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Abstract: In this paper we are concerned with the Lane-Emden-Fowler equation
−∆u = u

n+2
n−2−ε in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where Ω ⊂ Rn (n ≥ 3) is a nonconvex polygonal domain and ε > 0. We study the asymptotic behavior
of minimal energy solutions as ε > 0 goes to zero. A main part is to show that the solution is uniformly
bounded near the boundary with respect to ε > 0. The moving plane method is difficult to apply for the
nonconvex polygonal domain. To get around this difficulty, we derive a contradiction after assuming
that the solution blows up near the boundary by using the Pohozaev identity and the Green’s function.

Keywords: blow-up analysis; polygonal domains; Lane-Emden-Fowler equation
Mathematics Subject Classification: 35B33, 35J15, 35J60

1. Introduction

In this paper we study asymptotic profile of energy minimizing solutions to the Lane-Emden-Fowler
equation 

−∆uε = up−ε
ε in Ω,

uε > 0 in Ω,
uε = 0 on ∂Ω,

(1.1)

as ε > 0 goes to zero. Here Ω ⊂ Rn (n ≥ 3) is a bounded polygonal domain and p = n+2
n−2 is the critical

exponent. In the seminar papers Han [1] and Rey [2], the asymptotic behavior of energy minimizing
solutions to (1.1) was obtained for smooth bounded domains Ω.
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The asymptotic behavior was first studied by Atkinson and Peletier [3] when Ω is the unit ball in R3

using an ODE argument. The result was revisited by Brezis and Peletier [4] by applying PDE methods.
Extensions to smooth bounded domains were obtained by Han [1] and Rey [2]. The asymptotic
behavior have been studied by a lot of researchers for nonlinear elliptic equations with various settings
(see e.g., [5–16]) and we note that most of the results have been obtained for elliptic problems on
bounded smooth domains.

Pistoia and Rey [17] showed that as for problem (1.1) posed on a specific nonsmooth bounded
domain constructed by Flucher-Garroni-Müller [18], the maximum point of uε may approach to the
boundary point as ε → 0. By the way, we mention that the arguments of Han [1] and Rey [2] work
straight-forwardly for convex bounded domains, which may not be non-smooth. In fact a key part in
the analysis of Han [1] and Rey [2] is that the maximum point of uε(x) is uniformly away from the
boundary ∂Ω by showing that the solutions uε(x) are uniformly bounded for ε > 0 and x near the
boundary ∂Ω by the moving plane argument. If Ω is a smooth nonconvex domain, Han [1] obtained
the unfirom boundedness by using the Kelvin transform to (1.1) on balls which touch the domain Ω by
the boundary ∂Ω. However, the argument is difficult to apply when Ω is not smooth.

Given this result, a natural question is that can we extend the result of Han [2] and Rey [2] to certain
class of nonsmooth convex domains? In this paper, we show that the results of Han [1] and Rey [2] to
nonconvex polygonal domains. The following is the main result of this paper.

Theorem 1.1. For n ≥ 3 we let Ω ⊂ Rn be a bounded polygonal domain. Assume that {uε}ε>0 is a set
of solutions to (1.1) such that

lim
ε→0

(∫
Ω
|uε|p+1−εdx

) 1
p+1−ε(∫

Ω
|∇uε|2dx

)1/2 = S n, (1.2)

where S n = [πn(n − 2)Γ(n/2)/Γ(n)]−1 is the best Sobolev constant in Rn. Then the family of solutions
{uε}ε>0 are uniformly bounded near the boundary, i.e., there are costants δ > 0 and C > 0 independent
of ε > 0 such that

sup
ε>0

sup
{x∈Ω:dist(x,∂Ω)<δ}

|uε(x)| ≤ C.

Given the boundary estimates of Theorem 1.1, one may apply standard argument to deduce the
following result [1].

Theorem 1.2. For n ≥ 3 we let Ω ⊂ Rn be a bounded polygonal domain. Assume that {uε}ε>0 is a
set of solutions to (1.1) such that (1.2) holds. Then, there exists a point x0 ∈ Ω such that, up to a
subsequence,

• The solution uε converges to 0 in C1(Ω \ {x0}).
• ∇R(x0) = 0, where R(x) = H(x, x).
• We have

lim
ε→0
∥uε∥L∞(Ω)uε(x) = [n(n − 2)](n−2)/2|S n−1|G(x, x0).

• We have
lim
ε→0
ε∥uε∥2L∞(Ω) = (n − 2)|S n−1|2 [n(n − 2)]n−2 H(x0, x0).

Here G denotes the Green’s function and H is the regular part of G (see Section 2 for the detail).
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In order to prove Theorem 1.1 we assume that contrary that the maximum point xε approaches to
the boundary. Under this assumption, we shall deduce a contradiction from the following Pohozaev
type identity on an annulus centered at the blow up point; 1 ≤ j ≤n,∫

∂B(xε,2dε)
|∇uε|2ν j − 2

(
∂uε
∂ν

∂uε
∂x j

)
dS x =

2
p + 1 − ε

∫
∂B(xε,2dε)

up−ε+1
ε ν jdS x, (1.3)

where xε ∈ Ω is the maximum point of uε and dε = dist(xε, ∂Ωε)/4.
In fact we shall prove Theorem 1.1 for more general domain Ω satisfying the following assumption.

Assumption D. Consider a sequence of points {xk}k∈N in the domain Ω such that dk := dist(xk, ∂Ω)
goes to zero as k → ∞. Take zk ∈ ∂Ω such that |xk − zk| = dk. Let Ωk := 1

dk
(Ω − zk). Note that we

have 0 ∈ Ωk, and also 1
dk

(xk − zk) ∈ S n−1. Thus we can find a rotation Rk : Rn → Rn such that

Rk

(
1
dk

(xk − zk)
)
= en = (0, · · · , 0, 1).

