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Abstract: Int his paper, we study and analysis the complex Ginzburg-Landau model or CGL
model to obtain some new solitary wave structures through the modified (G′/G)-expansion method.
Those solutions can explain through hyperbolic, trigonometric, and rational functions. The graphical
design makes the dynamics of the equations noticeable. Herein, we state that the examined method
is important, powerful, and significant in performing numerous solitary wave structures of various
nonlinear wave models following in physics and engineering as well.
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1. Introduction

The nonlinear wave models have been excited about the observation of numerous scientists in
different areas. Everybody can express various natural phenomena. Moreover, they describe the
dynamics of these phenomena and determine the physical application of these models. Several
scientists have been endeavored to get different procedures that able to make the closed-form wave
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and solitary wave solutions of these equations. Some crucial processes as the extended mapping
method [1], the extended direct algebraic sech method [2], the extended modified mapping
method [3], the Sech-tanh method [4], the direct algebraic function method [5], the (G′/G)-expansion
scheme [6–10], the finite series Jacobi elliptic cosine function Ansatz [11, 12], the modified auxiliary
equation method [13, 14], the generalized unified method [15], the generalized exponential
function [16], the general bilinear form [17], the reproducing kernel Hilbert space method [18], the
residual power series method [19], the exp(−φ(ξ)-expansion method [20–22], the variation of
parameters method (VPM) [23], the traditional homotopy perturbation method (HPM) [24, 25], the
optimal Galerkin-homotopy asymptotic method (OGHAM) [26], the Laplace variational iterative
method [27, 28], the improved tan(φ(ξ)/2)-expansion method [29], the Sumudu homotopy
perturbation method [30], the sine-Gordon expansion method [31], the Riccati-Bernoulli sub-ODE
method [32], the improve tan(φ(ξ))-expansion method [33, 34], the reproducing kernel method [35], a
systematic calculative algorithm [36], the extended trial equation method (ETEM) [37] and many
more. The paper applied the modified (G′

G )-expansion method [38] to derive the different type of
solitary wave structures for the complex Ginzburg-Landau model [14, 16]. The complex
Ginzburg-Landau model can be represented as

iWt + s1Wxx + s2 f (|W |2)W −
s3

|W |2W∗
{2|W |2(|W |2)xx − ((|W |2)x)2} − s4W = 0, (1.1)

where x is the non-dimensional distance along the fiber, t is the time in dimensionless form, s1, s2, s3,
s4 are the group of velocity dispersion parameters and the function f (|W |2) is a k-times continuously
differentiable real-valued algebraic function, k = 1, 2, ..., respectively. Authors of [39] used the
generalized logistic equation method for Kerr law and dual power law Schrödinger equations, and
obtained the exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power
law of nonlinearity [40], and also the dynamical behavior of mixed type lump solutions on the (3+

1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation has been investigated
in [41].

This investigation proposes to acquire new solitary wave solutions to the the complex Ginzburg-
Landau model via the modified (G′

G )-expansion method. The synopsis of this paper shown below. In
Section 2, we mentioned the algorithm of the modified (G′

G )-expansion method. In Section 3, new
solitary wave solutions of the studied equation is formulated. In Section 4, result and discussions are
given.

2. Outline of the modified (G′
G )-expansion method

The modified (G′
G )-expansion method [38] is summarized as follows:

P(u, ux, uxx, ut, utt, uxt, ...) = 0, (2.1)

where u = u(x, t), ux = ∂u
∂x , uxx = ∂2u

∂x2 and P is a polynomial in u(x, t) and their partial derivatives, in
which the nonlinear terms and biggest order derivatives are involved.

Use the transformation:
u = u(x, t) = u(ξ), ξ = k(x − Vt + ξ0), (2.2)

where k, ξ0 and V are a constant. From Eq 2.1 and Eq 2.2, we find:

R(u, ku
′

, k2u
′′

,−kVu
′

, k2V2u
′′

,−k2V2u
′′

, ...) = 0. (2.3)
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• Step 1: Calculate m through the balance rule on Eq 2.3.
• Step 2:We consider the modified (G′

G )-expansion method:

u(ξ) =

m∑
i=−m

AiF i, (2.4)

where F = (G
′

G + λ
2 ), |A−m| + |Am| , 0 and G = G(ξ) satisfies the equation:

G
′′

+ λG
′

+ µG = 0, (2.5)

where Ai(±1,±2, ...,±m), λ and µ are free constants. From the Eq 2.5, after some manipulation
we find:

F′ = h − F2, (2.6)

where h =
λ2−4µ

4 and h is calculated by λ and µ. So, F now satisfies the Riccati like equation 2.6.
It is found that the Riccati like equation 2.6 admits several types of solutions (see Appendix for
details).
• Step 3: Applying Eq 2.4 into Eq 2.3 and Eq 2.6, collecting all terms with the same order of F

together. Equating each coefficient of this polynomial to zero, yields a set of algebraic equations
which can be solved to find the values of Ai(±1,±2, ...,±m), λ and µ with the help of MAPLE.

3. Solitary wave solutions for the CGL model

Let us consider:

iWt + s1Wxx + s2 f (|W |2)W −
s3

|W |2W∗
{2|W |2(|W |2)xx − ((|W |2)x)2} − s4W = 0. (3.1)

The constants η is the phase component, a is the wave number, b is the frequency, r is the phase
constant and c is the velocity of the above model, respectively. Plugging W(x, t) = eiηV(ξ), ξ = x − ct,
η = −ax + bt + r into the Eq 3.1. Equation 3.1 separates the imaginary, and real parts through the above
transformation:

− (2as1 + c)V ′ = 0, (3.2)

− (s1a2 + s4 + b)V + s2 f (|V |2)V + (s1 − 4s3)V ′′ = 0. (3.3)

The Eq 3.2 provides c = −2as1. For researching the Kerr-law nonlinearity of Eq 3.1, we put
f (|V |2) = V2 and Eq 3.3 becomes:

V3 + PV + RV ′′ = 0, (3.4)

where P = − s1a2+s4+b
s2

and R = − s1−4s3
s2

. In accordance with the rule of the modified (G′
G )-expansion

method [38], Equation 3.4 gives:

U(ξ) = A1F(ξ) + A0 + A−1F−1(ξ), (3.5)

where the coefficients A0, A1 and A−1 are constants. By Eq 3.5 and Eq 3.4 and then equating each
coefficients of F i to zeros, we get:
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• The first set:

P =
1
2

Rλ2 − 2Rµ, g = ±
√
−2R, A0 = 0, A1 = g, A−1 = 0.

Using the values of the first set and Eq 3.5 into Eq 3.4, we have:

W1(x, t) = ei(−ax+bt+r)[
2g√
λ2 − 4µ

× coth{

√
λ2 − 4µ

2
(x + 2as1t)}],

W2(x, t) = ei(−ax+bt+r)[
2g√
λ2 − 4µ

× tanh{

√
λ2 − 4µ

2
(x + 2as1t)}],

W3(x, y, z, t) = ei(−ax+bt+r) × (x + 2as1t),

W4(x, t) = ei(−ax+bt+r)[−
2g√

4µ − λ2
× cot{

√
4µ − λ2

2
(x + 2as1t)}],

W5(x, t) = ei(−ax+bt+r)[
2g√

4µ − λ2
× tan{

√
4µ − λ2

2
(x + 2as1t)}].

• The second set:

P =
1
2

Rλ2 − 2Rµ −
3
2

ghλ2 + 6ghµ, h = ±

√
−2
R
, A0 = 0, A1 = g, A−1 =

1
2

h(λ2 − 4µ).

Similarly, we get:

W6(x, t) = ei(−ax+bt+r)[
g
√
λ2 − 4µ

2
× tanh{

√
λ2 − 4µ

2
(x + 2as1t)}

+ h
√
λ2 − 4µ × coth{

√
λ2 − 4µ

2
(x + 2as1t)}],

W7(x, t) = ei(−ax+bt+r)[
g
√
λ2 − 4µ

2
× coth{

√
λ2 − 4µ

2
(x + 2as1t)}

+ h
√
λ2 − 4µ × tanh{

√
λ2 − 4µ

2
(x + 2as1t)}],

W8(x, y, z, t) = ei(−ax+bt+r)[g ×
1

x + 2as1t
+

1
2

h(λ2 − 4µ) × (x + 2as1t)],

W9(x, t) = ei(−ax+bt+r)[
−g
√

4µ − λ2

2
× tan{

√
4µ − λ2

2
(x + 2as1t)}

− h
√

4µ − λ2 × cot{

√
4µ − λ2

2
(x + 2as1t)}],
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W10(x, t) = ei(−ax+bt+r)[
g
√

4µ − λ2

2
× cot{

√
4µ − λ2

2
(x + 2as1t)}

+ h
√

4µ − λ2 × tan{

√
4µ − λ2

2
(x + 2as1t)}].

• The third set:

P =
1
2

Rλ2 − 2Rµ, A0 = 0, A1 = 0, A−1 =
1
2

h(λ2 − 4µ).

