In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for $ 0 < \gamma, \lambda < 1 $, the convergence of the high order numerical scheme has the optimal convergence order of $ O(\Delta_{s}^{4-\gamma}+\Delta_{t}^{4-\lambda }) $. Finally, two numerical examples are used for experimental testing to support the theoretical findings.
Citation: Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao. Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations[J]. AIMS Mathematics, 2023, 8(12): 29759-29796. doi: 10.3934/math.20231523
In this paper, we consider a higher-order numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations with uniform accuracy. First, the high-order numerical scheme is constructed by using piecewise biquadratic logarithmic interpolations to approximate an integral function based on the idea of the modified block-by-block method. Secondly, for $ 0 < \gamma, \lambda < 1 $, the convergence of the high order numerical scheme has the optimal convergence order of $ O(\Delta_{s}^{4-\gamma}+\Delta_{t}^{4-\lambda }) $. Finally, two numerical examples are used for experimental testing to support the theoretical findings.
[1] | Y. G. Yu, H. X. Li, S. Wang, J. Z. Yu, Dynamic analysis of a fractional-order Lorenz chaotic system, Chaos, Soliton. Fract., 42 (2009) 1181–1189. https://doi.org/10.1016/j.chaos.2009.03.016 doi: 10.1016/j.chaos.2009.03.016 |
[2] | A. Sabir, M. Rehman, A numerical method based on quadrature rules for $\psi$-fractional differential equations, J. Comput. Appl. Math., 419 (2023), 114684. https://doi.org/10.1016/j.cam.2022.114684 doi: 10.1016/j.cam.2022.114684 |
[3] | R. Garra, F. Mainardi, G. Spada, A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus, Chaos, Soliton. Fract., 102 (2017), 333–338. https://doi.org/10.1016/j.chaos.2017.03.032 doi: 10.1016/j.chaos.2017.03.032 |
[4] | M. Gohar, C. P. Li, C. T. Yin, On Caputo Hadamard fractional differential equations, Int. J. Comput. Math., 97 (2020), 1459–1483. https://doi.org/10.1080/00207160.2019.1626012 doi: 10.1080/00207160.2019.1626012 |
[5] | Z. B. Wang, C. X. Ou, S. K. Vong, A second-order scheme with nonuniform time grids for Caputo-Hadamard fractional sub-diffusion equations, J. Comput. Appl. Math., 414 (2022), 11448. https://doi.org/10.1016/j.cam.2022.114448 doi: 10.1016/j.cam.2022.114448 |
[6] | J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238 (2013), 154–168. https://doi.org/10.1016/j.jcp.2012.12.013 doi: 10.1016/j.jcp.2012.12.013 |
[7] | C. P. Li, Z. Q. Li, Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation, J. Sci. Comput., 85 (2020), 41. https://doi.org/10.1007/s10915-020-01353-3 doi: 10.1007/s10915-020-01353-3 |
[8] | M. Gohar, C. P. Li, C. T. Yin, On Caputo-Hadamard fractional differential equations, Int. J. Comput. Math., 97 (2020), 1459–1483. https://doi.org/10.1080/00207160.2019.1626012 doi: 10.1080/00207160.2019.1626012 |
[9] | Z. Q. Wang, Q. Liu, J. Y. Cao, A higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy, Fractal Fract., 6 (2022), 314. https://doi.org/10.3390/fractalfract6060314 doi: 10.3390/fractalfract6060314 |
[10] | A. B. Makhlouf, L. Mchiri, Some results on the study of Caputo-Hadamard fractional stochastic differential equations, Chaos, Soliton. Fract., 155 (2022), 111757. https://doi.org/10.1016/j.chaos.2021.111757 doi: 10.1016/j.chaos.2021.111757 |
[11] | A. Ricardo, Caputo-Hadamard fractional derivatives of variable order, Numer. Func. Anal. Opt., 38 (2017), 1–19. https://doi.org/10.1080/01630563.2016.1217880 doi: 10.1080/01630563.2016.1217880 |