Then, the domain Dk := RkΩk converges to an infinite star-shaped domain P ⊊ Rn.
It is not difficult to see that any bounded polygonal domain Ω satisfies the above assumption. Under

the above assumption we will obtain the following result on the regular part H of the Green’s function.

Theorem 1.3. For n ≥ 3 we let Ω ⊂ Rn be a bounded open domain satisfying Assumption D. Then,
for any sequence of points {yk}k≥1 in Ω such that limk→∞ dk = 0, where dk := dist(yk, ∂Ω), there exists a
constant c > 0 and N ∈ N such that, for k ≥ N we have

sup
1≤ j≤n

∣∣∣∣∣∣∂H∂x j
(yk, yk)

∣∣∣∣∣∣ ≥ c
dn−1

k

. (1.4)

If Ω is smooth, then the result of Theorem 1.3 was proved in Rey [19] by applying the Maximum
principle. To obtain the above inequality for the nonsmooth domains, we shall rescale the function H
in a suitable way and investigate its limit.

This paper is organized as follows. In Section 2, we are concerned about the properties of Green’s
function. Also we show that a sequence of the minimal energy solutions blows up as ε→ 0 and that the
blow up point does not approach to the boundary too fast in some sense (see Lemma 2.2). In Section 3,
we will obtain a sharp estimate of the function uε on an annulus centered at the blow up point. In
Section 4, we prove Theorem 1.1. In Section 5, we give a proof of Theorem 1.2. Section 6 is devoted
to prove Theorem 1.3.

Notations.

Here we list some notations which will be used throughout the paper.
- C > 0 is a generic constant that may vary from line to line.
- For k ∈ N we denote by Bk(x0, r) the ball {x ∈ Rk : |x − x0| < r} for each x0 ∈ R

k and r > 0.
- For x ∈ Ω we denote by dist(x, ∂Ω) the distance from x to ∂Ω and we denote d(x) := dist(x, ∂Ω).
- For a domain D ⊂ Rn, the map ν = (ν1, · · · , νn) : ∂D→ Rn denotes the outward pointing unit normal
vector on ∂D.
- dS stands for the surface measure.
- |S n−1| = 2πn/2/Γ(n/2) denotes the Lebesgue measure of (n − 1)-dimensional unit sphere S n−1.
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2. Preliminary results

In this section we obtain preliminary results for a sequence of the solutions {uε}ε>0 satifsying (1.2).
For this purpose, we first recall Green’s function G of the Laplacian −∆ on Ω with the Dirichlet
boundary condition. It is divided into a singular part and a regular part as

G(x, y) =
cn

|x − y|n−2 − H(x, y), (2.1)

where cn = 1/(n − 2)|S n−1| and the regular part H : Ω ×Ω→ R is the function such that{
−∆xH(x, y) = 0 x ∈ Ω,
H(x, y) = cn

|x−y|n−2 x ∈ ∂Ω. (2.2)

Let d(x) = dist(x, ∂Ω) for x ∈ Ω. Take a small constant δ > 0.
We take a value λϵ > 0 and a point xϵ ∈ Ω such that

λ
2

p−ε−1
ϵ := uε(xε) = max

x∈Ω
{uϵ(x)}. (2.3)

Now we recall the sharp Sobolev embedding(∫
Rn
| f (x)|

2n
n−2 dx

) n−2
2n

≤ S n

(∫
Rn
|∇ f (x)|2dx

)1/2

∀ f ∈ H1(Rn). (2.4)

If we replace the function f by (−∆)−1/2 f in the above inequality, we find the Hardy-Littlewood-
Sobolev inequality:

∥(−∆)−1/2 f ∥Lp+1(Rn) ≤ S n∥ f ∥L2(Rn) ∀ f ∈ L2(Rn). (2.5)

We let K denote Green’s function of the Laplacain on Rn, i.e.,

K(x, y) =
cn

|x − y|n−1 .

The estimate (2.5) is then written as∥∥∥∥∥∫
Rn

K(x, y) f (y)dy
∥∥∥∥∥

Lp+1(Rn)
≤ S n∥ f ∥L2(Rn) ∀ f ∈ L2(Rn).

For given a domain Q ⊂ Rn we denote by KQ : Q × Q → R Green’s function of the Laplacian (−∆)1/2

on domain Q with the Dirichlet zero boundary condition, i.e., for the solution u ∈ H1(Ω) to the problem{
(−∆)1/2u = f in Ω

u = 0 on ∂Ω,

with f ∈ L2(Ω) admits the representation

u(x) =
∫
Ω

K(x, y) f (y)dy.

Then, it is a classical fact that for any open subset Q ⊂ Rn with Q , Rn, we have

KQ(x, y) < K(x, y) for all (x, y) ∈ Q × Q. (2.6)

Here we remark that (−∆)1/2 is defined by the spectral decomposition of (−∆) on domain Ω.
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Lemma 2.1. The value λε > 0 defined in (2.3) satisfies limε→0 λε = ∞.

Proof. In order to prove the lemma, we assume the contrary. Then there is a subsequence {εk}k∈N such
that limk→∞ εk = 0 and supk∈N λϵk < ∞. This implies that the solutions {uϵk}k∈N are uniformly bounded
in C1,α(Ω) for some α ∈ (0, 1) by the standard regularity theory applied to (1.1). Up to a subsequence,
the solution uϵk converges in C1(Ω) to a function u0 ∈ C1(Ω), and taking k → ∞ in the formula

uεk(x) =
∫
Ω

G(x, y)up−εk
εk

(y)dy,

we find
u0(x) =

∫
Ω

G(x, y)up
0(y)dy,

and so {
−∆u0 = up

0 in Ω,
u0 = 0 on ∂Ω.

(2.7)

On the other hand, by taking the limit k → ∞ in (1.2) we get

∥u0∥Lp+1(Ω) = S n∥∇u0∥L2(Ω).

Let us set w0 : Ω → R+ by w0(x) = (−∆Ω)1/2u0(x) for x ∈ Ω. Then u0(x) = (−∆Ω)−1/2w0(x) for x ∈ Ω
and so we have ∥∥∥(−∆Ω)−1/2w0

∥∥∥
Lp+1(Ω)

= S n ∥w0∥L2(Ω) . (2.8)

We extend the function w0 to set W0 : Rn → R+ by

W0(x) =
{

w0(x) for x ∈ Ω,
0 for x < Ω.

Then, using the inequality (2.6) and (2.8) we obtain the following estimate

S n∥W0∥L2(Rn) = S n∥w0∥L2(Ω)

= ∥(−∆Ω)−1/2w0∥Lp+1(Ω)

< ∥(−∆Ω)−1/2W0∥Lp+1(Ω) < ∥(−∆)−1/2W0∥Lp+1(Rn).

However, this contradicts to the optimality of the constant S n of the inequality (2.5). Therefore it
should hold that limϵ→0 λϵ = ∞. The lemma is proved. □

For each ε > 0 we set Ωϵ := λϵ(Ω − xϵ) and normalize the solution uε as follows

Uϵ(x) := λ
− 2

p−ε−1
ϵ uϵ(λ−1

ϵ x + xϵ), (2.9)

so that {
−∆Uϵ = U p−ε

ϵ in Ωϵ ,
Uϵ = 0 on ∂Ωϵ ,

(2.10)

and maxx∈Ωϵ {Uϵ(x)} = 1 = Uϵ(0). In the next lemma, we obtain an estimate for the distance between
the maximum point of the solutions and the boundary ∂Ω.
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Lemma 2.2. We have limϵ→0 λϵdist(xϵ , ∂Ω) = ∞.

Proof. We assume the contrary. Then, up to a subsequence, we have limϵ→0 λϵdist(xϵ , ∂Ω) = l for some
l ∈ (0,∞). This implies that the extended domain Ωϵ converges to a infinite star-shaped domain P ⊊ Rn

as ε → 0. Also, the normalized functions Uϵ converge to a nontrivial solution U in C2
loc(P) of the

problem {
−∆U = U

p
in P,

U = 0 on ∂P,

and we know that KP(x, y) < K(x, y) from (2.6). Then we can obtain a contradiction as in the proof of
Lemma 2.1. Thus the result of the lemma is true. □

We set dϵ := 1
4dist(xϵ , ∂Ω) and Nε = dελε. Then we see from Lemma 2.2 that

dϵ =
Nϵ
λϵ

and lim
ε→0

Nϵ = ∞. (2.11)

We remark that the fact Nε → ∞ as ε → 0 will be important in the proofs of Theorem 1.1. By
Lemma 2.2 the domain Ωϵ converges to Rn as ϵ goes to zero, and so the rescaled solution Uϵ converges
in C2

loc(R
n) to a solution U of the problem

−∆U = U p in Rn,

U(y) > 0 y ∈ Rn,

U(0) = 1 = maxx∈Rn U(x), U → 0 as |y| → ∞.
(2.12)

Then it is well-known that the function U is equal to

U(x) = [n(n − 2)](n−2)/4
(
η

η2 + |x|2

)(n−2)/2

,

where η =
√

n(n − 2). Next we recall the following result from Corollary 1 and Lemma 3 in [1].

Lemma 2.3 ( [1]). The value λε > 0 defined in (1.2) and the rescaled solution Uε defined (2.9) satisfy
the following.

(1) There is a constant C > 0 independent of ϵ > 0 such that

λϵϵ ≤ C. (2.13)

(2) There exists a constant C > 0 such that

Uϵ(x) ≤ CU(x) ∀ϵ > 0. (2.14)

We end this section with a local version of the Pohozaev type identity for the problem (1.1).

Lemma 2.4. Let 1 ≤ j ≤ n. Suppose that u ∈ C2(Ω) ×C2(Ω) is a solution of (1.1). Then, for any open
smooth subset D ⊂ Ω, we have the following identity.

−2
∫
∂D

∂u
∂ν

(x)
∂u
∂x j

(x)dS x +

∫
∂D
|∇u(x)|2ν jdS x =

2
p + 1

∫
∂D

up+1(x)ν jdS x, (2.15)

where D is an open subset of Ω.
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Proof. Multiplying (1.1) by ∂u
∂x j

we get −∆u ∂u
∂x j
= up ∂u

∂x j
. Integrating this over the domain D and using

an integration by part, we get

−

∫
∂D

∂u
∂ν

∂u
∂x j

dS x +

∫
D
∇u ·
∂∇u
∂x j

dS x =
1

p + 1

∫
∂D

up+1ν jdS x. (2.16)

We use an integration by parts to get

1
2

∫
D

∂

∂x j
|∇u|2dx =

1
2

∫
∂D
|∇u|2ν jdS x.

The lemma is proved. □

3. Estimates for uε on the annulus

This section is devoted to prove the following lemma regarding a sharp estimate for uε and its
derivatives on the annulus ∂B(xε, 2dε).

Lemma 3.1. Assume that {uε}ε>0 is a sequence of solutions to (1.1) of type (ME) and that limε→0 dε = 0.
Then, for x ∈ ∂B(xε, 2dε) we have the estimates

uϵ(x) = AUλ
−

[2−(n−2)ε]
p−ε−1

ϵ G(x, xϵ) + o(d−(n−2)
ϵ λ

− n
p+1
ϵ ) (3.1)

and
∇uϵ(x) = AUλ

−
[2−(n−2)ε]

p−ε−1
ϵ ∇G(x, xϵ) + o(d−(n−1)

ϵ λ
− n

p+1
ϵ ). (3.2)

Here the value AU is defined as

AU =

∫
Rn

U p(y)dy = [n(n − 2)]
n
2
cn

n
= [n(n − 2)]

n
2−1|S n−1|. (3.3)

In addition, the o-notation is uniform with respect to x ∈ ∂B(xε, 2dε), i.e., it holds that

lim
ε→0

sup
x∈∂B(xε,2dε)

|o(d−k
ε λ
− n

p+1
ε )|

(d−k
ε λ
− n

p+1
ε )

= 0 for k = n − 1 or n − 2.

