
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(5): 5171–5183.
DOI:10.3934/math.2020332
Received: 13 February 2020
Accepted: 09 June 2020
Published: 15 June 2020

Research article

A special shift splitting iteration method for absolute value equation

ShiLiang Wu∗ and CuiXia Li

School of Mathematics, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China

* Correspondence: Email: wushiliang1999@126.com.
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1. Introduction

Considering the absolute value equation (AVE)

Ax − |x| = b, (1.1)

where A ∈ Rn×n, b ∈ Rn and | · | denotes the absolute value. The AVE (1.1) is used as a very important
tool and often arises in scientific and engineering computing, such as linear programming, bimatrix
games, quadratic programming, the quasi-complementarity problems, and so on [1–5].

In recent years, to obtain the numerical solution of the AVE (1.1), a large number of efficient
iteration methods have been proposed to solve the AVE (1.1), including the successive linearization
method [2], the Picard and Picard-HSS methods [7, 9], the nonlinear HSS-like iteration method [15],
the sign accord method [6] and the hybrid algorithm [12], the generalized Newton (GN) method [11].
Other forms of the iteration methods, one can see [8–10, 13] for more details.

Recently, Ke and Ma in [18] extended the classical SOR-like iteration method in [19] for solving
the AVE (1.1) and proposed the following SOR-like iteration method[

A 0
−αD̂ I

] [
x(k+1)

y(k+1)

]
=

[
(1 − α)A αI

0 (1 − α)I

] [
x(k)

y(k)

]
+

[
αb
0

]
, (1.2)
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with α > 0 and D̂ = D(x) = diag(sign(x)), x ∈ Rn, where D(x) = diag(sign(x)) denotes a diagonal
matrix corresponding to sign(x), and sign(x) denotes a vector with components equal to 1, 0,−1
depending on whether the corresponding component of x is positive, zero or negative. The SOR-like
iteration method (1.2) can be designed by using the idea of SOR-like method in [19] for reformulating
the AVE (1.1) as the two-by-two block nonlinear equationAx − y = b,

− |x| + y = 0,

or

Āz =

[
A −I
−D̂ I

] [
x
y

]
=

[
b
0

]
= b̄. (1.3)

The convergence condition of the SOR-like iteration method in [18] was given in the light of
assumptions imposed on the involved parameter. Further, in [20], some new convergence conditions
were obtained from the involved iteration matrix of the SOR-like iteration method.

When |x| is vanished in the AVE (1.1), the AVE (1.1) reduces to the linear system

Ax = b. (1.4)

In [14], Bai et al. proposed the following shift splitting (SS) of the matrix A, that is,

A =
1
2

(αI + A) −
1
2

(αI − A), α > 0,

and designed the shift splitting (SS) scheme

x(k+1) = (αI + A)−1(αI − A)x(k) + 2(αI + A)−1b, k = 0, 1, 2, . . .

for solving the non-Hermitian positive definite linear system (1.4). In this paper, we generalize this
idea and propose the special SS iteration method for the two-by-two block nonlinear Eq. (1.3) to solve
the AVE (1.1).

The remainder of the paper is organized as follows. In Section 2, the special SS iteration method
is introduced to solve the AVE (1.1) and the convergence analysis of the special SS iteration method
is studied in detail. In Section 3, numerical experiments are reported to show the effectiveness of the
proposed method. In Section 4, some conclusions are given to end the paper.

