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1. Introduction

Nonlinear partial differential equations (NPDEs) are widely used to describe nonlinear phenomena
in various disciplines, such as mechanics, control processes, ecological systems, economic systems,
chemical cycle systems, and epidemiology [1–5]. The study of NPDEs is an important branch of
modern mathematics, both in theory and practical applications. Finding exact solutions to NPDEs has
been a central topic in mathematics and physics. In recent decades, mathematicians have developed
several effective methods for finding structural solutions of NPDEs, including the Lie symmetry
method [6, 7], Homogeneous equilibrium method [8–10], Darboux transformation [11], Bäcklund
transformation [12], F-expansion method [13], Tanh method [14, 15], etc. Among these methods,
Lie symmetry analysis is one of the most classical methods. It utilizes a set of one-parameter
transformations in the space of independent and dependent variables to keep the NPDE unchanged.
Lie symmetry methods have been widely applied to solve problems in mathematical physics, nonlinear
science and engineering physics [16, 17, 34]. It is well known that the famous (1+1)-dimensional the
Ito equation is
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utt + 6uxxut + 6uxuxt + uxxt = 0. (1.1)

The above equation was firstly proposed by Ito, and its bilinear Bäcklund transform, Lax pair and
multi-soliton solutions were obtained. The rolling behavior of a ship in regular sea is usually predicted
by the Ito equation, and the interaction between two internal long waves can also be described by the Ito
equation. Due to the typical nature of the Ito equation as a soliton equation, a great deal of research has
been done concerning it. Ma and Li investigated the evolution and degradation of the torsional attractor
solutions of the (2+1)-dimensional Hirota-satsuma-Ito class equations using symbolic computation and
Hirota bilinear equations [18]. Based on an extended homoclinic test and bilinear method, Li and Zhao
studied the exact soliton solutions of the (2+1)-dimensional Ito equation and explicit solutions such as
trigonometric function solution, soliton solution, double periodic wave solution and periodic solitary
wave solution are obtained [19]. Based on a multidimensional Bernhard Riemann ξ function, Tian
and Zhang used a clear and direct method to explicitly construct the periodic solutions of the (1+1)-
dimensional and the (2+1)-dimensional Ito equations [20]. Then, using Hirota’s bilinear method and
the positive quadratic function, Tian and Li obtained some global solutions of the (2+1)-dimensional
Ito equation [21].

Recently, Ma and Wu obtained the local interaction solution of the Ito equation with free parameters
in the (2+1)-dimensional Ito equation by Hirota bilinear transformation [22]. In 2022, based on
previous studies [23–25], Wazwaz extended the equation to (3+1)-dimensional Ito equation, proved
its complete integrability by Painleve analysis and derived the multi-soliton solution [26] using the
simplified Hirota method. Based on the traditional (2+1)-dimensional Ito equation,

vtt + vxxxt + 3 (2vxvt + vvxt) + 3vxx

∫ x

−∞

vtdx′ + αvyt + βvxt = 0.

Let v = ux, then the equation can be transformed to the following new form which is studied in this
paper

uxtt + uxxxxt + 3(2uxxuxt + uxuxxt) + 3uxxxut + αuxyt + βuxxt = 0, (1.2)

where α and β are real parameters. The Ito equation is completely integrable and possesses many
conservation laws. If β = α = 0, the above equation becomes (1+1)-dimensional. In this paper,
Lie symmetry analysis method is used to study the Ito equation, some special solutions are found,
their plots are drawn and dynamical behaviors are studied. The arrangement of this paper is shown in
Figure1 below.

Figure 1. The arrangement of the sections of this paper.
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2. Integrability analysis and Lie symmetry analysis of the Ito equation

2.1. Integrability analysis of the Ito equation

Painlevé analysis [27] is a useful method for examining the complete integrability for NPDEs. We
first assume that the solution of the equation is explored as

u(x, y, t) =
∞∑

k=0

uk(x, y, t)ψ(x, y, t)k−µ,

which is a Laurent series with respect to a singular manifold ψ(x, y, t). Following the Painlevé analysis
gives resonances at k =1, 4 and 6. As a result, we obtain expressions for u2, u3 and u5,

u2 = βψt +
α2

2β
t + α2u1,

u3 = u1ψt +
α

2β
t2 + α2ψx,

u5 = u1ψt + αt
(
u1u4 + u2

1

)
+

β

36α3ψyt + u2
4ψxx.

We found that u1, u4 and u6 are left as arbitrary functions and this confirms that Eq (1.2) passes the
Painlevé test that confirms the complete integrability for Eq (1.2).

