Research article

New complex wave structures to the complex Ginzburg-Landau model

  • Received: 10 May 2021 Accepted: 01 June 2021 Published: 11 June 2021
  • MSC : 35A20, 35A24, 35A25, 35B10, 70K50

  • Int his paper, we study and analysis the complex Ginzburg-Landau model or CGL model to obtain some new solitary wave structures through the modified $ (G'/G) $-expansion method. Those solutions can explain through hyperbolic, trigonometric, and rational functions. The graphical design makes the dynamics of the equations noticeable. Herein, we state that the examined method is important, powerful, and significant in performing numerous solitary wave structures of various nonlinear wave models following in physics and engineering as well.

    Citation: Huiqing Wang, Md Nur Alam, Onur Alp İlhan, Gurpreet Singh, Jalil Manafian. New complex wave structures to the complex Ginzburg-Landau model[J]. AIMS Mathematics, 2021, 6(8): 8883-8894. doi: 10.3934/math.2021515

    Related Papers:

  • Int his paper, we study and analysis the complex Ginzburg-Landau model or CGL model to obtain some new solitary wave structures through the modified $ (G'/G) $-expansion method. Those solutions can explain through hyperbolic, trigonometric, and rational functions. The graphical design makes the dynamics of the equations noticeable. Herein, we state that the examined method is important, powerful, and significant in performing numerous solitary wave structures of various nonlinear wave models following in physics and engineering as well.