2. The special SS iteration method

In this section, we introduce the special SS iteration method to solve the AVE (1.1). To this end,
based on the iteration methods studied in [14], a special shift splitting (SS) of the Ā in (1.3) can be
constructed as follows

Ā =

[
A −I
−D̂ I

]
=

1
2

[
αI + A −I
−D̂ I + I

]
−

1
2

[
αI − A I

D̂ I − I

]
,

where α is a given positive constant and I is an identity matrix. This special splitting naturally leads to
the special SS iteration method for solving the nonlinear Eq. (1.3) and describes below.
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The special SS iteration method: Let A ∈ Rn×n be a nonsingular and b ∈ Rn. Given initial vectors
x(0) ∈ Rm and y(0) ∈ Rn, for k = 0, 1, 2, ... until the iteration sequence {x(k), y(k)}+∞k=0 is convergent,
compute [

αI + A −I
−D̂ 2I

] [
x(k+1)

y(k+1)

]
=

[
αI − A I

D̂ 0

] [
x(k)

y(k)

]
+ 2

[
b
0

]
, (2.1)

where α is a given positive constant.
Clearly, the iteration matrix Mα of the special SS method is

Mα =

[
αI + A −I
−D̂ 2I

]−1 [
αI − A I

D̂ 0

]
.

Let ρ(Mα) denote the spectral radius of matrix Mα. Then the special SS iteration method is convergent
if and only if ρ(Mα) < 1. Let λ be an eigenvalue of matrix Mα and [x, y]T be the corresponding
eigenvector. Then [

αI − A I
D̂ 0

] [
x
y

]
= λ

[
αI + A −I
−D̂ 2I

] [
x
y

]
,

which is equal to

(λ − 1)αx + (λ + 1)Ax − (λ + 1)y = 0, (2.2)
(1 + λ)D̂x − 2λy = 0. (2.3)

To study the convergence conditions of the special SS iteration method, we first give some lemmas.

Lemma 2.1. [16] The AVE (1.1) has a unique solution for any b ∈ Rn if and only if matrix A − I + 2D
or A + I − 2D is nonsingular for any diagonal matrix D = diag(di) with 0 ≤ di ≤ 1.

Based on Lemma 2.1, it is easy to obtain when matrix A in the AVE (1.1) satisfies σmin(A) > 1,
where σmin(A) denotes the smallest singular value of the matrix A, then the AVE (1.1) has a unique
solution for any b ∈ Rn. One can see [16] for more details.

Lemma 2.2. [17] Consider the real quadratic equation x2 − bx + d = 0, where b and d are real
numbers. Both roots of the equation are less than one in modulus if and only if |d| < 1 and |b| < 1 + d.

Lemma 2.3. Let A be a symmetric positive definite matrix and satisfy the conditions of Lemma 2.1.
Then

Ā =

[
A −I
−D̂ I

]
is nonsingular.

Proof. By simple computations, we have

Ā =

[
I 0

−D̂A−1 I

] [
A 0
0 I − D̂A−1

] [
I −A−1

0 I

]
.

Clearly, we just need to prove that matrix I− D̂A−1 is nonsingular. If not, then for some nonzero y ∈ Rn

we have that (I − D̂A−1)y = 0, which will derive a contradiction. This implies that y = D̂A−1y. Let
A−1y = z. Then Az = D̂z. Further, we have

zT z < zT AT Az = zD̂T D̂z < zT z.

Obviously, this inequality is invalid. This completes the proof. 2
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Lemma 2.4. Let A be a symmetric positive definite matrix and satisfy the conditions of Lemma 2.1.
Then

Â =

[
αI + A −I
−D̂ 2I

]
is nonsingular.

Proof. Similar to Lemma 2.3, by simple computations, we have

Â =

[
I 0

−D̂(αI + A)−1 I

] [
αI + A 0

0 2I − D̂(αI + A)−1

] [
I −(αI + A)−1

0 I

]
.

Noting that A is a symmetric positive definite matrix. Clearly, when matrix 2I − D̂(αI + A)−1 is
nonsingular, matrix Â is also nonsingular. In fact, matrix 2I − D̂(αI + A)−1 is sure nonsingular. If not,
then for some nonzero y ∈ Rn we have that (2I − D̂(αI + A)−1)y = 0, which will derive a contradiction.
This implies that 2y = D̂(αI + A)−1y. Let (αI + A)−1y = z. Then 2(αI + A)z = D̂z. Further, we have

2zT (αI + A)z = zD̂z. (2.4)

Let λ = zT Az
zT z and µ = zT Dz

zT z . Then, from (2.4) we can obtain

2α + 2λ = µ. (2.5)

Since α > 0, λ > 1 and |µ| ≤ 1, Eq. (2.5) is invalid. Therefore, Eq. (2.4) is also invalid. This completes
the proof. 2

Lemma 2.4 implies that the iteration matrix Mα is valid.