2.2. Lie symmetry analysis of the Ito equation

The one parameter Lie group of infinitesimal transformation of the Ito equation in x, y, t and u is
given by

x̃→ x + εξ(x, y, t, u) + o
(
ε2

)
,

ỹ→ y + εϕ(x, y, t, u) + o
(
ε2

)
,

t̃ → t + ετ(x, y, t, u) + o
(
ε2

)
,

ũ→ u + εη(x, y, t, u) + o
(
ε2

)
,

where ε is the group parameter. In particular, ξ, ϕ, τ and η are the infinitesimal operators of the
transformation for the independent and dependent variables, which will be determined later. The
vector field associated with the above mentioned group of transformations is given as

V =ξ(x, y, t, u)
∂

∂x
+ ϕ(x, y, t, u)

∂

∂y
+ τ(x, y, t, u)

∂

∂t
+ η(x, y, z, t, u)

∂

∂u
. (2.1)

The symmetry group of Eq (1.2) will be generated by the vector field of the Eq (2.1). Using the
invariant condition

Pr5V(∆)
∣∣∣
∆=0
= 0, (2.2)

where ∆ = uxtt + uxxxxt + 3 (2uxxuxt + uxuxxt) + 3uxxxut + αuxyt + βuxxt. The five-order prolongation for
Eq (1.2) is
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Pr5v =v + ηx ∂

∂ux
+ ηt ∂

∂ut
+ ηxx ∂

∂uxx
+ ηxt ∂

∂uxt
+ ηxxx ∂

∂uxxx
+ ηxtt ∂

∂uxtt

+ ηxxt ∂

∂uxxt
+ ηxyt ∂

∂uxyt
+ ηxxxxt ∂

∂uxxxxt
,

where

ηx = Dx

(
η − ξux − ϕuy − τut

)
+ ξuxx + ϕuxy + τuxt,

ηt = Dt

(
η − ξux − ϕuy − τut

)
+ ξuxt + ϕuyt + τutt,

ηxx = D2
x

(
η − ξux − ϕuy − τut

)
+ ξuxxx + ϕuxxy + τuxx,

ηxt = DxDt

(
η − ξux − ϕuy − τut

)
+ ξuxxt + ϕuxyt + τuxtt,

ηxxx = D3
x

(
η − ξux − ϕuy − τut

)
+ ξuxxx + ϕuxxy + τuxxt,

ηxtt = DxD2
t

(
η − ξux − ϕuy − τut

)
+ ξuxxtt + ϕuxytt + τuxttt,

ηxxt = D2
xDt

(
η − ξux − ϕuy − τut

)
+ ξuxxxt + ϕuxxyt + τuxtt,

ηxyt = DxDyDt

(
η − ξux − ϕuy − τut

)
+ ξuxxyt + ϕuxyyt + τuxytt,

ηxxxxt = D4
xDt

(
η − ξux − ϕuy − τut

)
+ ξuxxxxxt + ϕuxxxxyt + τuxxxxtt.

Substituting these extensions in Eq (2.2), we get the determining equations:

ηx = −
2
9
βϕy +

α

3
ξy, ηt = 0, ηu = −

1
3
ϕy,

τx = τu = 0, τt = −α
(
τy

)
+ ϕy,

ξu = ξt = 0, ξx =
1
3
ϕy,

ϕu = ϕx = ϕt = 0.

By using the software Maple to solve those equations, we get the following system of equations:

ξ =

(
F1y

)
x

3
+ F3(y), ϕ = F1(y), τ =

F2

(
αt−y
α

)
α + F1(y)

α
,

η =
α
(
F1yy

)
x2

18
+

(−4βx − 6u)
(
F1y

)
18

+
xα

(
F3y

)
3

+ F4(y),

where F1, F3 and F4 are arbitrary functions of y and F2 is a arbitrary function of αt−y
α

. In 2022, Kumar
discussed a case where F2 is a constant [28]. In this paper, we discuss the more general case. So we
have

F1 = C1y +C8, F2 = C2(
αt − y
α

) +C5, F3 = C3y +C6, F4 = C4y +C7,
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where C1, C2, C3, C4, C5, C6 and C7 are arbitrary constants. So the vector fields of equation (1.2) are

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 =

∂

∂u
, V4 = y

∂

∂u
, V5 =

(
t −

y
α

)
∂

∂t
,

V6 =
1
α

∂

∂t
+
∂

∂y
, V7 =

α

3
x
∂

∂u
+ y

∂

∂x
,

V8 =
1
18

(−4βx − 6u)
∂

∂u
+

y
α

∂

∂t
+

x
3
∂

∂x
+ y

∂

∂y
.

Thus, all the infinitesimals of Eq (1.2) can be written as the linear combination of the vectors Vi as

V = p1V1 + p2V2 + p3V3 + p4V7 + p5V5 + p6V6 + p7V7 + p8V8.

The commutator relations of Lie algebra between the vector fields can be represented in Table 1.

To compute adjoint representations of symmetry operators for Eq (1.2), we use the Lie series [29,30]

Ad
(
exp (ϑVi)

)
V j =

∞∑
n=0

ϑn

n!
(adVi)n

(
V j

)
= V j − ϑ

[
Vi,V j

]
+

1
2
ϑ2

[
Vi,

[
Vi,V j

]]
− · · · .

