The compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference:
$ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Omega(t)}\left( { \rho-\bar{\rho}}\right) \left\vert { \vec{x} }\right\vert ^{2}dV{{ , }} $
for the blowup phenomena of $ C^{1} $ solutions $ (\rho, \vec{u}) $ with the support of $ \left({ \rho-\bar{\rho}}, \vec{u}\right) $, and with a positive constant $ { \bar{\rho}} $ for the adiabatic index $ \gamma > 1 $. We find that if the total reference mass
$ M_{ref}(0) = { \int_{{\bf R}^{N}}} (\rho_{0}({ \vec{x}})-\bar{\rho})dV\geq0, $
and the total reference energy
$ E_{ref}(0) = \int_{{\bf R}^{N}}\left( \frac{1}{2}\rho_{0}({ \vec {x}})\left\vert \vec{u}_{0}({ \vec{x}})\right\vert ^{2}+\frac {K}{\gamma-1}\left( \rho_{0}^{\gamma}({ \vec{x}})-\bar{\rho }^{\gamma}\right) \right) dV, $
with a positive constant $ K $ is sufficiently large, then the corresponding solution blows up on or before any finite time $ T > 0 $.
Citation: Manwai Yuen. Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference[J]. AIMS Mathematics, 2023, 8(4): 8162-8170. doi: 10.3934/math.2023412
The compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference:
$ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Omega(t)}\left( { \rho-\bar{\rho}}\right) \left\vert { \vec{x} }\right\vert ^{2}dV{{ , }} $
for the blowup phenomena of $ C^{1} $ solutions $ (\rho, \vec{u}) $ with the support of $ \left({ \rho-\bar{\rho}}, \vec{u}\right) $, and with a positive constant $ { \bar{\rho}} $ for the adiabatic index $ \gamma > 1 $. We find that if the total reference mass
$ M_{ref}(0) = { \int_{{\bf R}^{N}}} (\rho_{0}({ \vec{x}})-\bar{\rho})dV\geq0, $
and the total reference energy
$ E_{ref}(0) = \int_{{\bf R}^{N}}\left( \frac{1}{2}\rho_{0}({ \vec {x}})\left\vert \vec{u}_{0}({ \vec{x}})\right\vert ^{2}+\frac {K}{\gamma-1}\left( \rho_{0}^{\gamma}({ \vec{x}})-\bar{\rho }^{\gamma}\right) \right) dV, $
with a positive constant $ K $ is sufficiently large, then the corresponding solution blows up on or before any finite time $ T > 0 $.
[1] | C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, J. Fluid Mech., 309 (1996), 346–348. http://doi.org/10.1017/S0022112096231660 doi: 10.1017/S0022112096231660 |
[2] | A. Constantin, Breaking water waves, In: Encyclopedia of Mathematical Physics, Academic Press, 2006,383–386. https://doi.org/10.1016/B0-12-512666-2/00112-7 |
[3] | D. Einzel, Superfluids, In: Encyclopedia of Mathematical Physics, Academic Press, 2006,115–121. https://doi.org/10.1016/B0-12-512666-2/00110-3 |
[4] | G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, Inc., 1974. |
[5] | G. Q. Chen, D. H. Wang, The Cauchy problem for the Euler equations for compressible fluids, In: Handbook of Differential Equations: Evolutionary Equations, 1 (2002), 421–543. http://doi.org/10.1016/S1874-5792(02)80012-X |
[6] | A. J. Chorin, J. E. Marsden, A mathematical introduction to fluid mechanics, Math. Gaz., 75 (1991), 392–393. http://doi.org/10.2307/3619548 doi: 10.2307/3619548 |
[7] | P. L. Lions, Mathematical Topics in Fluid Mechanics, Oxford: Clarendon Press, 1998. |
[8] | R. Temam, A. Miranville, Mathematical Modeling in Continuum Mechanicsm, Cambridge: Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511755422 |
[9] | D. Bresch, Shallow-water equations and related topics, In: Handbook of Differential Equations: Evolutionary Equations, 5 (2009), 1–104. http://doi.org/10.1016/S1874-5717(08)00208-9 |
[10] | A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, In: Applied Mathematical Sciences, New York: Springer-Verlag, 53 (1984). |
[11] | T. Makino, S. Ukai, S. Kawashima, Sur la solution à support compact de l'equations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249. http://doi.org/10.1007/BF03167100 doi: 10.1007/BF03167100 |
[12] | C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation, Clay Math. Inst., 2006, 57–67. |
[13] | T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., 101 (1985), 475–485. http://doi.org/10.1007/BF01210741 doi: 10.1007/BF01210741 |
[14] | S. Wong, M. W. Yuen, Blow-up phenomena for compressible Euler equations with non-vacuum initial data, Z. Angew. Math. Phys., 66 (2015), 2941–2955. http://doi.org/10.1007/s00033-015-0535-9 doi: 10.1007/s00033-015-0535-9 |
[15] | D. H. Chae, S. Y. Ha, On the formation of shocks to the compressible Euler equations, Commun. Math. Sci., 7 (2009), 627–634. http://doi.org/10.4310/CMS.2009.v7.n3.a6 doi: 10.4310/CMS.2009.v7.n3.a6 |
[16] | Y. Du, Z. Lei, Q. Zhang, Singularities of solutions to compressible Euler equations with vacuum, Math. Res. Lett., 20 (2013), 41–50. http://doi.org/10.4310/MRL.2013.v20.n1.a4 doi: 10.4310/MRL.2013.v20.n1.a4 |
[17] | M. A. Rammaha, Formation of singularities in compressible fluids in two-space dimensions, Proc. Amer. Math. Soc., 107 (1989), 705–714. http://doi.org/10.2307/2048169 doi: 10.2307/2048169 |
[18] | D. Serre, Expansion of a Compressible Gas in Vacuum, Bull. Inst. Math. Acad. Sin. (N.S.), 10 (2015), 695–716. http://doi.org/10.48550/arXiv.1504.01580 doi: 10.48550/arXiv.1504.01580 |
[19] | T. C. Sideris, Spreading of the free boundary of an ideal fluid in a vacuum, J. Differ. Equ., 257 (2014), 1–14. http://doi.org/10.1016/j.jde.2014.03.006 doi: 10.1016/j.jde.2014.03.006 |
[20] | T. Suzuki, Irrotational blowup of the solution to compressible euler equation, J. Math. Fluid Mech., 15 (2013), 617–633. http://doi.org/10.1007/s00021-012-0116-z doi: 10.1007/s00021-012-0116-z |
[21] | M. W. Yuen, Blowup for irrotational $C^{1}$ solutions of the compressible Euler equations in $R^{N}$, Nonlinear Anal., 158 (2017), 132–141. http://doi.org/10.1016/j.na.2017.04.007 doi: 10.1016/j.na.2017.04.007 |
[22] | M. W. Yuen, Blowup for regular solutions and $C^{1}$ solutions of Euler equations in $R^{N}$ with a free boundary, Eur. J. Mech. B Fluids, 67 (2018), 427–432. http://doi.org/10.1016/j.euromechflu.2017.09.017 doi: 10.1016/j.euromechflu.2017.09.017 |
[23] | M. W. Yuen, Blowup for projected 2-dimensional rotational $C^{2}$ solutions of compressible Euler equations, J. Math. Fluid Mech., 21 (2019), 54. http://doi.org/10.1007/s00021-019-0458-x doi: 10.1007/s00021-019-0458-x |