Lemma 2.5. Let A be a symmetric positive definite matrix and satisfy the conditions of Lemma 2.1. If
λ is an eigenvalue of the matrix Mα, then λ , ±1.

Proof. If λ = 1. Then from (2.2) and (2.3) we haveAx − y = 0,
− |x| + y = 0.

Based on Lemma 2.3, it follows that y = 0 and x = 0, which contradicts the assumption that [x, y]T is
an eigenvector of matrix Mα. Hence λ , 1.

Now, we prove that λ , −1. When λ = −1, from (2.2) and (2.3) we have

−2αx = 0 and 2αy = 0.

Since α > 0, we obtain x = 0 and y = 0, which also contradicts the assumption that [x, y]T is an
eigenvector of matrix Mα. Hence λ , −1. 2

Lemma 2.6. Assume that A is a symmetric positive definite matrix and satisfies the conditions of
Lemma 2.1. Let λ be an eigenvalue of Mα and [x, y]T be the corresponding eigenvector. Then x , 0.
Moreover, if y = 0, then |λ| < 1.
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Proof. If x = 0, then from (2.2) we have (λ+ 1)y = 0. By Lemma 2.5 we know that λ , −1. Therefore,
y = 0, which contradicts the assumption that [x, y]T is an eigenvector of matrix Mα.

If y = 0, then from (2.2) we have

(αI + A)−1(αI − A)x = λx.

Since A is symmetric positive definite, then by [12, Lemma 2.1] we know that

|λ| ≤ ‖(αI + A)−1(αI − A)‖ < 1.

Thus, we complete the proof. 2

Theorem 2.1. Let A be a symmetric positive definite matrix and satisfy the conditions of Lemma 2.1,
and α be a positive constant. Then

ρ(Mα) < 1,∀α > 0,

which implies that the special SS iteration method converges to the unique solution of the AVE (1.1).

Proof. If λ = 0, then ρ(Mα) < 1. The results in Theorem 2.1 hold.
If λ , 0. Then from (2.3) we have

y =
1 + λ

2λ
D̂x. (2.6)

Substituting (2.6) into (2.3) leads to

(λ − 1)αx + (λ + 1)Ax − (λ + 1)
1 + λ

2λ
D̂x = 0. (2.7)

By Lemma 2.6, we know that x , 0. Multiplying xT

xT x on both sides of Eq. (2.7), we obtain

(λ − 1)α + (λ + 1)
xT Ax
xT x

−
(λ + 1)2

2λ
·

xT D̂x
xT x

= 0. (2.8)

Let

p =
xT Ax
xT x

, q =
xT D̂x
xT x

.

Then p > 1 and |q| ≤ 1. From Eq. (2.8) we have

(λ − 1)α + (λ + 1)p −
(λ + 1)2

2λ
q = 0.

Further, we know that λ satisfies the following real quadratic equation

λ2 +
2p − 2α − 2q
2p + 2α − q

λ −
q

2p + 2α − q
= 0. (2.9)

Based on Lemma 2.2, we know that a sufficient and necessary condition for the roots of the real
quadratic Eq. (2.9) to satisfy |λ| < 1 if and only if∣∣∣∣ q

2p + 2α − q

∣∣∣∣ < 1 (2.10)
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and ∣∣∣∣2p − 2α − 2q
2p + 2α − q

∣∣∣∣ < 1 −
q

2p + 2α − q
. (2.11)

It is easy to check that (2.10) and (2.11) hold for all α > 0. Therefore, we obtain

ρ(Mα) < 1,∀α > 0,

which implies that the special SS iteration method converges to the unique solution of the AVE (1.1).
2

For the SOR-like iteration method (1.2), in [18], Ke and Ma given the following result.