The full adjoint representation table entries are tabulated in Tables 2 and 3.

With the assistance of Tables 1, 2 and 3, by carefully applying adjoint maps, we discuss useful
linear combinations of vector fields for the considered equation, which are taken as follows:

(i)V1 + V3 + V6, (ii)V1 + V4 + V6, (iii)V2 + V7, (iv)V8.

Table 1. Commutator table.

* V1 V2 V3 V4 V5 V6 V7 V8

V1 0 0 0 0 0 0 0 1
3V1

V2 0 0 0 0 0 V2 0 0
V3 0 0 0 0 0 0 0 −1

3V3

V4 0 0 0 0 −V3 0 0 −4
3V4

V5 0 0 0 V3 0 0 V1 V5

V6 0 0 −V2 0 0 0 0 0
V7 0 0 0 0 −V1 0 0 −2

3V7 −
2
9βV4

V8 −1
3V1 0 1

3V3
4
3V4 −V5 0 2

3V7 0
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Table 2. Adjoint table.

Ad. V1 V2 V3 V4

V1 V1 V2 V3 V4

V2 V1 V2 V3 V4

V3 V1 V2 V3 V4

V4 V1 V2 V3 V4

V5 V1 V2 V3 V4 − εV3

V6 V1 V2 + V2ln(ε + 1) V3 V4

V7 V1 V2 V3 V4

V8 V1 − V1ln(1 − 1
3ε) V2 V3 − V3ln( 1

3ε + 1) V8

Table 3. Adjoint table.

Ad. V5 V6 V7 V8

V1 V5 V6 V7 V8 −
1
3εV1

V2 V5 V6 − εV2 V7 V8

V3 V5 V6 V7 V8 +
1
3εV3

V4 V5 + εV3 V6 V7 V8 +
4
3εV4

V5 V5 V6 V7 − εV1 V8 − εV5

V6 V5 V6 V7 V8

V7 V5 + εV1 V6 V7 (1 + 2
3ε)V7 +

2
9εV4

V8 εV5 V6 V7 − V7ln( 2
3ε + 1) V8

3. Similarity reduction of the Ito equation

In this section, we obtain numerous closed-form invariant solutions for equation (1.2) utilizing the
Lie symmetry analysis. Two stages of symmetry reducations will be taken with the aid of invariant (or
similarity) functions. We firstly solve the associated Lagrange’s characteristic system given by

dx
ξ
=

dy
ϕ
=

dt
τ
=

du
η
,

which leads to similarity functions.

3.1. Symmetry reduction for V1 + V3 + V6 =
∂
∂x +

∂
∂y +

1
α
∂
∂t +

∂
∂u

We use the symmetry V1 + V3 + V6 to reduce the Ito equation (1.2) to a nonlinear partial differential
equation (NODE). The characteristic equations of V1 + V3 + V6 give the invariants

T = −αt + y, X = −αt + x, V = −αt + u. (3.1)

Replacing Eq (1.2) with Eq (3.1), we obtain the reduced (1+1)-dimensional equation:

(α − β)VXXT + (α − β)VXXX − VXXXXX − VXXXXT − 6VXXVXT − 6V2
XX

− 6VXVXXX − 3VXVXXT − 3VT VXXX = 0.
(3.2)
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Then we apply the classical symmetry again, the vector fields of Eq (3.2) are

V̄1 =
1
3

[(−2T + 2X)α + (2T − 2X)β − 3V]
∂

∂V
+ T

∂

∂T
+ X

∂

∂X
,

V̄2 =
∂

∂T
, V̄3 =

∂

∂V
, V̄4 = T

∂

∂T
+ T

∂

∂X
.

3.1.1. For V̄1

We obtain the invariants

w =
X
T
,R =

[
V +

(
α

3
−
β

3

)
T −

(
α

3
−
β

3

)
X
]

T.

By substituting group invariant solution, we have the reduced equation

6(w − 1)RwRwww + 6(w − 1)R2
ww + (w − 1)Rwwwww + 21RwRww + 3RwwwRww = 0. (3.3)

The exact solutions of equation (3.3) have been found in Section 4.1.

3.1.2. For V̄2 + V̄3 + V̄4

We obtain the invariants

w = −T + ln(T + 1) + X,R = V − ln(T + 1),

which reduce Eq (3.2) to a NODE

(α − β)Rwww − Rwwwww − 6R2
ww − 6RwRwww = 0.

Obviously, the general solution is not easy to find so we obtain a particular solution

u = − tan
(
αx − y + ln y

2
+ 1

)
+ 3 + β ln y. (3.4)

3.2. Symmetry reduction for V1 + V4 + V6 = y ∂
∂u +

1
α
∂
∂t +

∂
∂y +

∂
∂x

We use the symmetry V1+V4+V6 to reduce equation (1.2) to a NODE. The characteristic equations
give the similar invariants

X = −αt + x, T = −αt + y, V = u +
1
2
α2t2 − αty.