    加载中


    [1] A. R. Seadawy, S. Z. Alamri, Mathematical methods via the nonlinear two-dimensional water waves of Olver dynamical equation and its exact solitary wave solutions, Results Phys., 8 (2018), 286-291. doi: 10.1016/j.rinp.2017.12.008
    [2] A. R. Seadawy, Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsevetviashviliurgers equation in quantum plasma, Math. Meth. Appl. Sci., 40 (2017), 1598-1607. doi: 10.1002/mma.4081
    [3] A. R. Seadawy, Three-Dimensional Weakly Nonlinear Shallow Water Waves Regime and its Traveling Wave Solutions, Int. J. Comput. Meth., 15 (2018), 1850017. doi: 10.1142/S0219876218500172
    [4] A. R. Seadawy, Solitary wave solutions of two-dimensional nonlinear Kadomtsevetviashvili dynamic equation in dust-acoustic plasmas, Pramana, 89 (2017), 49. doi: 10.1007/s12043-017-1446-4
    [5] A. R. Seadawy, Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods, Eur. Phys. J. Plus, 132 (2017), 518. doi: 10.1140/epjp/i2017-11755-6
    [6] J. G. Liu, M. S. Osman, W. H. Zhu, L. Zhou, G. P. Ai, Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B, 125 (2019), 175.
    [7] M. N. Alam, X. Li, Exact traveling wave solutions to higher order nonlinear equations, J. Ocean Eng. Sci., 4 (2019), 276-288. doi: 10.1016/j.joes.2019.05.003
    [8] C. T. Sindi, J. Manafian, Wave solutions for variants of the KdVurger and the K(n, n)urger equations by the generalized G'/G-expansion method, Math. Meth. Appl. Sci., 40 (2017), 4350-4363. doi: 10.1002/mma.4309
    [9] M. N. Alam, M. A. Akbar, S. T. Mohyud-Din, A novel $(G'/G)$-expansion method and its application to the Boussinesq equation, Chin. Phys. B, 23 (2014), 020203-020210. doi: 10.1088/1674-1056/23/2/020203
    [10] U. Khan, R. Ellahi, R. Khan, S. T. Mohyud-Din, Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using $(G'/G)$-expansion method, Opt. Quant. Elec., 49 (2017), 362. doi: 10.1007/s11082-017-1191-4
    [11] H. M. Ahmed, W. B. Rabie, M. A. Ragusa, Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method, Anal. Math. Phys., 11 (2021), 1-16. doi: 10.1007/s13324-020-00437-5
    [12] V. S. Kumar, H. Rezazadeh, M. Eslami, F. Izadi, M. S. Osman, Jacobi Elliptic Function Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law Nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127. doi: 10.1007/s40819-019-0710-3
    [13] S. Wang, Remarks on an Equation of the Ginzburg-Landau Type, Filomat, 33 (2019), 5913-5917. doi: 10.2298/FIL1918913W
    [14] M. S. Osman, D. Lu, M. M. A. Khater, R. A. M. Attia, Complex wave structures for abundant solutions related to the complex Ginzburgandau model, Optik, 192 (2019), 162927. doi: 10.1016/j.ijleo.2019.06.027
    [15] M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawadaotera equation, Nonlinear Dyn., 96 (2019), 1491-1496. doi: 10.1007/s11071-019-04866-1
    [16] M. S. Osman, B. Ghanbari, J. A. T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019), 20. doi: 10.1140/epjp/i2019-12442-4
    [17] M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of solitons for a $(3+1)$-dimensional Boiti-Leon-Manna-Pempinelli equation, Math. Meth. Appl. Sci., 42 (2019), 6277-6283. doi: 10.1002/mma.5721
    [18] A. A. Omar, Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Solitons Frac., 125 (2019), 163-170. doi: 10.1016/j.chaos.2019.05.025
    [19] A. A. Omar, Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87-110.
    [20] M. N. Alam, M. M. Alam, An analytical method for solving exact solutions of a nonlinear evolution equation describing the ynamics of ionic currents along microtubules, Taibah University Sci., 11 (2017), 939-948. doi: 10.1016/j.jtusci.2016.11.004
    [21] M. N. Alam, F. B. M. Belgacem, Microtubules nonlinear models dynamics investigations through the exp$-\phi(\xi)$-expansion method implementation, Math., 4 (2016), 6. doi: 10.3390/math4010006
    [22] M. N. Alam, C. Tunc, An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator-prey system, Alexandria Eng. J., 55 (2016), 1855-1865. doi: 10.1016/j.aej.2016.04.024
    [23] W. Sikander, U. Khan, N. Ahmed, S. T. Mohyud-Din, Optimal solutions for homogeneous and non-homogeneous equations arising in physics, Results Phys., 7 (2017), 216-224. doi: 10.1016/j.rinp.2016.12.018
    [24] W. Sikander, U. Khan, S. T. Mohyud-Din, Optimal Solutions for the Evolution of a Social Obesity Epidemic Model, Eur. Phys. J. Plus, 132 (2017), 257. doi: 10.1140/epjp/i2017-11512-y
    [25] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Meth. Part. Diff. Eq., 26 (2010), 448-479. doi: 10.1002/num.20460
    [26] J. Manafian, An optimal Galerkin-homotopy asymptotic method applied to the nonlinear second-order bvps, Proc. Instit. Math. Mech., 47 (2021), 156-182.
    [27] G. Singh, I. Singh, New Laplace variational iterative method for solving 3D Schrödinger equations, J. Math. Comput. Sci., 10 (2020), 2015-2024.
    [28] G. Singh, I. Singh, New Laplace variational iterative method for solving two-dimensional telegraph equations, J. Math. Comput. Sci., 10 (2020), 2943-2954.
    [29] S. T. Mohyud-Din, A. Irshad, N. Ahmed, U. Khan, Exact Solutions of $(3+1)$-dimensional generalized KP Equation Arising in Physics, Results Phys., 7 (2017), 3901-3909. doi: 10.1016/j.rinp.2017.10.007
    [30] A. Atangana, Extension of the Sumudu homotopy perturbation method to an attractor for one-dimensional Kelleregel equations, Appl. Math. Model., 39 (2015), 2909-2916. doi: 10.1016/j.apm.2014.09.029
    [31] H. M. Baskonus, H. Bulut, New wave behaviors of the system of equations for the ion sound and Langmuir waves, Waves Random Complex, 26 (2016), 613-625. doi: 10.1080/17455030.2016.1181811
    [32] M. Mirzazadeh, R. T. Alqahtani, A. Biswas, Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov's scheme, Optik, 145 (2017), 74-78. doi: 10.1016/j.ijleo.2017.07.011
    [33] J. Manafian, Application of the ITEM for the system of equations for the ion sound and Langmuir waves, Opt. Quant. Elec., 49 (2017), 17. doi: 10.1007/s11082-016-0860-z
    [34] J. Manafian, S. Heidari, Periodic and singular kink solutions of the Hamiltonian amplitude equation, Adv. Math. Models Appl., 4 (2019), 134-149.
    [35] B. Boutarfa, A. Akgul, M. Inc, New approach for the Fornberghitham type equations, J. Comput. Appl. Math., 312 (2017), 13. doi: 10.1016/j.cam.2015.09.016
    [36] J. Manafian, M. Shahriari, An efficient algorithm for solving the fractional dirac differential operator, Adv. Math. Models Appl., 5 (2020), 289-297.
    [37] S. T. Demiray, H. Bulut, New exact solutions of the system of equations for the ion sound and Langmuir waves by ETEM, Math. Comput. Appl., 21 (2016), 11.
    [38] X. Ma, Y. Pan, L. Chang, Explicit travelling wave solutions in a magneto-electro-elastic circular rod, Int. J. Comput. Sci., 10 (2013), 62-68.
    [39] Z. Pinar, H. Rezazadeh, M. Eslami, Generalized logistic equation method for Kerr law and dual power law Schrödinger equations, Opt. Quant. Elec., 52 (2020), 1-16. doi: 10.1007/s11082-019-2116-1
    [40] N. Savaissou, B. Gambo, H. Rezazadeh, A. Bekir, S. Y. Doka, Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity, Opt. Quant. Elec., 52 (2020), 1-16. doi: 10.1007/s11082-019-2116-1
    [41] J. G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, The dynamical behavior of mixed type lump solutions on the (3+ 1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation, Int. J. Nonlinear Sci. Num. Simul., 21 (2020), 661-665. doi: 10.1515/ijnsns-2018-0373
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2563) PDF downloads(120) Cited by(10)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog