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1. Introduction

Throughout this article, we only consider simple, undirected, and finite graphs and assume that all
graphs are connected. Suppose ¢ is a graph with the vertex set V(¥) = {vy, v2,- -+, v,} and the edge
set E¥) = {ey, ea,- -+, e,}. The adjacency matrix A(¥) is a 0 — 1n X n matrix indexed by the vertices
of ¢ and defined by a;j = 1 if and only if v,v, € E4. For more notation, one refer to [1].

The Laplacian matrix of graph ¢ is defined as L(¥) = D(¥)—A(%), and assume that the eigenvalues
of L(¥) are labeled 0 < p; < pp < - -+ < .

1, s=1
(LD =1-1, s#t, vy~ (1.1)

0, otherwise.

The normalized Laplacian matrix is given by
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1, s=1
(L(G)y = —ﬁ SEL, Vg~V (1.2)
0, otherwise.

The distance, d;; = dy(v;, v;), between vertices us and ut of ¢ is the length of the shortest u,, u,-path
in ¢4. The Wiener index [2, 3] is the sum of the distances of any two vertices in the graph ¢, that is

W(G) = Z dy,.

s<t

In 1947, the distance-based invariant first appeared in chemistry [2, 3] and began to the applied to
mathematics 30 years later [5]. Nowadays, the Wiener index is widely used in mathematics [6—8] and
chemistry [9-11].

In a simple graph ¢, the degree, d;; = dy(v;), of a vertex v; is the number of edges at v;. The Gutman
index [12] of the simple graph ¢ is expressed by

Gut() = ) didid,.

s<t

Klein and Randic initially outlined the concepts associated with the resistance distance of the graph.
Assume that each edge is replaced by a unit resistor, and we use rst to denote the resistance distance
between two vertices s and t. Similar to the Wiener index, the Kirchhoff index [13, 14] of graph ¥ is
expressed as the sum of the resistance distances between each two vertices, that is

Kf@) =) r.

s<t

In 2007, Chen and Zhang [15] defined the multiplicative degree-Kirchhoff index [16, 17], that is

Kf'(@) =) ddpr,.

s<t

Phenyl is a conjugated hydrocarbon, and L&** denote a linear chain, containing n hexagons and
2n — 1 squares, as shown in Figure 1.

With the rapid changes of the times, organic chemistry has also developed rapidly, which has led to
a growing interest in polycyclic aromatic compounds.

In 1985, the computational method and procedure of the matrix decomposition theorem were
proposed by Yang [18]. This led to the solution of some problems in graph networks and allowed the
unprecedented development of self-homogeneous linear hydrocarbon chains. For example, in 2021,
X.L. Ma [20] got the normalized Laplacian spectrum of linear phenylene, and the linear phenylene
containing it has n hexagons and n — 1 squares. L. Lan [21] explored linear phenylene with n
hexagons and n squares. Umar Ali [22] analyzed the strong prism of a graph G, which is the strong
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product of the complete graph of order 2, and X.Y. Geng [23] obtained the Laplacian spectrum of
L,6,’4’4, which contains n hexagons and 2n — 1 squares. J.B. Liu [24] derived the Kirchhoff index and
complexity of O,, which denoting linear octagonal-quadrilateral networks. C. Liu [25] got the
Laplacian spectrum and Kirchhoff index of L,, and L, has ¢t hexagons and 3¢ + 1 quadrangles.

Inspired by these recent works, we try to investigate the Laplacians and the normalized Laplaceians
for graph transformations on phenyl dicyclobutadieno derivatives.

The various sections of this article are as follows: In Section 2, we proposed some concepts and
lemmas and used them in subsequent articles. In Section 3 and Section 4, we acquired the Laplacian
matrix and the normalized Laplacian matrix, then we made sure the Kirchoff index, the multiplicative
degree-Kirchoff index, and the complexity of L,. In Section 5, we obtained conclusions based on the
calculations in this paper.

@ea@aat @

(4n—3)"~g (@n—1) (4n)

1 e 3 s e 7 8 o _
' 4n-2
2 6 7 o (4n-2)
"
P 6 4n—2
| AN 4 5 ’ 7 8 9 4n—3 B~ 4n-1 4n
2‘ 6I (4H—2)
L!‘?

Figure 1. Graphs of L** and L,.

2. Preliminary works

In this article, graph L, and graph L$** are portrayed in Figure 1. Define the characteristic
polynomial of matrix U of order n as Py(x) = det(xI — U).