By substituting the group invariant solution, we have the reduced equation

(α − β)VXXT + (α − β + 3T )VXXX − VXXXXX − VXXXXT

− 6V2
XX − 6VXXVXT − 3VXVXXT − 6VXVXX − 3VT VXXX = 0.

(3.5)

In order to simplify the equation further, we use Maple to analyze Eq (3.5) for the second Lie
symmetry have the vector fields,

V̄1 =
[
9T 2 + (4β − 4α)(T − X) − 6V

] ∂

∂V
+ 6T

∂

∂T
+ 6X

∂

∂X
, V̄3 =

∂

∂V
,

V̄2 = T
∂

∂V
+

∂

∂T
, V̄4 = T 2 ∂

∂V
+ T

∂

∂T
+ T

∂

∂X
.
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3.2.1. For V̄1

We obtain the similarity variable in the same way as follows:

w =
X
T
, R =

[
V −

T 2

2
+

(
α

3
−
β

3

)
(T − X)

]
T.

Then we obtain the following reduced equation:

(w − 1)R(5) + 5R(4) + 6(w − 1)R2
ww + 21RwRww + 6(w − 1)RwRwww + 3RRwww = 0. (3.6)

The exact solutions of equation (3.6) have been found in Section 4.2.

3.2.2. For V̄2

We obtain the similarity variable in the same way as follows:

w = X, R = V −
T 2

2
.

Then we get following reduced equation:

(α − β + 3T )Rwww − Rwwwww − 6R2
ww − 6RwRwww − 3TRwww = 0.

By simple calculation, we find a solution for equation (1.2)

u = −
1
2

tanh
(
αt − x

2

)2
+

1
2

y2 +
1
2
. (3.7)

3.2.3. For V̄2 + V̄3 + V̄4

We obtain the similar variable invariants by solving the characteristic equation,

w = X + ln(T + 1) − T, R = V −
T 2

2
− ln(T + 1).

Then we have the reduced equation

(α − β)Rwww − Rwwwww − 6R2
w − 6RwRwww = 0.

By simple calculation, we can obtain the group invariant solution of the equation (1.2)

u = − tan
(

x − y + ln(−αt + y + 1)
2

+
1
2

)
+

1
2
+

1
2

y2 + ln(−αt + y + 1). (3.8)

3.3. Symmetry reduction for V2 + V7 =
α
3 x ∂

∂u + y ∂
∂x +

∂
∂t

Solving the characteristic equation, we obtain the similarity variables and function

T = −ty + x, Y = y, V = u +
α

6
yt2 −

α

3
tx.
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Now, substituting the values of the similarity variables in Eq (1.2), we obtain the reduced (1+1)-
dimensional equation as follows:(

Y2 + αT − βY
)

VTTT − YVTTTTT − 6YV2
TT − αVTT − αYVTTY = 0. (3.9)

Again applying similarity transformation method (STM) on Eq (3.9), we get the following results:

V̄1 = 3V
∂

∂V
+

(
3T +

Y(3β − 5Y)
α

)
∂

dT
+ 9Y

∂

dY
, V̄2 =

1
Y
∂

∂T
.

3.3.1. For V̄1

We obtain the similarity variable as follows:

w =
6αT + 2Y2 − 3βY

6αY
1
3

,R =
V

Y
1
3

.

Now, we have the following equation by substituting:

4αwRwww − 3Rwwwww − 18R2
ww − 2αRww = 0. (3.10)

The exact solutions of equation (3.10) have been found in Section 4.

3.4. Symmetry reduction for V8 =
1

18 (−4βx − 6u) ∂
∂u +

y
α
∂
∂t +

x
3
∂
∂x + y ∂

∂y

The characteristic equations of V8 give the similar invariants

X = xy−
1
3 , T = −αt + y, V =

(
u +

βx
3

)
y

1
3 , (3.11)

we put Eq (3.11) into Eq (1.2) and get the following reduced equation:

−3VXXXXT − 18VXXVXT − 9VXXT VX − 9VXXXVT + XVXXT + 2αVXT = 0.

Since the above equation contains one dependent and two independent variables, we again apply the
STM. Thus the Lie algebra of the above equation is spanned by the following vector fields

V̄1 =
1
9

X
∂

∂V
+

∂

∂X
, V̄2 =

∂

∂V
, V̄3 = T

∂

∂T
.

3.4.1. For V̄1 + V̄3

We obtain the similarity variable as follows:

w = − ln T + X, R = V +
ln2 T
18
−

X ln T
9

.

By substituting, we obtain the reduced equation as:

−3R(5) + 18 (Rww)2
− 2(α + 1)Rww + 18RwRwww − 2wRwww +

2α
9
= 0. (3.12)

The exact solutions of equation (3.12) have been found in Section 4.
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3.4.2. For V̄2 + V̄3

We obtain the similarity variable as follows:

w = X, R = V − ln T.