Similarly, we find:

W11(x, t) = ei(−ax+bt+r)[h
√
λ2 − 4µ × coth{

√
λ2 − 4µ

2
(x + 2as1t)}],

W12(x, t) = ei(−ax+bt+r)[h
√
λ2 − 4µ × tanh{

√
λ2 − 4µ

2
(x + 2as1t)}],

W13(x, y, z, t) = ei(−ax+bt+r)[
1
2

h(λ2 − 4µ) × (x − ct)],

W14(x, t) = ei(−ax+bt+r)[−h
√

4µ − λ2 × cot{

√
4µ − λ2

2
(x + 2as1t)}],

W15(x, t) = ei(−ax+bt+r)[h
√

4µ − λ2 × tan{

√
4µ − λ2

2
(x + 2as1t)}].

4. Results and discussions

Ma et al. [38] have introduced a method which is called the modified (G′/G)-expansion approach to
derive for solitary wave solutions of nonlinear wave models, where G = G(ξ) satisfies G

′′

(ξ)+λG
′

(ξ)+

µG(ξ) = 0, where λ and µ are arbitrary constants and u(ξ) =
∑m

i=−m Ai(G
′

G + λ
2 )i be the anstaz equation

of nonlinear wave models. We apply the modified (G′/G)-expansion process on the CGL model and
provided fifteen solitary wave solutions. Osman et al. [14] studied CGL model to derive only ten
solitary wave solutions through the modified auxiliary equation method. If B = 2 and 4ασ − B2 =

λ2 − 4µ, the solutions of Eqs. (3.7), (3.8), (3.9), (3.10), and (3.11) in [14] are similar solutions W11,
W12, W13, W14 and W15. And solutions W1, W2, W3, W4, W5, W6, W7, W8, W9 and W10 are all new
solitary wave solutions. Osman et al. [14] only derived trigonometric and hyperbolic solutions but
failed to achieve the rational ones. The rational function solutions are vital not only for physics but
also for the areas of sciences and engineering. Moreover, hyperbolic solutions are useful for analyzing
the modulus instability in plasma physics. Comparison between two methods, the modified (G′/G)-
expansion process is provided more solitary wave solutions rather than the modified auxiliary equation
method. Finally, the newly method successfully implemented to derive new solitary wave solutions to
the CGL model. The graph is an important tool for information and to demonstrate the solutions to the
problems lucidly. When making the computation in daily life, we need a fundamental knowledge of

AIMS Mathematics Volume 6, Issue 8, 8883–8894.



8888

building the application of graphs. Accordingly, the graphical performances of few got solutions are
drawn in the Figures 1, 2 and 3, respectively. We expressed Figure 1, 2 and 3, respectively for few
of the derived solutions to display more of properties for the recommended model. The representation
of the examined process gives the accuracy and influence of this procedure and also the capacity for
implementing various nonlinear wave models.

(left) Real 3D surface. (Right) Complex 3D surface.

(left) Real contour shape. (Right) Complex contour shape.

(left) Real filled region shape. (Right) Complex filled region shape.

Figure 1. Graphical description of the answer in W1(x, t) under the values a = 0.22, b = 0.3,
r = 0.5, c = 0.5, R = −10, µ = 1, λ = 3 and t = 0.01 for 2D graphics.
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(left) Real 3D surface. (Right) Complex 3D surface.

(left) Real contour shape. (Right) Complex contour shape.

(left) Real filled region shape. (Right) Complex filled region shape.

Figure 2. Graphical description of the answer in W1(x, t) under the values a = 0.22, b = 0.3,
r = 0.5, c = 0.5, R = −10, µ = 1, λ = 3 and t = 0.01 for 2D graphics.
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(left) Real 3D surface. (Right) Complex 3D surface.

(left) Real contour shape. (Right) Complex contour shape.

(left) Real filled region shape. (Right) Complex filled region shape.

Figure 3. Graphical description of the answer in W6(x, t) under the values a = 0.22, b = 0.3,
r = 0.5, c = 0.5, R = −10, µ = 1, λ = 3 and t = 0.01 for 2D graphics.
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5. Conclusions

The solution of every PDE is always utilized for understanding the system and various phenomena
described by it. The modified G’/G -expansion method is helpful to obtain the solutions in the form of
hyperbolic and trigonometric forms which are exact and helpful in understanding the fractional forms
of it. Finally, a transformation is used to draw a soliton solution of Eq (3.1) by the use of Maple
software. So, this gives the efficient applications of modified G’/G-expansion for fractional PDEs.