Proof. Since uϵ is a solution to (1.1), we have

uϵ(x) =
∫
Ω

G(x, y)up
ϵ (y)dy

= G(x, xϵ)
(∫
Ω

uq
ϵ (y)dy

)
+

∫
Ω

[G(x, y) −G(x, xϵ)]up
ϵ (y)dy.

(3.4)

Given the estimate (2.14) we apply the dominated convergence theorem to find

lim
ϵ→0
λ

[2−(n−2)ε]
p−ε−1
ϵ

∫
Ω

up−ε
ϵ (y)dy = lim

ϵ→0

∫
Ωϵ

U p−ε
ϵ (y)dy =

∫
Rn

U p(y)dy = AU .
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Using this and noting that G(x, xε) = O(|x − xε|−(n−2)) = O(d−(n−2)
ε ) for x ∈ ∂B(xε, 2dε), we find

G(x, xε)
(∫
Ω

up−ε
ε (y)dy

)
= λ

−
[2−(n−2)ε]

p−ε−1
ε AUG(x, xε) + o(λ

− n
p+1
ε d−(n−2)

ε ),

where we also used that

λ
−

[2−(n−2)ε]
p−1−ε

ε = O(λ
− n

p+1
ε

due to the fact that 2
p−1 =

n
p+1 and (2.13). Similarly, we may deduce

∇G(x, xε)
(∫
Ω

up−ε
ε (y)dy

)
= λ

−
[2−(n−2)ε]

p−ε−1
ε AU∇G(x, xε) + o(λ

− n
p+1
ε d−(n−1)

ε ).

Therefore, in order to prove (3.1), we only need to estimate the last term of (3.4) as o(d−(n−2)
ε λ

− n
p+1
ε ) and

its derivatives as o(d−(n−1)
ε λ

− n
p+1
ε ). For this aim, we decompose it into three parts as follows:∫
Ω

[G(x, y) −G(x, xϵ)]up−ε
ϵ (y)dy = I1(x) + I2(x) + I3(x), (3.5)

where

I1(x) :=
∫

B(xϵ ,dϵ )
[G(x, y) −G(x, xϵ)]up−ε

ϵ (y)dy,

I2(x) :=
∫

B(xϵ ,4dϵ )\B(xϵ ,dϵ )
[G(x, y) −G(x, xϵ)]up−ε

ϵ (y)dy,

I3(x) :=
∫
Ω\B(xϵ ,4dϵ )

[G(x, y) −G(x, xϵ)]up−ε
ϵ (y)dy.

(3.6)

We shall show that I1(x), I2(x), and I3(x) are estimated as o
(
d−(n−2)
ε λ

− n
p+1
ε

)
and their derivatives ∇I1(x),

∇I2(x), and ∇I3(x) are estimated as o
(
d−(n−1)
ε λ

− n
p+1
ε

)
.

Estimate of I1. Since x ∈ ∂B(xε, 2dε), we have |x − y| ≥ dϵ for y ∈ B(xϵ , dϵ), and so

|∇yG(x, y)| ≤ Cd−(n−1)
ϵ and |∇x∇yG(x, y)| ≤ Cd−n

ε ∀y ∈ B(xϵ , dϵ).

Combining this with the mean value formula yields

|G(x, y) −G(x, xϵ)| ≤ C|y − xϵ |d−(n−1)
ϵ and |∇xG(x, y) − ∇xG(x, xϵ)| ≤ C|y − xϵ |d−n

ϵ (3.7)

for all y ∈ B(xε, dε). Applying this and (2.14) we may estimate I1 as follows:

I1(x) ≤ Cd−(n−1)
ϵ

∫
B(xϵ ,dϵ/2)

|y − xϵ | λ
2(p−ε)
p−ε−1
ϵ U p(λϵ(y − xϵ))dy

≤ Cd−(n−1)
ϵ λ

2(p−ε)
p−ε−1
ϵ λ−(n+1)

ϵ

∫
B(0,Nϵ/2)

|y|Uq(y)dy.
(3.8)
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Using (2.13) and that 2p
p−1 − (n + 1) < − n

p+1 we find that I1(x) = o(d−(n−2)
ε λ

− n
p+1
ε ). By the same way along

with the second inequality of (3.7), we can obtain the estimate

∇I1(x) = o(d−(n−1)
ε λ

− n
p+1
ε ).

Estimate of I2. For y ∈ B(xϵ , 4dϵ) \ B(xϵ , dϵ) we use the estimate (2.14) and (2.13) to find

uϵ(y) ≤ Cλ
n

p+1
ε U(λϵ(y − xϵ)) ≤ Cλ

n
p+1−(n−2)
ε d−(n−2)

ε . (3.9)

Noting that
|x − y| ≤ 8dε for y ∈ B(xε, 4dε) and x ∈ ∂B(xε, 2dε), (3.10)

we have 
|G(x, y)| + |G(x, xϵ)| ≤

cn

|x − y|n−2 +
cn

d(n−2)
ϵ

≤
C

|x − y|n−2 ,

|∇xG(x, y)| + |∇xG(x, xϵ)| ≤
cn

|x − y|n−1 +
cn

d(n−1)
ϵ

≤
C

|x − y|n−1 .