Similarly, we obtain the reduced equation by substituting:

−9
1
T

Rwww = 0.

By simple calculation, we obtain a solution of equation (1.2)

u = −
β

3
x + y−

1
3 ln(−αt + y) + a0y−

1
3 + a1xy−

2
3 + a2x2y−1. (3.13)

4. Exact explicit solutions of reduction equation

The solutions of nonlinear ordinary differential equations cannot be expressed by elementary
functions. So we assume that the power series solution of equation (1.2) is

R(w) =
∞∑

n=0

anwn. (4.1)

So

R′ =
∞∑

n=0

(n + 1)an+1wn,

R′′ =
∞∑

n=0

(n + 1)(n + 2)an+2wn,

(
R′′

)2
=

∞∑
n=0

n∑
i=0

(i + 1)(i + 2)(n + 1)(n + 2)an+2ai+2wn+i,

R′′′ =
∞∑

n=0

(n + 1)(n + 2)(n + 3)an+3wn,

R(4) =

∞∑
n=0

(n + 1)(n + 2)(n + 3)(n + 4)an+4wn,

R(5) =

∞∑
n=0

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)an+5wn.

(4.2)

4.1. The power series solution of Eq (3.3)

Substituting Eq (4.1) and Eq (4.2) into Eq (3.3) and comparing coefficients, we have

a5 =
7

20
a1a2 +

3
10

a2a3 −
3

10
a1a3 −

1
5

a2
2.

AIMS Mathematics Volume 8, Issue 12, 29797–29816.



29807

Consider n ≥ 1, we get

an+5 =
1

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

6 n∑
i=0

i∑
j=0

( j + 1)(i + 1)(i + 2)(i + j)ai+2ai+1

−6
n∑

i=0

i∑
j=0

( j + 1)(i + 1)(i + 2)(ia j+1ai+3 + 3a j+1ai+3 + jai+2a j+2 + 2ai+2a j+2)

+

n∑
i=0

i(i + 1)(i + 2)(i + 3)(i + 4)ai+4 + 3
n∑

i=0

i∑
j=0

( j + 1)( j + 2)(i + 1)[(i + 2)(i + 3)ai+3

+7ai+1]a j+2

]
.

From the above recurrence formula, the coefficients of the power series solution can be determined by
a1, a2, a3 and a4, then the power series solution of Eq (3.3) can be written as:

R(w) = a0 + a1w + a2w2 + a3w3 + a4w4 + a5w5 +

∞∑
n=1

an+5wn+5.

Thus, we obtain the exact power series solution of Eq (1.2) as follows:

u =
1

(−αt + y)

a0 + a1

(
−αt + x
−αt + y

)
+ a2

(
−αt + x
−αt + y

)2

+ a3

(
−αt + x
−αt + y

)3

+ a4

(
−αt + x
−αt + y

)4

+a5

(
−αt + x
−αt + y

)5

+

∞∑
n=1

an+5

(
−αt + x
αt + y

)n+5 + αt −
1
3

(α − β)(y − x).
(4.3)

Next, the convergence of the solution is considered

an+5 ≤

∣∣∣∣∣ 1
(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

∣∣∣∣∣
 n∑

i=0

(i + 1)(i + 2)(i + 3)(i + 4)(i + 5) |ai+4|

+

n∑
i=0

i∑
j=0

(i + 1)(i + 2)( j + 1)(6i + 21)
∣∣∣a j+1

∣∣∣ |ai+2| +

n∑
i=0

i∑
j=0

(i + 1)(i + 2)(i + 3)

|3a j − 6a j+1( j + 1)
∣∣∣ |ai+3| + 6

n∑
i=0

i∑
j=0

( j + 1)( j + 2)(i + 1)|iai+1 − iai+2 − 2ai+2||a j+2|

≤M[
n∑

i=0

|ai+4| +

n∑
i=0

i∑
j=0

|ai+2||a j+1|

where M ≥ 1. Then we set up a new power series of the form P(z) =
∑∞

n=0 bnzn, where b0 = |a0|,
b1 = |a1|, b2 = |a2|, b3 = |a3|, b4 = |a4| and

bn+5 = M

 n∑
i=0

bi+4 +

n∑
i=0

i∑
j=0

bi+2b j+1

 , n = 0, 1, 2 · · · .

AIMS Mathematics Volume 8, Issue 12, 29797–29816.



29808

Obviously, we can get |an| ≤ bn, n = 0, 1, 2, 3, · · ·. In other words, the constructed power series P(z) is
a superior series of R(w). So

P(z) = b1z + b2z2 + b3z3 + b4z4 + b5z5 + M
Ni∑

n=1

n∑
i=0

[bi+4 +

i∑
j=0

bi+2b j+2+]zn+5.