Acknowledgments

The authors would like to acknowledge CAS-TWAS president’s fellowship program.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. A. R. Seadawy, S. Z. Alamri, Mathematical methods via the nonlinear two-dimensional water
waves of Olver dynamical equation and its exact solitary wave solutions, Results Phys., 8 (2018),
286–291.

2. A. R. Seadawy, Ion acoustic solitary wave solutions of two-dimensional nonlinear
Kadomtsevetviashviliurgers equation in quantum plasma, Math. Meth. Appl. Sci., 40 (2017), 1598–
1607.

3. A. R. Seadawy, Three-Dimensional Weakly Nonlinear Shallow Water Waves Regime and its
Traveling Wave Solutions, Int. J. Comput. Meth., 15 (2018), 1850017.

4. A. R. Seadawy, Solitary wave solutions of two-dimensional nonlinear Kadomtsevetviashvili
dynamic equation in dust-acoustic plasmas, Pramana, 89 (2017), 49.

5. A. R. Seadawy, Two-dimensional interaction of a shear flow with a free surface in a stratified fluid
and its solitary-wave solutions via mathematical methods, Eur. Phys. J. Plus, 132 (2017), 518.

6. J. G. Liu, M. S. Osman, W. H. Zhu, L. Zhou, G. P. Ai, Different complex wave structures described
by the Hirota equation with variable coefficients in inhomogeneous optical fibers, Appl. Phys. B,
125 (2019), 175.

7. M. N. Alam, X. Li, Exact traveling wave solutions to higher order nonlinear equations, J. Ocean
Eng. Sci., 4 (2019), 276–288.

8. C. T. Sindi, J. Manafian, Wave solutions for variants of the KdVurger and the K(n,n)urger equations
by the generalized G’/G-expansion method, Math. Meth. Appl. Sci., 40 (2017), 4350–4363.

9. M. N. Alam, M. A. Akbar, S. T. Mohyud-Din, A novel (G′/G)-expansion method and its
application to the Boussinesq equation, Chin. Phys. B, 23 (2014), 020203–020210.

10. U. Khan, R. Ellahi, R. Khan, S. T. Mohyud-Din, Extracting new solitary wave solutions of Benny-
Luke equation and Phi-4 equation of fractional order by using (G′/G)-expansion method, Opt.
Quant. Elec., 49 (2017), 362.

AIMS Mathematics Volume 6, Issue 8, 8883–8894.



8892

11. H. M. Ahmed, W. B. Rabie, M. A. Ragusa, Optical solitons and other solutions to Kaup-Newell
equation with Jacobi elliptic function expansion method, Anal. Math. Phys., 11 (2021), 1–16.

12. V. S. Kumar, H. Rezazadeh, M. Eslami, F. Izadi, M. S. Osman, Jacobi Elliptic Function
Expansion Method for Solving KdV Equation with Conformable Derivative and Dual-Power Law
Nonlinearity, Int. J. Appl. Comput. Math., 5 (2019), 127.

13. S. Wang, Remarks on an Equation of the Ginzburg-Landau Type, Filomat, 33 (2019), 5913–5917.

14. M. S. Osman, D. Lu, M. M. A. Khater, R. A. M. Attia, Complex wave structures for abundant
solutions related to the complex Ginzburgandau model, Optik, 192 (2019), 162927.

15. M. S. Osman, One-soliton shaping and inelastic collision between double solitons in the fifth-order
variable-coefficient Sawadaotera equation, Nonlinear Dyn., 96 (2019), 1491–1496.

16. M. S. Osman, B. Ghanbari, J. A. T. Machado, New complex waves in nonlinear optics based on
the complex Ginzburg-Landau equation with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019),
20.

17. M. S. Osman, A. M. Wazwaz, A general bilinear form to generate different wave structures of
solitons for a (3 + 1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Math. Meth. Appl. Sci.,
42 (2019), 6277–6283.

18. A. A. Omar, Modulation of reproducing kernel Hilbert space method for numerical solutions of
Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense, Chaos Solitons Frac.,
125 (2019), 163–170.

19. A. A. Omar, Application of residual power series method for the solution of time-fractional
Schrodinger equations in one-dimensional space, Fund. Inform., 166 (2019), 87–110.

20. M. N. Alam, M. M. Alam, An analytical method for solving exact solutions of a nonlinear evolution
equation describing the ynamics of ionic currents along microtubules, Taibah University Sci., 11
(2017), 939–948.

21. M. N. Alam, F. B. M. Belgacem, Microtubules nonlinear models dynamics investigations through
the exp−φ(ξ)-expansion method implementation, Math., 4 (2016), 6.