Theorem 2.2. [18] Let A ∈ Rn×n be a nonsingular and b ∈ Rn. Denote

ν = ‖A−1‖, s = |1 − α| and t = α2ν.

If
0 < α < 2 and s4 − 3s2 − 2st − 2t2 + 1 > 0, (2.12)

then
|||(ex

k+1, e
y
k+1)||| < |||(ex

k , e
y
k)|||, k = 0, 1, . . . ,

where
|||(ex

k , e
y
k)||| =

√
‖ex

k‖
2 + ‖ey

k‖
2 with ex

k = x∗ − x(k), ey
k = y∗ − y(k).

Comparing the convergence conditions of the special SS method and the SOR-like iteration method,
see Theorem 2.1 and Theorem 2.2 [18], the convergence condition of the SOR-like iteration method
not only is relatively strict, but also is difficult to compute. The main reason is that the condition (2.12)
has to compute the inverse of the matrix A. This implies that the application of the SOR-like iteration
method is limited. Base on this, the special SS method may be superior to the SOR-like iteration
method under certain conditions.

Next, we turn to consider this situation where matrix A in (1.1) is the positive definite.
It is noted that Lemma 2.3, Lemma 2.5 and Lemma 2.6 are still valid under the condition of Lemma

2.1 when A in (1.1) is the positive definite.
Now, we need guarantee the invertibility of the first factor of Mα. To this end, we have Lemma 2.7.

Lemma 2.7. Let positive definite matrix A satisfy the conditions of Lemma 2.1 and ‖(αI + A)−1‖2 < 2.
Then

Â =

[
αI + A −I
−D̂ 2I

]
is nonsingular.

Proof. Based on the proof of Lemma 2.4, obviously, when ‖(αI + A)−1‖2 < 2, matrix 2I − D̂(αI + A)−1

is nonsingular. This implies that matrix Â is nonsingular as well. 2

For later use we define the set S as

S = {x ∈ Cn : x = [x; y] is an eigenvector of Mα with ‖x‖2 = 1}.

Obviously, the members of S are nonzero. Based on this, Theorem 2.3 can be obtained.
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Theorem 2.3. Let the conditions of Lemma 2.7 be satisfied. For every x ∈ S, let s(x) = <(x∗Ax),
t(x) = =(x∗Ax) and q = x∗D̂x. For each x ∈ S, if

(α + s(x))2(s(x) − q) + t(x)2s(x) > 0, (2.13)

then
ρ(Mα) < 1, ∀α > 0,

which implies that the special SS iteration method converges to the unique solution of the AVE (1.1).

Proof. Similar to the proof of Theorem 2.1, using x∗ instead of xT in (2.8) leads to

(λ − 1)α + (λ + 1)x∗Ax −
(λ + 1)2

2λ
x∗D̂x = 0,

which is equal to

(λ − 1)α + (λ + 1)(s(x) + t(x)i) −
(λ + 1)2

2λ
q = 0, (2.14)

For the sake simplicity in notations, we use s, t for s(x), t(x), respectively. From (2.14), we have

λ2 + φλ + ψ = 0, (2.15)

where
φ = 2

s + ti − α − q
2s + 2ti + 2α − q

and ψ = −
q

2s + 2ti + 2α − q
.