(3.11)

Combining the first estimate of (3.11), (3.10) and (3.9) in (3.6) yields

I2(x) ≤ Cλ
pn

p+1
ε d−(n−2)p

ε λ−(n−2)p
ε

∫
B(xϵ ,4dϵ )\B(xϵ ,dϵ )

1
|x − y|n−2 dy

≤ Cλ
pn

p+1
ε d2−(n−2)p

ε λ−(n−2)p
ε

= Cλ
− n

p+1
ε d−(n−2)

ε Nn−(n−2)p
ε .

Due to the fact that p = n+2
n−2 the above estimate gives the estimate I2(x) = o

(
λ
− n

p+1
ε d−(n−2)

ε

)
. Similarly,

using the second estimate of (3.11), we obtain

∇I2(x) = O
(
λ
− n

p+1
ε d−(n−1)

ε Nn−(n−2)p
ε

)
= o

(
λ
− n

p+1
ε d−(n−1)

ε

)
.

Estimate of I3. Since |x − xϵ | = 2dϵ , we have the following estimates |G(x, y) −G(x, xϵ)| ≤ Cd−(n−2)
ϵ for y ∈ Ω \ B(xϵ , 4dϵ),

|∇xG(x, y) − ∇xG(x, xϵ)| ≤ Cd−(n−1)
ϵ for y ∈ Ω \ B(xϵ , 4dϵ).

(3.12)

Applying the first inequality of (3.12), we have

I3(x) ≤ Cd−(n−2)
ϵ

∫
Ω\B(xϵ ,4dϵ )

up−ε
ϵ (y)dy.

Using (2.14) we deduce ∫
Ω\B(xϵ ,4dϵ )

up−ε
ϵ (y)dy = λ

− n
p−ε+1
ϵ

∫
Ωϵ\B(0,4Nϵ )

U p−ε
ϵ (y)dy

≤ Cλ
− n

p−ε+1
ϵ

∫
Rn\B(0,4Nϵ )

U p(y)dy

≤ Cλ
− n

p+1
ϵ N−(n−2)p+n

ϵ .
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Combining the above two estimates, we arrive at the following estimate

I3(x) ≤ Cd−(n−2)
ϵ λ

− n
p+1
ϵ N−(n−2)p+n

ϵ = o
(
d−(n−2)
ϵ λ

− n
p+1
ϵ

)
, (3.13)

where the fact that (n − 2)p > n was also used. Similarly, using the second estimate of (3.12), then we
get

∇I3(x) = O
(
d−(n−1)
ϵ λ

− n
p+1
ϵ N−(n−2)p+n

ϵ

)
= o

(
d−(n−1)
ϵ λ

− n
p+1
ϵ

)
.

Finally, gathering the above estimates on I1, I2, and I3, we finally get

I1(x) + I2(x) + I3(x) = o
(
d−(n−2)
ϵ λ

− n
p+1
ϵ

)
and

|∇xI1(x)| + |∇xI2(x)| + |∇xI3(x)| = o
(
d−(n−1)
ϵ λ

− n
p+1
ϵ

)
.

The lemma is proved. □

4. The proof of Theorem 1.1

This section is devoted to prove Theorem 1.1.

Proof of Theorem 1.1. Let dϵ = dist(xϵ , ∂Ω). In view of (2.9), it is enough to show that infε>0 dε > 0.
For this purpose, with a view to a contradiction, we assume the contrary that dϵ → 0 as ϵ → 0 in a
subsequence.

We use the notation λε and Nε = dελε defined in (2.3) and (2.11). Then we recall from Lemma 2.2
that we have Nϵ → ∞. Let us set Dϵ = B(xϵ , 2dϵ) for each 1 ≤ j ≤ n and we define the values L j

ϵ and
R j
ϵ by

L j
ϵ : = −2

∫
∂Dϵ

∂uϵ
∂ν

∂uϵ
∂x j

(x)dS x +

∫
∂Dϵ
|∇uϵ |2ν jdS x,

R j
ϵ : =

n − 2
n

∫
∂Dϵ

up+1
ϵ ν jdS x.

Applying Lemma 2.4 to uε with D = Dϵ , we find that

L j
ϵ = R j

ϵ .

In what follows, we proceed to obtain sharp estimates of the values of Lϵj and Rϵj, which will lead to a
contradiction.

First, we compute L j
ϵ using the expression (3.2) as follows.

Lϵj = −2λ
− 2

p−1−ε
ϵ A2

U

∫
∂Dϵ

(
∂

∂ν
G(x, xϵ)

∂

∂x j
G(x, xϵ)

)
dS x

+ λ
− 2

p−1−ε
ϵ A2

U

∫
∂Dϵ
|∇G(x, xϵ)|2ν jdS x + o

(
|∂Dϵ |λ

− 2n
p+1
ϵ d−2(n−1)

ϵ

)
= −λ

− 2
p−1−ε
ϵ A2

U I(2dϵ) + o(d−(n−1)
ϵ λ−(n−2)

ϵ ),

(4.1)
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where we have set

I(r) :=
[∫
∂B(xϵ ,r)

2
∂G
∂ν

(x, xϵ)
∂

∂x j
G(x, xϵ) − |∇G(x, xϵ)|2ν jdS x

]
for r > 0.