Now, we construct an implicit function of z

F(z, P) = P − b0 − b2z − b2z2 − b3z3 − b4z4 − b5z5 − Mz5 (
P ± P′P′′

)
F is analytic in (0, b0), so F(0, b0) and ∂

∂b F (0, b0) , 0. According to the implicit function theorem, we
prove that the solution of this equation is convergent.

4.2. The power series solution of Eq (3.6)

For Eq (3.6), we get in the same way

a5 = a4 −
1
20

(
4a2

4 − 7a1a2 + 3a0a3 + 6a1a3

)
,

an+5 =
1

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

 n∑
i=0

(i + 1)(i + 2)(i + 3)(i + 4)(i + 5)ai+4.

+

n∑
i=0

i∑
j=0

(i + 1)(i + 2)( j + 1)a j+1ai+2(6i + 21) +
n∑

i=0

i∑
j=0

(i + 1)(i + 2)(i + 3)ai+3

[
3a j − 6a j+1( j + 1)

]
+ 6

n∑
i=0

i∑
j=0

( j + 1)( j + 2)(i + 1)a j+2 (iai+1 − iai+2 − 2ai+2)

 .
Thus, the particular solution of Eq (1.2) is

u =
1

−αt + y
[a0 + a1(

−αt + x
−αt + y

) + a2(
−αt + x
−αt + y

)2 + a3(
−αt + x
−αt + y

)3 + a4(
−αt + x
−αt + y

)4 + a5(
−αt + x
−αt + y

)5

+

∞∑
n=1

an+5(
−αt + x
−αt + y

)n+5] −
1
2
α2t2 + αty +

(−αt + y)2

2
−

1
3

(α − β)(y − x).
(4.4)

Similar to the convergence analysis method of solution (4.3), we can also obtain the convergence
of solution (4.4). Similar to the above method, we also obtain the power series solutions for Eq (3.10)
and Eq (3.12). The results will not be repeated.

5. Dynamical characteristics

In this section, we will analyze the dynamical behavior of the solutions derived in the previous
section with three-dimensional and corresponding contour plots for the (2+1)-dimensional Ito equation
when parameters take different values.
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5.1. Three-dimensional and contour plots of the solution (3.4)

In 3.1.2, we have obtained a solution (3.4) to the (2+1)-dimensional Ito equation,

u = − tan
(

x − y + ln y
2

+ 1
)
+ 3 + ln y.

Clearly, we find that u is independent of time t. Then we have β = 1 and observe the dynamics of u1

when α varies. With the help of Maple, the physical properties and characteristics of the solution are
clearly depicted in Figures 2 and 3.

(a) α = 1, β = 1 (b) α = 2, β = 1 (c) α = 3, β = 1

Figure 2. Three-dimensional plots of solution (3.4) with arbitrary constants α = 1, 2, 3,
β = 1.

(a) α = 1, β = 1 (b) α = 2, β = 1 (c) α = 3, β = 1

Figure 3. 2D-contour plots of solution(3.4) with arbitrary constants α = 1, 2, 3, β = 1.

The three-dimensional graphs represent the local structure, while the contour plots show the wave
fluctuations. The denser the location in the plot, the greater the fluctuation. We observe the interaction
of (3.4) at α = 1, 2, 3, and this change alters the speed, amplitude and shape of the wave so that there
are more points of aggregation and the image becomes more dense when α increases. In Eq (1.2),
parameter α is the coefficient of uxyt, parameter β is the coefficient of uxxt, and we fixed the value of
β and took different values for β. We found that the amplitude and shape of the wave did not change
significantly, but the motion of the wave accelerated, making the wave in the plot more dense, which
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can be understood in a physical sense. As the interaction effect of the two internal long waves increases,
the rolling behavior of the ship in the common sea area is accelerated.

5.2. Three-dimensional and contour plots of the solution (3.8)

In 3.2.3, we have obtained the group invariant solution (3.8) of the Eq (1.2),

u = − tan
(

x − y + ln(−αt + y + 1)
2

+
1
2

)
+

1
2
+

1
2

y2 + ln(−αt + y + 1).

With the help of Maple, the three-dimensional dynamic graphs of the wave married with corresponding
contour plots were depicted in Figures 4 and 5, and we directly observe the interaction phenomena of
the solutions at times t = −5, 0, 2. At first, the distribution of aggregation points is more scattered, then
the aggregation points gradually increase and the wave spreads and continues to move. For Eq (3.8),
where the interaction parameters of two internal long waves are fixed, which is the values of arbitrary
constants α and β, we discuss the dynamic behavior of the wave with respect to t. With the increase
of t, the amplitude and shape of a single wave does not change significantly, and the frequency of the
wave first decreases and then increases. At t = 0, the frequency of the wave is the smallest. Then,
we also found that the equilibrium position of the fluctuations increased significantly over time. From
a physical point of view, we believe that over time, there is a clear upward trend in the equilibrium
position of ships where rolling behavior occurs in common sea areas.