[12] | C. X. Ou, D. K. Cen, S. K. Vong, Z. B. Wang, Mathematical analysis and numerical methods for Caputo-Hadamard fractional diffusion-wave equations, Appl. Numer. Math., 177 (2022), 34–57. https://doi.org/10.1016/j.apnum.2022.02.017 doi: 10.1016/j.apnum.2022.02.017 |
[13] | Y. T. Toh, C. Phang, Y. X. Ng, Temporal discretization for Caputo-Hadamard fractional derivative with incomplete Gamma function via Whittaker function, Comput. Appl. Math., 40 (2021), 285. https://doi.org/10.1007/s40314-021-01673-6 doi: 10.1007/s40314-021-01673-6 |
[14] | Z. Wang, L1/LDG Method for Caputo-Hadamard time fractional diffusion equation, Commun. Appl. Math. Comput., (2023). https://doi.org/10.1007/s42967-023-00257-x doi: 10.1007/s42967-023-00257-x |
[15] | C. W. H. Green, Y. Z. Liu, Y. B. Yan, Numerical methods for Caputo-Hadamard fractional differential equations with graded and non-uniform mesh, Mathematics, 9 (2021), 2728. https://doi.org/10.3390/math9212728 doi: 10.3390/math9212728 |
[16] | M. A. Zaky, A. S. Hendy, D. Suragan, Logarithmic Jacobi collocation method for Caputo-Hadamard fractional differential equations, Appl. Numer. Math., 181 (2022), 326–346. https://doi.org/10.1016/j.apnum.2022.06.013 doi: 10.1016/j.apnum.2022.06.013 |
[17] | E. Y. Fan, C. P. Li, Z. Q. Li, Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems, Commun. Nonlinear Sci., 106 (2022), 106096. https://doi.org/10.1016/j.cnsns.2021.106096 doi: 10.1016/j.cnsns.2021.106096 |
[18] | H. J. Liu, Y. G. Zhu, Y. Y. Liu, European option pricing problem based on a class of Caputo-Hadamard uncertain fractional differential equation, AIMS Mathematics, 8 (2023), 15633–15650. http://dx.doi.org/ 10.3934/math.2023798 doi: 10.3934/math.2023798 |
[19] | G. Istafa, M. U. Rehman, A Legendre-spectral method for Hadamard fractional partial differential equations, Math. Sci., (2022). https://doi.org/10.1007/s40096-022-00497-7 doi: 10.1007/s40096-022-00497-7 |
[20] | Y. Wang, M. Cai, Finite difference schemes for time-space fractional diffusion equations in one- and two-dimensions, Commun. Appl. Math. Comput., (2023). https://doi.org/10.1007/s42967-022-00244-8 doi: 10.1007/s42967-022-00244-8 |
[21] | Z. B. Wang, C. X. Ou, S. K. Vong, A second-order scheme with nonuniform time grids for Caputo-Hadamard fractional sub-diffusion equations, J. Comput. Appl. Math., 414 (2022), 114448. https://doi.org/10.1016/j.cam.2022.114448 doi: 10.1016/j.cam.2022.114448 |
[22] | Q. H. Ma, R. N. Wang, J. W. Wang, Y. C. Ma, Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436–455. http://dx.doi.org/10.1016/j.amc.2014.10.084 doi: 10.1016/j.amc.2014.10.084 |
[23] | R. Almeida, D. F. M. Torres, Computing Hadamard type operators of variable fractional order, Appl. Math. Comput., 257 (2015), 78–88. http://dx.doi.org/10.1016/j.amc.2014.12.071 doi: 10.1016/j.amc.2014.12.071 |
[24] | M. Gohar, C. Li, C. Yin, On Caputo-Hadamard fractional differential equations, Int. J. Comput. Math., 97 (2020), 1459–1483. https://doi.org/10.1080/00207160.2019.1626012 doi: 10.1080/00207160.2019.1626012 |
[25] | Z. W. Yang, X. C. Zheng, H. Wang, Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations, Z. Angew. Math. Phys., 72 (2021), 141. https://doi.org/10.1007/s00033-021-01566-y doi: 10.1007/s00033-021-01566-y |
[26] | Y. Liu, J. Roberts, Y. Yan, Detailed error analysis for a fractional Adams method with graded meshes, Numer. Algorithms, 265 (2018), 195–210. https://doi.org/10.1007/s11075-017-0419-5 doi: 10.1007/s11075-017-0419-5 |