In order to compute the value of I(2dϵ), we first notice that I(r) is independent of r > 0. Indeed, it
follows from that −∆xG(x, xϵ) = 0 for x ∈ Ar := B(xε, 2dε) \ B(xε, r) for each r ∈ (0, 2dε), and an
integration by parts performed as follows:

0 =
∫

Ar

(−∆xG)(x, xϵ)
∂G
∂x j

(x, xϵ)dx

= −

∫
∂Ar

∂G
∂ν

(x, xϵ)
∂G
∂x j

(x, xϵ)dS x +

∫
Ar

∇xG(x, xϵ)
∂∇xG
∂x j

(x, xϵ)dx

= −

∫
∂Ar

∂G
∂ν

(x, xϵ)
∂G
∂x j

(x, xϵ)dS x +
1
2

∫
∂Ar

|∇xG(x, xϵ)|2ν jdS x,

(4.2)

which means that I(r) is constant on (0, 2dϵ]. Therefore we can evaluate I(2dε) by computing the
following limit;

I(2dϵ) = lim
r→0

I(r)

= lim
r→0

∫
∂B(xϵ ,r)

2
(
−

cn(n − 2)
|x − xϵ |n

−
∂H
∂ν

(x, xϵ)
) (
−

cn(n − 2)(x − xϵ) j

|x − xϵ |n
−
∂H
∂x j

(x, xϵ)
)

−

(
−

cn(n − 2)(x − xϵ)
|x − xϵ |n

− ∇H(x, xϵ)
)2

ν jdS x.

Thanks to the oddness of the integrand, we have∫
∂B(xϵ ,r)

2
(
cn(n − 2)
|x − xϵ |n

) (
cn(n − 2)(x − xϵ) j

|x − xϵ |n

)
−

(cn(n − 2)(x − xϵ)
|x − xϵ |n

)2

ν j

 dS x = 0.

Also, since −∆xH(x, xε) = 0 holds for x ∈ B(xε, 2dε), we may proceed as in (4.2) to get∫
∂B(xϵ ,r)

2
(
∂H
∂ν

(x, xϵ)
) (
∂H
∂x j

(x, xϵ)
)
−

[
(∇H(x, xϵ))2 ν j

]
dS x = 0.

Using the above estimates, we complete the estimation as follows.

I(2dϵ) = lim
r→0

∫
∂B(x,r)

2c2
n(n − 2)

∂H
∂ν

(x, xϵ)
(x − xϵ) j

|x − xϵ |n
+ 2

cn(n − 2)
|x − xϵ |n−1

∂H
∂x j

(x, xϵ)dS x

−
2cn(n − 2)(x − xϵ)
|x − xϵ |n

∇H(x, xϵ)ν jdS x

=

[
2cn(n − 2)

n
∂H
∂x j

(xϵ , xϵ) + 2cn(n − 2)
∂H
∂x j

(xϵ , xϵ) −
2cn(n − 2)

n
∂H
∂x j

(xϵ , xϵ)
]
|S n−1|

= 2cn(n − 2)|S n−1|
∂H
∂x j

(xϵ , xϵ).
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Plugging this into (4.1) shows that

Lϵj = −λ
− 2

p−1−ε
ϵ cnA2

U |S
n−1|2(n − 2)

∂H
∂x j

(xϵ , xϵ) + o(d−(n−1)
ϵ λ−(n−2)

ϵ ). (4.3)

Now, we take j ∈ {1, · · · , n} such that
∣∣∣∣ ∂H∂x j

(xε, xε)
∣∣∣∣ ≥ C

dn−1
ε

, which is guaranteed by Theorem 1.3. Injecting
this into (4.3) we have

Lϵj ≥ Cλ−(n−2)
ϵ d−(n−1)

ϵ = CλϵN−(n−1)
ϵ . (4.4)

Next we shall find an upper bound of Rϵj. Applying (2.14) we have

uϵ(x) ≤ Cλ
n

p+1
ϵ U(λϵ(x − xϵ)) ≤ Cλ

n
p+1
ϵ N−(n−2)

ϵ ∀ x ∈ ∂B(xε, 2dε).

Using this we estimate∣∣∣∣∣∣
∫
∂Dϵ

up+1
ϵ ν jdS x

∣∣∣∣∣∣ ≤ C|∂Dϵ |λn
ϵN
−(n−2)(p+1)
ϵ

≤ Cd(n−1)
ϵ λn

ϵN
−(n−2)(p+1)
ϵ

= C
(

Nϵ
λϵ

)(n−1)

λn
ϵN
−(n−2)(p+1)
ϵ = CλϵN(n−1)−(n−2)(p+1)

ϵ ,

(4.5)

which yields
|Rϵj| ≤ CλϵN(n−1)−(n−2)(p+1)

ϵ . (4.6)

Now we combine (4.4) and (4.6) to get

λϵN−(n−1)
ϵ ≤ Lεj = Rεj ≤ CλϵN(n−1)−(n−2)(p+1)

ϵ .

Since Nϵ goes to infinity as ϵ → 0, the above inequality yields that

−(n − 1) ≤ (n − 1) − (n − 2)(p + 1),

which is equivalent to p ≤ n
n−2 . However this contradicts to the fact that p = n+2

n−2 . Thus the assumption
dϵ → 0 cannot hold, and so infε>0 dε > 0. The proof is completed. □

5. Proof of Theorem 1.2

In this section we provide a proof of Theorem 1.2.

Proof of Theorem 1.1. From the result of Theorem 1.1, we know that the maximum point xε of the
solution uε are uniformly away from the boundary ∂Ω. Therefore, up to a subsequence, the point xε
converges to an interior point x0 ∈ Ω. By Lemma 2.3 we know the first statement of the theorem holds.

We may easily deduce the version of Lemma 3.1 under the assumption that xε converges to an
interior point x0. Indeed, it is direct to deduce from (3.4) that

uε(x) = AUλ
−

[2−(n−2)ε]
p−1−ε

ε G(x, x0) + o(λ
− n

p+1−ε
ε ),

for x ∈ Ω \ {x0}. Thus we have

lim
ε→0
λ

[2−(n−2)ε]
p−1−ε
ε uε(x) = AUG(x, x0) in C1(Ω \ {x0}). (5.1)

AIMS Mathematics Volume 8, Issue 11, 26134–26152.



26146

Proposition 5.1. We have limε→0 λ
ε
ε = 1.

Proof. Let vε = (x − x0) · ∇uε +
(

2
p−1−εn

)
uε. Then it satisfies

−∆vε = (p − ε) up−1−ε
ε vε in Ω.