(a) t = −5, α = 1 (b) t = 0, α = 1 (c) t = 2, α = 1

Figure 4. Three-dimensional plots of solution (3.8) at t = −5, 0, 2, α = 1.
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(a) t = −5, α = 1 (b) t = 0, α = 1 (c) t = 2, α = 1

Figure 5. 2D-contour plots of solution (3.8) at t = −5, 0, 2, α = 1.

6. Conservation laws of the Ito equation

This section describes a new conservation law proposed by Ibragimov [5, 31–33] for the Ito
equation, which is necessary for testing the integrability and the existence and uniqueness of the
solutions. The conservation laws hoids that

DxCx + DyCy + DtCt = 0,

where Di is the total derivative operator

Di =
∂

∂xi + ui
∂

∂u
+ si

∂

∂s
+ ui j

∂

∂u j
+ si j

∂

∂s j
+ ui jk

∂

∂u jk
+ si jk

∂

∂S jk
+ · · · · · · .

The Ito equation has the formal Lagrangian

L = s(x, y, t)
[
uxtt + uxxxt + 6uxxuxt + 3uxuxxt + 3uxxut + αuxyt + βuxxt

]
. (6.1)

From (6.1), we have
∂L
∂ux
= 3suxt,

∂L
∂ut
= 3suxxx,

∂L
∂utt
= 6suxx,

∂L
∂uxx

= 6suxt,

∂L
∂uxt
= s,

∂L
∂uxxt

= (3ux + β)s,
∂L
∂uxx

= 3sut,
∂L
∂uxy

= αs.

The adjoint equation of the Ito equation is expressed as

F∗ = 3sxuxxt − 3sxxuxt − sxtt − 3sxxtux − 3sxxuxxt − 3sxuxxxt − βsxxt − 3sxxxut − αsxyt − sxxxxxt.

Since the Ito equation is nonlinear and self-adjoint, let u=s and we have

−3uxxuxt − uxtt − 3uxxuxxt − 3uxuxxxt − βuxx − 3uxxxut − αuxyt − uxxxt = 0.

Therefore, we observe that Eq (1.2) is not fully recovered. Thus, Eq (1.2) is not self-adjoint. Now, the
conserved vectors are given by

Cx = ξxL +W[uxxt (3s − 9sx) + 6uxt (sx − sxx) − 6suxxxt − 3stuxx + (3ux + β)sxt + stt

+ 3sxxut + αsyt + sxxxt] +Wx(−3stux − βst − 3sxut − sxxt) − αWyst +Wt(3suxx − st

− 3uxsx − βsx − αsy − sxxx) +Wxx (3sut + sxt) +Wxt (3sux + βs + sxx) + αWyts

+Wtts −Wxxst −Wxxsx +Wxxxs,
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Cy = ξyL + αWsxt − αWxst − αWtsx +Wxts,

Ct = τL +W(sxt + 3uxsxx + βsxx + αsxy + sxxxxx) +Wx(3sux − st − 3uxsx − βsx − αsy

− sxxx) − αWysx −Wtsx +Wxx(3sux + βs + sxx) +Wxxs + αWxys −Wxxsx +Wxxxxs.

with W = η− ξux −ϕuy − τut. These equations contain arbitrary function s(x, y, t), arbitrary parameters
α and β. This leads to the generation of an infinite number of conservation laws by defining their
conservation vectors. Therefore, we can write the conservation laws for the vector fields (i)–(iv) in this
way.

6.1. For V1 + V3 + V6 =
∂
∂x +

∂
∂y +

1
α
∂
∂t + dy ∂

∂u

For vector field V1 + V3 + V6, we have W = dy − ux − uy −
1
α
ut.

Cx = s(uxtt + uxxxxt + 6uxxuxt + 3uxuxxt + 3uxxxut + αuxyt + βuxxt) + (dy − ux − uy

−
1
α

ut)(3suxxt − 6sxxuxt − 9sxuxxt − 6suxxxt − 3stuxx + 3sxtux + βsxt + stt + 3sxxut

+ 6sxuxt + αsyt + sxxxt) + (uxx + uxy +
1
α

uxt)(3stux + βst + 3sxut + sxxt) − αst(d

− uxy − uyy −
1
α

uyt) + (−uxt − uyt −
1
α

utt)(3suxx − st − 3uxsx − βsx − αsy − sxxx)

− (uxx + uxxy +
1
α

uxxt) (3sut + sxt) + (−uxxt − uxyt −
1
α

uxtt) (3sux + βs + sxx)

+ αs(−uxyt − uyyt −
1
α

uytt) + s(−uxtt − uytt −
1
α

uttt) + st(uxxxx + uxxxy +
1
α

uxxxt)