It is easy to understand that # = (1,1")(2,2)---((4n),(4n)’) is an automorphism. Let
Vioo= Au,up, - Ugpr, Vi, s vand, Voo = {M'I,M'g,"' ,MZ,n,Vi,"' ,Vﬁml}, V(L)) = 8n and
|E(L,)| = 19n — 4. Thus, the (normalized) Laplacians matrix can be expressed in the form of a block
matrix, that is

Lvyve Lvyvi Lvyv,
LL,) = Lvyvy, Lvivy Lvyv, |
Lvyvy, Lvyv, Luyv,
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where Ly y, and Ly, y, are a submatrix consisting of rows corresponding to the vertices in V, and
columns corresponding to the vertices in V,, s, = 0, 1,2. Let

1 0 0
1 1
Q =10 ?14,1 7%14,1 ,
0 7§I4n _%I4n

then

L
OL(Ly)Q = ( A(()g) Ls(()g) )’ OL(L)Q' = ( LA(S%) LS(()g) )’

and Q' is the transposition of Q.
Ls =Ly,y, + Ly,v,, Ls = Ly,y, = Ly,v,, La = Ly,v, + Lv,v,, Ls = Ly,v, — Ly,v,

Lemma 2.1. [20] If ¥ is a graph and suppose that Ly(9), Ls(%), LA(¥), and Ls(¥) are determined
as above, then

D1y @) = O,y )OLs @) O £,y Y) = O, 0N L5 (D)-

Lemma 2.2. [26] With the extensive study of the Kirchhoff index, Gutman and Mohar proposed an
algorithm based on the relation between the Kirchhoff index and the Laplacian eigenvalues, namely

n

1
Kf(9) = —,
f(&) n,zzft

and the eigenvalues of L(¥) are 0 =&, <& > -+ > &,(n > 2).

Lemma 2.3. [14] Suppose that the eigenvalues of L(¥) are & < & < --- < &,, then its multiplicative
degree-Kirchhoff index can be denoted by

| "
Kf (%) = ZmZ z
=2 !

Lemma 2.4. [1] The number of spanning trees in 4 can also be called the complexity of 4. If 4 is
a graph with |Vy| = n and |Ey| = m. Let A4;(i = 2,3,--- ,n) be the eigenvalues of L(¥). Then the
complexity of 9 is

2mt(9) = ﬁ d; - ﬁ A;.
i=1 i=2
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3. Kirchhoff index of L,

In this section, the main objective is to find out the Kirchhoff index of L,. Then, combining the
definition of the Laplacian matrix and Eq (1.1), we can write these block matrices as follows:

Ly,y,
and
Ly,y,
Hence,
Ly =

AIMS Mathematics

3 -1
-1 4
-1
~1 -1
-1 0
-1
2 -2
2 4
-2

-1
5
-1

-1
-1
-1

-2
4
-2

-1

5 -1

-1 5 -1
-1 4

-1

-1 -1

-1 -1 -1
-1 0

-2

4 -2

2 4 -2
—2 4

-1

-1

-1

-1

-2

5
-1

-1
-1

2 4

-1
4 -1
-1 5
-1
0 -1
~1 -1
4 -2
2 4

-1
-1 3 (4n)x(4n)
-1
-1 1 (4n)x(4n)
-2
22 (4n)x(4n)
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and
Ls = diag(4,4,6,6,6,4,---,6,4,6,4).

Assume that 0 < @) < @y < @3 < -+ < @y, are the roots of P, (x) =0,and 0 < B; < B < B3 <
-+ < Bay are the roots of Py, (x) = 0. By Lemma 2.2, we immediately have

4n 4n

Kf(L?) = 2(4n)( > 1, > l). 3.1)

Py B

Obviously, 3%, L can be obtained according to Lg.

Jlﬁ

u | 1 o +2
]Z[ngxen D+ x(1+2)= == (3.2)

Next, we focus on computing Z?jl ai Let
P, (x) =det(x] — Ly) = 2+ @ x4 AuyaX + Aapey), Aapoy # O.

Based on Vieta’s theorem of P, (x), we can exactly get the following equation:

4n

Z 1 _ (-D*2ay,» 3.3)

—a; (D" lagy

For the sake of convenience, let M, be used to express the s — th order principal minors of matrix A,
and mg = detM, is recorded. We can get m; = 2,m, = 4,m3 = 8.
And
my = 4dm_ —4m,_r,4 < s < 4n,

by further induction, we have
my; = 2°,

In this way, we can get two theorems.
Theorem 3.1. (-1)*lay,_; = (4n)2* 1.

Proof. Due to the sum of all the principal minors of order 4n — 1 of Ly is (=1)*'ay,_,,

Z detL,|s]

s=1

4n
_ M, 0
- Zdet( 5 U)

= Z detMs_l ‘ delU4n—S’

s=1

(=" g,y

AIMS Mathematics Volume 9, Issue 6, 14594-14617.