Therefore we have

λ
4−2(n−2)ε

p−1−ε
ε

∫
∂Bn(y,r)

(
∂uε
∂ν

vε −
∂vε
∂ν

uε

)
dS x = λ

2n
p+1−ε
ε (p − 1 − ε)

∫
Bn(y,r)

up−ε
ε vε dx. (5.2)

By (5.1) we have

lim
ε→0
λ

2−(n−2)ε
p−1−ε
ε vε(x) = AU

[
(x − x0) · ∇G(x, x0) +

2
p − 1

G(x, x0)
]
.

Taking ε→ 0 we have

lim
ε→0
λ

4−2(n−2)ε
p−1−ε
ε

∫
∂Bn(y,r)

(
∂uε
∂ν

vε −
∂vε
∂ν

uε

)
dS x

= A2
U

∫
∂Bn(y,r)

(
∂G(x, x0)
∂ν

[
(x − x0) · ∇G(x, x0) +

2
p − 1

G(x, x0)
]

−
∂

∂ν

[
(x − x0) · ∇G(x, x0) +

2
p − 1

G(x, x0)
]

G(x, x0)
)

dS x

= A2
U(n − 2)H(x0, x0),

(5.3)

where the last equality is derived in [1, pg. 170]. The right hand side of (5.2) is equal to∫
Bn(y,r)

up−ε
ε vε dx

=

∫
Bn(x0,r)

up−ε
ε

[
(x − x0) · ∇uε +

2
p − 1 − ε

uε

]
dx

=

(
2

p − 1 − ε
−

n
p + 1 − ε

) ∫
B(x0,r)

up+1−ε
ε (x)dx +

∫
∂B(x0,r)

up+1−ε
ε (x − x0) · νdS x

=

(
2

p − 1 − ε
−

n
p + 1 − ε

) ∫
B(x0,r)

up+1−ε
ε (x)dx + O(λ−n

ε ).

Using this we have

λ
4−2(n−2)ε

p−1−ε
ε (p − 1 − ε)

∫
Bn(y,r)

up−ε
ε vε dx

=

(
λ

4−2(n−2)ε
p−1−ε
ε ε

)
(n − 2)2

2n

(∫
Rn

U p+1(x)dx + o(1)
)
+ O(λ−2

ε ).
(5.4)

Injecting (5.3) and (5.4) into (5.2) we get

A2
UqnH(x0, x0) = lim

ε→0

(
λ

2n
p+1−ε
ε ε

)
. (5.5)
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This implies that λε ≤ Cε−
2n

p−1−ε ≤ Cε−
4n

p−1 for any small ε > 0. Therefore we have

1 ≤ lim
ε→0
λεε ≤ lim

ε→0
Cεε−

(
4n

p−1

)
ε = 1.

The lemma is proved. □

Given the result of Proposition 5.1, we deduce from (5.1) that

lim
ε→0
λ

n
p+1
ε uε(x) = lim

ε→0
λ

2(n−2)2ε
2(4−ε(n−2))
ε λ

2−(n−2)ε
p−1−ε
ε uε(x)

= AUG(x, x0) in C1(Ω \ {x0}),
(5.6)

where we used p = n+2
n−2 in the first equality. This proves the third statement of Theorem 1.2. Next,

taking D = B(x0, r) and u = uε in (2.15), we have

λn−2
ε

(n − 2)
n

∫
∂B(x0,r)

up+1
ε ν jdS x = λ

n−2
ε

∫
∂B(x0,r)

|∇uε(x)|2ν j − 2
∂uε
∂ν

∂uε
∂x j

(x)dS x. (5.7)

By (2.9) we have uε(x) ≤ λ−
(n−2)

2
ε for x ∈ ∂B(x0, r) we have∣∣∣∣∣∣λ(n−2)

ε

∫
∂B(x0,r)

up+1
ε ν jdS x

∣∣∣∣∣∣ ≤ Cλ(n−2)
ε λ−n

ε .

Using this and (5.1) we take limit ε→ 0 in (5.7) to get

0 = A2
U

∫
∂B(x0,r)

|∇G(x, x0)|2ν j − 2
∂G(x, x0)
∂ν

∂G(x, x0)
∂x j

dS x = −A2
U

(2n − 1)
n

∂H
∂x j

(x0, x0),

which yields the second statement of the theorem. Finally, given the result of Proposition 5.1, we get
from (5.5) that

lim
ε→0

(
ε · λ

2n
p+1
ε

)
= (n − 2)A2

U H(x0, x0).

This proves the last statement of the theorem. The proof is finished. □

6. The proof of Theorem 1.3

We prove the second main theorem of this paper.

Proof of Theorem 1.3. Consider a sequence of points {xk}k∈N in the domain Ω such that dk :=
dist(xk, ∂Ω) goes to zero as k → ∞. Take zk ∈ ∂Ω such that |xk − zk| = dk. Let Ωk := 1

dk
(Ω − zk).

Note that we have 0 ∈ Ωk, and also 1
dk

(xk − zk) ∈ S n−1. Thus we can find a rotation Rk : Rn → Rn such
that

Rk

(
1
dk

(xk − zk)
)
= en = (0, · · · , 0, 1). (6.1)

Then, by Assumption D. the domain Dk := RkΩk converges to an infinite star-shaped domain P ⊊ Rn.
To prove the estimate (1.4) we set the function Wk : Dk → R for each k ∈ N by

Wk(z) = H(R−1
k dkz + zk, xk)dn−2

k . (6.2)
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Let Gk be Green’s function of −∆ on Dk with the Dirichlet boundary condition. For each y ∈ Rn
+ we

denote y∗ = (y1, · · · , yn−1,−yn) for y = (y1, · · · , yn) ∈ Rn
+. We consider the function H0 : P × P → R

satisfying 
−∆zH0(z, y) = 0 for (z, y) ∈ P × P,

H0(z, y) =
cn

|(z − y)|n−2 for z ∈ ∂P.
(6.3)

Here cn is the value defined in (2.1). Now we set W0 : P→ R by W0(z) := H0(z, en). Then we have the
following result.