+ sx(uxxxt + uxxyt +
1
α

uxxtt) − s(uxxxxt + uxxxyt +
1
α

uxxxtt),

Cy = s(uxtt + uxxxxt + 6uxxuxt + 3uxuxxt + 3uxxxut + αuxyt + βuxxt) + (dy − ux −
1
α

ut

− uy)αsxt + αst(uxx + uxy +
1
α

uxt) + αsx(uxt + uyt +
1
α

utt) − s(uxxt + uxyt +
1
α

uxtt),

Ct =
1
α

s(uxtt + uxxxxt + 6uxxuxt + 3uxuxxt + 3uxxut + αuxyt + βuxxt) + (dy − ux − uy

−
1
α

ut)(sxt + 3uxsxx + βsxx + αsxy + sxxxx) − (uxx + uxy +
1
α

uxt)(3suxx − st − 3uxsx

− βsx − αsy − sxxx) − αsx(d − uxy − uyy −
1
α

uxt) + sx(uxt + uyt +
1
α

utt) − (uxx + uxxy

+
1
α

uxxt)(3sux + βs + sxx) + s(−uxxt − uxyt −
1
α

uxtt) + αs(−uxxy − uxyy −
1
α

uxyt)

+ sx(uxxxx + uxxxy +
1
α

uxxxt) + s(−uxxxxx − uxxxxy −
1
α

uxxxxt).
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6.2. For V1 + V4 + V6 = y ∂
∂u +

1
α
∂
∂t +

∂
∂y +

∂
∂x

For vector field V1 + V4 + V6, we have W = y − ux − uy −
1
α
ut.

Cx = s(uxtt + uxxxxt + 6uxxuxt + 3uxuxxt + 3uxxxut + αuxyt + βuxxt) + (−ux −
1
α

ut − uy

+ y)(3suxxt − 6sxxuxt − 9sxuxt − 6suxxxt − 3stuxx + 3sxtux + βsxt + stt + 3sxxut + αsyt

+ 6sxuxt + sxxxt) + (−uxx − uxy −
1
α

uxt)(−3stux − βst − 3sxut − sxxt) − αst(1 −
1
α

uty

− uyy − uy) − (uxt + uyt +
1
α

utt)(3suxx − st − 3uxsx − βsx − αsy − sxxx) − (uxxx + uxxy

+
1
α

uxt)(3sut + sxt) + (−uxxt − uxyt −
1
α

uxtt)(3sx + βs + sxx) + s(−uxtt − uytt −
1
α

uttt)

+ αs(−uyt − uyyt −
1
α

uytt) + st(uxxxx + uxxy +
1
α

uxxxt) + sx(uxxxt + uxxyt +
1
α

uxxtt)

− (uxxxxt + uxxyt +
1
α

uxxxtt)s,

Cy = s(uxtt + uxxxxt + 6uxxuxt + 3uxuxxt + 3uxxxut + αuxyt + βuxxt + αsxt(y − ux −
1
α

ut

− uy) + αst(uxx + uxy +
1
α

uxt) + αsx(uxt + uyt +
1
α

utt) + s(−uxxt − uxyt −
1
α

uxtt),

Ct =
1
α

s(uxtt + uxxxxt + 6uxxuxt + 3uxuxxt + 3uxxxut + αuxyt + βuxxt) + (−ux − uy −
1
α

ut

+ y)(sxt + 3uxsxx + βsxx + αsxy + sxxxx) + (−uxx − uxy −
1
α

uxt)(3suxx − 3uxsx − βsx

− st − αsy − sxxx) − αsx(1 − uxy − uyy −
1
α

uty) + sx(uxt + uyt +
1
α

utt) + (−uxxx − uxxy

−
1
α

uxxt)(3sux + βs + sxx) + s(−uxxt − uxyt −
1
α

uxtt) + αs(−uxxy − uxyy −
1
α

uxyt)

+ sx(uxxxx + uxxxy +
1
α

uxxxt) + s(−uxxxxx − uxxxxy −
1
α

uxxxxt).

By repeating the previous calculation method, we calculate the remaining two Lie point symmetric
conservation vectors. The results will not be repeated.

7. Conclusions and future work

In this paper, Lie symmetry analysis, the optimal systems and conservation laws of the (2+1)-
dimensional Ito equation are given and the power series solutions and some special solutions and their
plots are discussed. Because there are arbitrary constants and functions in these solutions, we select
several appropriate parameters to draw the Figures 2, 3, 4 and 5, which show what happens when
these parameters are different. Next, we obtain some power series solutions for the nonlinear ordinary
differential equations. Finally, we establish the conservation laws of the Ito equation.
This paper employs the Lie symmetry analysis method to investigate the problem at hand. The selection
of the vector field is restricted to the linear form of the undetermined coefficients. However, exploring
other forms of undetermined functions may result in different solutions. Notably, recent studies by
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some scholars have shown that the Lie symmetry transformation method can establish exact analytical
solutions for parabolic waves, traveling waves, block solitons, multi-solitons, curved multi-solitons
and other shapes. These results have significant implications for explaining various mathematical and
physical phenomena and enhance the value of this research. Accordingly, we explore this topic further
in subsequent work.
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