.org/10.1007/s10489-021-02853-x

61. X. Mi, Y. Tian, B. Kang, A hybrid multi-criteria decision making approach for assessing health-care
waste management technologies based on soft likelihood function and D-numbers, Appl. Intell., 51
(2021), 6708–6727. https://doi.org/10.1007/s10489-020-02148-7

62. M. Akram, A. Martino, Multi-attribute group decision making based on T -spherical fuzzy soft
rough average aggregation operators, Granular Comput., 2022. https://doi.org/10.1007/s41066-
022-00319-0

63. M. Akram, N. Ramzan, F. Feng. Extending COPRAS method with linguistic fermatean fuzzy sets
and Hamy mean operators, J. Math., 2022, 8239263. https://doi.org/10.1155/2022/8239263

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 2, 3428–3468.

http://dx.doi.org/https://doi.org/10.1016/S0165-0114(99)00024-X
http://dx.doi.org/https://doi.org/10.1016/S0165-0114(99)00024-X
http://dx.doi.org/https://doi.org/10.1002/int.20498
http://dx.doi.org/https://doi.org/10.1007/s13369-022-07081-0
http://dx.doi.org/https://doi.org/10.3233/JIFS-179223
http://dx.doi.org/https://doi.org/10.1007/s13042-020-01208-1
http://dx.doi.org/ https://doi.org/10.3846/tede.2020.11970
http://dx.doi.org/ https://doi.org/10.3846/tede.2020.11970
http://dx.doi.org/https://doi.org/10.1109/IAEAC.2017.8054284
http://dx.doi.org/https://doi.org/10.31181/dmame2003134p
http://dx.doi.org/https://doi.org/10.1007/s10489-021-02853-x
http://dx.doi.org/https://doi.org/10.1007/s10489-020-02148-7
http://dx.doi.org/https://doi.org/10.1007/s41066-022-00319-0
http://dx.doi.org/https://doi.org/10.1007/s41066-022-00319-0
http://dx.doi.org/https://doi.org/10.1155/2022/8239263
http://creativecommons.org/licenses/by/4.0

	Introduction
	Motivation and objectives
	Organization

	Preliminaries
	2-Tuple linguistic representation model
	Hamacher t-norm and Hamacher t-conorm

	The 2TLT-SF Hamacher aggregation operators
	The 2TLT-SFHWA operator
	The 2TLT-SFHOWA operator
	The 2TLT-SFHHA operator
	The 2TLT-SFHWG operators
	The 2TLT-SFHOWG operator
	The 2TLT-SFHHG operator

	A novel approach for MAGDM within 2TLT-SF environment
	Numerical illustration
	Results of the case study
	Decision-making procedure based on the 2TLT-SFHWA operator
	Decision-making procedure based on the 2TLT-SFHWG operator

	Parametric analysis
	Comparative analysis

	Conclusions