Lemma 6.1. As dk → 0, the function Wk converges to W0 in C1(B(en, 1/4)).

Proof. By definition (6.2) and (2.2), the function Wk satisfies

−∆wWk(w) = 0 in Dk and Wk(w) =
cn

|R−1
k dkw + zk − xk|n−2

for w ∈ ∂Dk. (6.4)

Set the difference Rk : Ωk → R by Rk(x) = W0(x) − Wk(x) for x ∈ Ωk. Then, it suffices to show that
Rk → 0 in C1

loc(P). By (6.4) and (6.3) we have

(−∆w)Rk(w) = 0 in Dk. (6.5)

Let us prove the C0 convergence of Rk. Since Rk is harmonic in Ωk, we only need to show that

lim
k→∞

sup
x∈∂Ωk

|Rk(x)| = 0.

Take a large number R > 0. Then we have

sup
x∈∂Dk∩B(0,R)c

|Wk(x)| + |W0(x)| ≤
C

Rn−2 .

We note that for z ∈ ∂Dk, using (6.1) we have

Wk(z) =
cn

∥z − en∥
n−2 , (6.6)

and for z ∈ ∂P,
W0(z) =

cn

∥z − en∥
n−2 . (6.7)

For fixed R > 0, we have
lim
k→∞

(∂Dk ∩ BR) = ∂P ∩ BR,

and we note that ∂Dk ∩ BR is compact. Combining this fact with (6.6) and (6.7), we obtain

lim
k→∞

sup
x∈∂Dk∩BR

|Wk(x) −W0(x)| = 0.

Thus,

lim
k→∞

sup
x∈∂Dk

|Wk(x) −W0(x)|

≤ lim
k→∞

sup
x∈∂Dk∩BR

|Wk(x) −W0(x)| + lim
k→∞

sup
x∈∂Dk∩Bc

R

|Wk(x) −W0(x)|

≤
C

Rn−2 .
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Since R > 0 is arbitrary, we have

lim
k→∞

sup
x∈∂Dk

|Wk(x) −W0(x)| = 0.

Combining the above two convergence results, we can deduce that Rk(x) → 0 uniformly for x ∈
B(en, 1/4). From (6.4) we know that Rk is contained in C1,β(B(en, 1/4)) uniformly in k ∈ N for some
β > 0. Thus Rk converges to a function f in C1(B(en, 1/4)). In this paper we are concerned with the
Lane-Emden-Fowler equation 

−∆u = u
n+2
n−2−ε in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(6.8)

where Ω ⊂ Rn (n ≥ 3) is a polygonal domain and ε > 0. We study the asymptotic behavior of minimal
energy solutions as ε > 0 goes to zero. we have f ≡ 0 since Rk converges to 0 in C0(B(en, 1/2)). The
lemma is proved. □

Lemma 6.2. We have ∂
∂xn

W0(en) , 0.

Proof. Notice that H0(x, y) satisfies{
−∆xH0(x, y) = 0 x ∈ P,
H0(x, y) = cn

|x−y|n−2 x ∈ ∂P.

Since H0 is the regular part of Green’s function on P, we have

H0(x, y) = H0(y, x). (6.9)

For given t > 0 consider the function f (x) := tn−2H0(tx, ten) defined on 1
t P = P which satisfies −∆x f (x) = 0 x ∈ P,

f (x) = cntn−2

|tx−ten |n−2 =
cn

|x−en |n−2 x ∈ ∂P.

This exaclty means that f (x) = H0(x, en), and so H0(x, en) = tn−2H0(tx, ten). Combining this with the
symmetric property (6.9), we have

∂

∂xn
W0(x)

∣∣∣∣∣
x=en

=

(
∂

∂xn
H0(x, en)

)
x=en

=
1
2

(
∂

∂xn
H0(x, x)

)
x=en

=
1
2
∂

∂t
H0(ten, ten)

∣∣∣∣∣
t=1
=

(2 − n)
2

H(en, en).

(6.10)

Also we note that H0(en, en) , 0 by the maximum principle since (−∆)H0 = 0 in P and H0 > 0 on ∂P.
Combining this fact with (6.10) we deduce that ∂

∂xn
W0(en) < 0. The proof is finished. □
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Now we are ready to finish the proof of Theorem 1.3. By Lemma 6.1, we know that Wk(x) converges
to W0(x) in C1(B(en, 1/4)). Since

∣∣∣∣ ∂∂xn
W0(en)

∣∣∣∣ > c > 0, we conclude that for large k ∈ N, we have∣∣∣∣ ∂∂xn
Wk(en)

∣∣∣∣ > c/2. By definition of Wk given in (6.2), we have

∂

∂xn
Wk(z) = dn−1

k (R−1
k )n · ∇H(dkR−1

k (z), xk).

Therefore we may conclude that for large k ∈ N,

|dn−1
k (R−1

k )n · ∇H(xk, xk)| > c/2,

which implies that ∣∣∣∇H(xk, xk)
∣∣∣ > c

2dn−1
k

for k ∈ N large enough. The proof is finished. □

7. Conclusions

In this paper, we study the energy minimizing solutions to slightly subcritical elliptic problems on
nonconvex polygonal domains. The main part for the analysis is to exclude the possibility that the peak
of the solution approaches the boundary of the domain as the moving plane method is difficult to apply
directly for the nonconvex polygonal domain. To address this challenge, we make use of the Pohozaev
identity and the Green’s function to show that a contradiction aries when we assume that the solution
blows up near the boundary.
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