By some calculations, we get

φ − φ∗ψ = 2
s + ti − α − q

2s + 2ti + 2α − q
+ 2

s − ti − α − q
2s − 2ti + 2α − q

·
q

2s + 2ti + 2α − q

= 2
s + ti − α − q

2s + 2ti + 2α − q
·

2s − 2ti + 2α − q
2s − 2ti + 2α − q

+ 2
(s − ti − α − q)q

(2s + 2α − q)2 + 4t2

= 2
[ (s + ti − α − q)(2s − 2ti + 2α − q)

(2s + 2α − q)2 + 4t2 +
(s − ti − α − q)q

(2s + 2α − q)2 + 4t2

]
= 2
−(s + ti − α − q)q + (s − ti − α − q)q + (s + ti − α − q)(2s − 2ti + 2α)

(2s + 2α − q)2 + 4t2

= 4
(s − α − q)(s + α) + t2 + 2αti

(2s + 2α − q)2 + 4t2 .

Further, we have

|ψ| =

√
q2

(2s + 2α − q)2 + 4t2 < 1,

|φ − φ∗ψ| =
4
√

((s − α − q)(s + α) + t2)2 + 4α2t2

(2s + 2α − q)2 + 4t2 .

(2.16)

thus, the necessary and sufficient condition for |λ| < 1 in (2.15) is

|φ − φ∗ψ| + |ψ|2 < 1. (2.17)

Substituting (2.16) into (2.17), we can obtain the condition (2.13), which completes the proof. 2
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3. Numerical experiments

In this section, two examples are given to demonstrate the performance of the special SS method
(2.2) for solving the AVE (1.1). To this end, we compare the special SS method with the SOR-like
method [18], the generalized Newton (GN) method [11] and the search direction (SD) method [10]
from aspects of the iteration counts (denoted as ‘IT’) and the relative residual error (denoted as ‘RES’),
the elapsed CPU time in second (denoted as ‘CPU’). In the implementations, we use the sparse LU
factorization to calculate an inverse of the first factor of Mα. All runs are implemented in Matlab 7.0.

All initial vectors are chosen to zero vector and all iterations are terminated once the relative residual
error satisfies

RES :=
‖Ax(k) − |x(k)| − b‖2

‖b‖2
≤ 10−6

or if the prescribed iteration number 500 is exceeded. In the following tables, ‘−’ denotes RES > 10−6

or the iteration counts larger than 500.
Example 1. ( [18]) Consider the AVE (1.1) with

A = tridiag(−1, 4,−1) ∈ Rn×n, x∗ = (−1, 1,−1, 1, . . . ,−1, 1)T ∈ Rn,

and b = Ax∗ − |x∗|.

α 0.7 0.9 1.1 1.2 1.5 2 2.5
SS IT 59 46 38 35 27 20 16

CPU 5.342 4.172 3.452 3.183 2.468 1.843 1.484
RES 9.628e-

7
8.901e-
7

7.370e-
7

6.682e-
7

9.998e-
7

9.605e-
7

7.591e-
7

SOR IT 24 15 21 49 − − −

CPU 0.016 0.016 0.016 0.016 − − −

RES 9.676e-
7

5.367e-
7

9.431e-
7

9.097e-
7

− − −

Table 1. Numerical comparison of Example 1 with n = 3000.

α 0.7 0.9 1.1 1.2 1.5 2 2.5
SS IT 59 46 38 35 27 20 16

CPU 9.748 7.655 6.280 5.67 4.342 3.187 2.515
RES 9.629e-

7
8.902e-
7

7.372e-
7

6.683e-
7

9.999e-
7

9.607e-
7

7.593e-
7

SOR IT 24 15 21 49 − − −

CPU 0.016 0.016 0.031 0.016 − − −

RES 9.677e-
7

5.368e-
7

9.432e-
7

9.099e-
7

− − −

Table 2. Numerical comparison of Example 1 with n = 4000.
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n 1000 2000 3000 4000
SS IT 14 14 14 14

CPU 0.212 0.396 1.312 2.162
RES 8.913e-7 8.924e-7 8.928e-7 8.930e-7

SOR IT 11 11 11 11
CPU 0.005 0.006 0.004 0.007
RES 7.377e-7 7.382e-7 7.384e-7 7.384e-7

GN IT 2 2 2 2
CPU 0.232 1.589 4.988 11.337
RES 1.107e-16 1.122e-16 1.117e-16 1.121e-16

SD IT 13 13 13 13
CPU 1.988 7.289 3.487 6.088
RES 3.567e-7 3.575e-7 3.577e-7 3.579e-7

Table 3. Numerical comparison of SS, SOR, GN and SD for Example 1.

