In this paper we are concerned with the Lane-Emden-Fowler equation
$ \begin{equation*} \left\{\begin{array}{rll}-\Delta u & = u^{\frac{n+2}{n-2}- \varepsilon}& {\rm{in}}\; \Omega, \\ u&>0& {\rm{in}}\; \Omega, \\ u& = 0& {\rm{on}}\; \partial \Omega, \end{array} \right. \end{equation*} $
where $ \Omega \subset \mathbb{R}^n $ ($ n \geq 3 $) is a nonconvex polygonal domain and $ \varepsilon > 0 $. We study the asymptotic behavior of minimal energy solutions as $ \varepsilon > 0 $ goes to zero. A main part is to show that the solution is uniformly bounded near the boundary with respect to $ \varepsilon > 0 $. The moving plane method is difficult to apply for the nonconvex polygonal domain. To get around this difficulty, we derive a contradiction after assuming that the solution blows up near the boundary by using the Pohozaev identity and the Green's function.
Citation: Woocheol Choi. Energy minimizing solutions to slightly subcritical elliptic problems on nonconvex polygonal domains[J]. AIMS Mathematics, 2023, 8(11): 26134-26152. doi: 10.3934/math.20231332
In this paper we are concerned with the Lane-Emden-Fowler equation
$ \begin{equation*} \left\{\begin{array}{rll}-\Delta u & = u^{\frac{n+2}{n-2}- \varepsilon}& {\rm{in}}\; \Omega, \\ u&>0& {\rm{in}}\; \Omega, \\ u& = 0& {\rm{on}}\; \partial \Omega, \end{array} \right. \end{equation*} $
where $ \Omega \subset \mathbb{R}^n $ ($ n \geq 3 $) is a nonconvex polygonal domain and $ \varepsilon > 0 $. We study the asymptotic behavior of minimal energy solutions as $ \varepsilon > 0 $ goes to zero. A main part is to show that the solution is uniformly bounded near the boundary with respect to $ \varepsilon > 0 $. The moving plane method is difficult to apply for the nonconvex polygonal domain. To get around this difficulty, we derive a contradiction after assuming that the solution blows up near the boundary by using the Pohozaev identity and the Green's function.
[1] | Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159–174. https://doi.org/10.1016/S0294-1449(16)30270-0 doi: 10.1016/S0294-1449(16)30270-0 |
[2] | O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal., 89 (1990), 1–52. https://doi.org/10.1016/0022-1236(90)90002-3 doi: 10.1016/0022-1236(90)90002-3 |
[3] | F. V. Atkinson, L. A. Peletier, Elliptic equations with nearly critical growth, J. Differ. Equ., 70 (1987), 349–365. https://doi.org/10.1016/0022-0396(87)90156-2 doi: 10.1016/0022-0396(87)90156-2 |
[4] | H. Brezis, L. A. Peletier, Asymptotics for elliptic equations involving critical growth, In: Partial differential equations and the calculus of variations, Boston: Birkhäuser Boston, 1989. https://doi.org/10.1007/978-1-4615-9828-2_7 |
[5] | B. Aharrouch, A. Aberqi, J. Bennouna, Existence and regularity of solutions to unilateral nonlinear elliptic equation in Marcinkiewicz space with variable exponent, Filomat, 37 (2023), 5785–5797. https://doi.org/10.2298/FIL2317785A doi: 10.2298/FIL2317785A |
[6] | T. Bartsch, Q. Guo, Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term, Adv. Nonlinear Stud., 17 (2017), 55–85. https://doi.org/10.1515/ans-2016-6008 doi: 10.1515/ans-2016-6008 |
[7] | G. Cora, A. Iacopetti, On the structure of the nodal set and asymptotics of least energy sign-changing radial solutions of the fractional Brezis-Nirenberg problem, Nonlinear Anal., 176 (2018), 226–271. https://doi.org/10.1016/j.na.2018.07.001 doi: 10.1016/j.na.2018.07.001 |
[8] | Y. Dammak, R. Ghoudi, Sign-changing tower of bubbles to an elliptic subcritical equation, Commun. Contemp. Math., 21 (2019), 1850052. https://doi.org/10.1142/S0219199718500529 doi: 10.1142/S0219199718500529 |
[9] | Q. Guo, Blowup analysis for integral equations on bounded domains, J. Differ. Equ., 266 (2019), 8258–8280. https://doi.org/10.1016/j.jde.2018.12.028 doi: 10.1016/j.jde.2018.12.028 |
[10] | W. Ma, Z. Zhao, B. Yan, Global existence and blow-up of solutions to a parabolic nonlocal equation arising in a theory of thermal explosion, J. Funct. Spaces, 2022 (2022), 4629799. https://doi.org/10.1155/2022/4629799 doi: 10.1155/2022/4629799 |
[11] | M. Musso, A. Pistoia, Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent, Indiana Univ. Math. J., 51 (2002), 541–579. |
[12] | M. Musso, A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1–40. https://doi.org/10.1016/j.matpur.2009.08.001 doi: 10.1016/j.matpur.2009.08.001 |
[13] | M. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1 |
[14] | F. Takahashi, Asymptotic behavior of least energy solutions for a biharmonic problem with nearly critical growth, Asymptot. Anal., 60 (2008), 213–226. https://doi.org/10.3233/ASY-2008-0904 doi: 10.3233/ASY-2008-0904 |
[15] | D. Salazar, Sign changing bubbling solutions for a critical Neumann problem in 3D, Nonlinear Anal., 188 (2019), 500–539. https://doi.org/10.1016/j.na.2019.06.018 doi: 10.1016/j.na.2019.06.018 |
[16] | S. Santra, Existence and shape of the least energy solution of a fractional Laplacian, Calc. Var. Partial Differential Equations, 58 (2019), 48. https://doi.org/10.1007/s00526-019-1494-3 doi: 10.1007/s00526-019-1494-3 |
[17] | A. Pistoia, O. Rey, Boundary blow-up for a Brezis-Peletier problem on a singular domain, Calc. Var. Partial Differential Equations, 18 (2003), 243–251. https://doi.org/10.1007/s00526-003-0197-x doi: 10.1007/s00526-003-0197-x |
[18] | M. Flucher, A. Garroni, S. Müller, Concentration of low energy extremals: Identification of concentration points, Calc. Var. Partial Differential Equations, 14 (2002), 483–516. https://doi.org/10.1016/S0294-1449(99)80015-8 doi: 10.1016/S0294-1449(99)80015-8 |
[19] | O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differ. Integral Equ., 4 (1991), 1155–1167. https://doi.org/10.57262/die/1371154279 doi: 10.57262/die/1371154279 |