22. M. N. Alam, C. Tunc, An analytical method for solving exact solutions of the nonlinear
Bogoyavlenskii equation and the nonlinear diffusive predator-prey system, Alexandria Eng. J., 55
(2016), 1855–1865.

23. W. Sikander, U. Khan, N. Ahmed, S. T. Mohyud-Din, Optimal solutions for homogeneous and
non-homogeneous equations arising in physics, Results Phys., 7 (2017), 216–224.

24. W. Sikander, U. Khan, S. T. Mohyud-Din, Optimal Solutions for the Evolution of a Social Obesity
Epidemic Model, Eur. Phys. J. Plus, 132 (2017), 257.

25. M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential
equations using the homotopy analysis method, Numer. Meth. Part. Diff. Eq., 26 (2010), 448–479.

26. J. Manafian, An optimal Galerkin-homotopy asymptotic method applied to the nonlinear second-
order bvps, Proc. Instit. Math. Mech., 47 (2021), 156–182.

27. G. Singh, I. Singh, New Laplace variational iterative method for solving 3D Schrödinger equations,
J. Math. Comput. Sci., 10 (2020), 2015–2024.

AIMS Mathematics Volume 6, Issue 8, 8883–8894.



8893

28. G. Singh, I. Singh, New Laplace variational iterative method for solving two-dimensional telegraph
equations, J. Math. Comput. Sci., 10 (2020), 2943–2954.

29. S. T. Mohyud-Din, A. Irshad, N. Ahmed, U. Khan, Exact Solutions of (3 + 1)-dimensional
generalized KP Equation Arising in Physics, Results Phys., 7 (2017), 3901–3909.

30. A. Atangana, Extension of the Sumudu homotopy perturbation method to an attractor for one-
dimensional Kelleregel equations, Appl. Math. Model., 39 (2015), 2909–2916.

31. H. M. Baskonus, H. Bulut, New wave behaviors of the system of equations for the ion sound and
Langmuir waves, Waves Random Complex, 26 (2016), 613–625.

32. M. Mirzazadeh, R. T. Alqahtani, A. Biswas, Optical soliton perturbation with quadratic-cubic
nonlinearity by Riccati-Bernoulli sub-ODE method and Kudryashov’s scheme, Optik, 145 (2017),
74–78.

33. J. Manafian, Application of the ITEM for the system of equations for the ion sound and Langmuir
waves, Opt. Quant. Elec., 49 (2017), 17.

34. J. Manafian, S. Heidari, Periodic and singular kink solutions of the Hamiltonian amplitude
equation, Adv. Math. Models Appl., 4 (2019), 134–149.

35. B. Boutarfa, A. Akgul, M. Inc, New approach for the Fornberghitham type equations, J. Comput.
Appl. Math., 312 (2017), 13.

36. J. Manafian, M. Shahriari, An efficient algorithm for solving the fractional dirac differential
operator, Adv. Math. Models Appl., 5 (2020), 289–297.

37. S. T. Demiray, H. Bulut, New exact solutions of the system of equations for the ion sound and
Langmuir waves by ETEM, Math. Comput. Appl., 21 (2016), 11.

38. X. Ma, Y. Pan, L. Chang, Explicit travelling wave solutions in a magneto-electro-elastic circular
rod, Int. J. Comput. Sci., 10 (2013), 62–68.

39. Z. Pinar, H. Rezazadeh, M. Eslami, Generalized logistic equation method for Kerr law and dual
power law Schrödinger equations, Opt. Quant. Elec., 52 (2020), 1–16.

40. N. Savaissou, B. Gambo, H. Rezazadeh, A. Bekir, S. Y. Doka, Exact optical solitons to the
perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity, Opt. Quant. Elec.,
52 (2020), 1–16.

41. J. G. Liu, M. Eslami, H. Rezazadeh, M. Mirzazadeh, The dynamical behavior of mixed type lump
solutions on the (3+ 1)-dimensional generalized Kadomtsev-Petviashvili-Boussinesq equation, Int.
J. Nonlinear Sci. Num. Simul., 21 (2020), 661–665.

Appendix

The solutions of equation 2.6 are:

• If h > 0, then

F =
√

htanh(
√

hξ), (5.1a)

F =
√

hcoth(
√

hξ). (5.1b)
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• If h = 0, then

F =
1
ξ
. (5.2)

• If h < 0, then

F = −
√
−htan(

√
−hξ), (5.3a)

F =
√
−hcot(

√
−hξ). (5.3b)
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