To compare the special SS method with the SOR-like method, we take the same parameter α. In
this case, Tables 1 and 2 list some numerical results of the special SS method and the SOR-like method
for Example 1 with different dimensions n and different parameters α. From Tables 1 and 2, we can
see that when both iteration methods are convergent, the CPU times of the special SS method are more
than that of the SOR-like method. It is noted that the SOR-like method occasionally fail to converge in
500 iterations, the special SS method is always convergent, which confirm the results in Theorem 2.1.
From the view of this point, the special SS method is robust, compared with the SOR-like method.

Table 3 list the numerical results of the special SS method with the SOR-like method, the
generalized Newton method, and search direction method. Here, the iteration parameter of the special
SS method is set to be 3, the iteration parameter of the SOR-like method is set to be 1. From Table 3,
the iteration counts of the special SS method are more than any other three methods, but it requires
the less CPU times than the generalized Newton method and the search direction method. Among
these methods, the SOR-like method compared to any other three methods requires the least iteration
steps and CPU time, but it has some risks in the implementations.

On the above discussion, we can draw a conclusion that the special SS method is feasible, compared
with the SOR-like method, the generalized Newton method, and search direction method.

Example 2 Let m be a prescribed positive integer and n = m2. Consider the AVE in (1.1) with
A = Ā + µI

Ā = tridiag(−I, S ,−I) =



S −I 0 · · · 0 0
−I S −I · · · 0 0
0 −I S · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · S −I
0 0 0 · · · −I S


∈ Rn×n
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with

S = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m,

and b = Ax∗ − |x∗|, where x∗ = (−1, 1,−1, 1, · · · ,−1, 1).

α 0.7 0.9 1.1 1.3 1.5 1.7 1.9
SS IT 64 50 41 34 30 26 24

CPU 29.033 23.423 19.377 15.915 13.744 11.895 11.258
RES 9.965e-

7
9.470e-
7

8.172e-
7

7.564e-
7

8.272e-
7

9.692e-
7

6.752e-
7

SOR IT 34 21 42 − − − −

CPU 0.625 0.372 0.914 − − − −

RES 7.088e-
7

6.828e-
7

8.191e-
7

− − − −

Table 4. Numerical comparison of Example 2 with n = 4900 and µ = 1.

α 0.7 0.9 1.1 1.3 1.5 1.7 1.9
SS IT 64 50 40 34 30 26 24

CPU 48.405 38.641 32.807 25.840 22.918 20.234 18.07
RES 9.352e-

7
8.890e-
7

9.993e-
7

9.695e-
7

7.760e-
7

9.093e-
7

6.351e-
7

SOR IT 34 21 42 − − − −

CPU 0.818 0.519 1.285 − − − −

RES 7.186e-
7

6.927e-
7

8.398e-
7

− − − −

Table 5. Numerical comparison of Example 2 with n = 6400 and µ = 1.

Similarly, for Example 2, we still take the same parameter α for the special SS method with the
SOR-like method when both are used. In this case, Tables 4, 5, 7 and 8 list the computing results for
Example 2 with µ = 1 and µ = 4.

From Tables 4, 5, 7 and 8, these numerical results further confirm the observations from Tables
1 and 2. That is to say, when both are convergent, the computing efficiency of the SOR-like method
advantages over the special SS method. Whereas, in the implementations, indeed, the SOR-like method
has some risks; for the special SS method, it is free from such worries. This further verifies that the
special SS method is steady.

Similar to Table 3, Tables 6 and 9 still enumerate the numerical results of the special SS method
with the SOR-like method, the generalized Newton method, and search direction method. In Tables
6 and 9, the iteration parameter of the SOR-like method is set to be 1; for the special SS method, its
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n 3600 4900 6400 8100
SS IT 22 22 22 22

CPU 5.613 10.033 16.831 26.671
RES 9.969e-7 9.920e-7 9.885e-7 9.857e-7

SOR IT 17 17 17 17
CPU 0.224 0.293 0.413 0.547
RES 6.121e-7 6.260e-7 6.365e-7 6.447e-7

GN IT 2 2 3 2
CPU 8.316 20.43 66.477 134.068
RES 2.046e-16 2.204e-16 2.192e-16 2.206e-16

SD IT 33 33 33 33
CPU 17.961 33.104 55.315 88.038
RES 9.072e-7 9.351e-7 9.560e-7 9.723e-7

Table 6. Numerical comparison of SS, SOR, GN and SD for Example 2 with µ = 1.

α 0.9 1.1 1.3 1.5 2 3 4
SS IT 67 55 47 41 30 20 15

CPU 30.358 24.932 21.307 18.652 13.671 9.117 6.852
RES 9.987e-

7
9.486e-
7

8.348e-
7

7.605e-
7

9.462e-
7

8.044e-
7

6.463e-
7

SOR IT 12 14 54 − − − −

CPU 0.203 0.235 1.328 − − − −

RES 3.256e-
7

9.044e-
7

8.133e-
7

− − − −

Table 7. Numerical comparison of Example 2 with n = 4900 and µ = 4.

α 0.9 1.1 1.3 1.5 2 3 4
SS IT 67 55 47 40 30 20 15

CPU 50.910 41.940 35.710 30.477 22.823 15.512 11.435
RES 9.409e-

7
8.934e-
7

7.858e-
7

9.452e-
7

8.905e-
7

7.561e-
7

6.069e-
7

SOR IT 12 14 54 − − − −

CPU 0.331 0.375 1.794 − − − −

RES 3.266e-
7

9.080e-
7

8.202e-
7

− − − −

Table 8. Numerical comparison of Example 2 with n = 6400 and µ = 4.

iteration parameter are two cases: α = 2.1 in Table 6 and α = 5.5 in Table 9. From Tables 6 and 9,
the special SS method requires the less CPU times than the generalized Newton method and search
direction method. Among these methods, the SOR-like method compared to any other three methods
costs the least iteration steps and CPU time, but it has some risks in the implementations.

From the numerical results from Example 2, we can still come to a conclusion that the special SS
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n 3600 4900 6400 8100
SS IT 11 11 11 11

CPU 2.812 5.014 8.389 13.309
RES 7.057e-7 6.944e-7 6.857e-7 6.788e-7

SOR IT 8 8 8 8
CPU 0.109 0.141 0.203 0.25
RES 9.188e-7 9.238e-7 9.275e-7 9.304e-7

GN IT 2 2 2 2
CPU 8.452 20.277 44.084 87.995
RES 2.794e-16 2.901e-16 2.952e-16 2.968e-16

SD IT 12 12 12 12
CPU 6.53 12.044 20.198 31.867
RES 5.212e-7 5.282e-7 5.335e-7 5.375e-7

Table 9. Numerical comparison of SS, SOR, GN and SD for Example 2 with µ = 4.

method is feasible, compared with the SOR-like method, the generalized Newton method, and search
direction method.

4. Conclusions

In this paper, based on the shift splitting (SS) of the coefficient matrix of a kind of the equivalent
two-by-two block nonlinear equation of the AVE (1.1), a special shift splitting (SS) method is
introduced. Some convergence conditions of special SS method are obtained. Numerical experiments
show that the special SS method is feasible. However, the parameter α is chosen by the
experimentally found optimal choice. So, how to choose the optimal parameter in the special SS
method for the AVE is left as a further research work.
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