14600

where
I, -2 - 0
=2 Iy 0
M, = : : : : ’
0 0 - L1 (s=1)x(s—1)
ls+1,s+1 T o 0
U4n—S
: l4n—1,4l’l—1
0 o =2 e )y ey

Let mg = 1,detU, = 1, because of the symmetry of matrix Ly, then detU,,_; = detM,,_,. Hence

4n
Z detm,_, - detmg,_

s=1

(4n)24n—1 ,

(=D ag,

as desired. O

_ 4n—1
Theorem 3.2. (—1)*2q,, , = =D l27

Proof. Since the (—1)*2ay,_, is the tatal of all the principal minors of order 4n — 2 of L4, we have

()" ag,

Z detLy[s,1]

1<s<t<4n
= detM,_idetN,_;_1detUy,_,,
1<s<t<dn
where
M, 0 0
Lals,t] = 0 N, 0 ,1<s<t<4dn
0 0 U4n—t
and
4 =2
-2 4 =2
-2 4 =2
Nt—s—l
-2 4 =2
-2 4 =2
-2 4 (1-s-1)
= (t—s)277
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Therefore, we can have

(—=1)*"2ay,,

Z detM,_; - detN,_,_; - detUy,_;

1<s<t<4n

(t — )27 detmy_y - map_,
1<s<t<4n
(4n — 1)(4n)(4n + 1)24!
3 .
The proof is over. O

From the results of Theorem 3.1 and Theorem 3.2, we can get

4n

Z 1 (D" 2ay, lon* -1
a (=D lay,, 12

(3.4)
i=2

where the eigenvalues of Ly are 0 < @) < ap < @3 < -+ - < @y,

Lemma 3.3. Suppose LS** be the dicyclobutadieno derivative of phenylenes and the graph L, be

obtained from the transformation of the graph LS**.

3213 + 1812 + 2n
Kf(L,) = 3 :

Proof. Substituting Eqgs (3.5) and (3.6) into (3.4), the Kirchhoff index of L, can be expressed

n n
2(4n)( ; o ; ﬁ_j)

(8n)(9n1; 2 N 4n+ 1)(4n — 1))

12
32n + 181 + 2n
3 )
The result is as desired. ad

Kf(Ly)

The Kirchhoff index of L, from L; to L;, is shown in Table 1.

Table 1. The Kirchhoff indices of L;, L,, ..., Lis.

Y Kf¥9) ¢ Kf¥9) ¢ Kf(9)
Ly, 173 Ls 14867 Ly 8268.0
L, 1107 Le¢ 25240 L,, 244573
Ly 3440 L; 39573 L, 30454.7
Ly, 7813 Lg 5850.7 Ly, 37360.0

Next, we will further consider the Wiener index of L,,.
Lemma 3.4. Let L5** be the dicyclobutadieno derivative of [n]phenylenes, and the graph L, be
obtained from the transformation of the graph L&**, then

Kf(Ly) _ 1

m = —.
n—oo W(L,) 4
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Proof. Consider dj, for all vertices. For the sake of convenience, we divide the vertices of the graph
into the following five categories:
Case 1. Vertex 1 of L,:

4n—1

gi(i) = 1+2()_ k).
k=1

Case 2. Vertex 4j—3(j=1,2,--- ,n)of L,, i =4 - 3:

4n-1 4n—i
g()=1+20) k+ Zk).
k=1
Case 3. Vertex 4j —2(j=1,2,--- ,n)of L,, i = 4j — 2:
4n—-1 4n—i
&) =1+20> k+ ) k).
k=1 k=1

Cased4. Vertex 4j— 1(j=1,2,--- ,n)of L,, i =4j - 1:

4n—1 4n—i

() =1+ 2(2 k + Zk).
k=1 k=1

Case 5. Vertex 4j(j = 1,2,-+- ,n) of L,, i = 4j:

4n—1 4n—i

gs()=1+20> k+ ) k).
k=1 k=1

Hence, we have

4g1(0) +2 Xicsj382(D) + 2 Ximsjr 83(D) + 2 Xjmyjoy 84(D) + 2 Xy 85(0)

W(Ly,)

2
4(1 +222n 1k)+2z] . 1+2(Z4J kk Z4n 4_/+2
] 2
22] 1[2+2(Z4J 3k+z4n 4j+2k) +221 1[1 +2(Z4J 2k+z4n 4j+1 k)]
+
2
23+ 28 ke XY )
+
2

12817 +48n*> —5n+ 3
3 )

Consider the above results of the Kirchhoff index and the Wiener index. We can get following
equation when #» tends to infinity:

Kf(Ly) _ 1

e W(L,) 4

The result is as desired. O
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4. Multiplicative degree-Kirchhoff index and complexity of L,

In this section, we use the eigenvalues of the normalized Laplacian matrix to determine the
multiplicative degree-Kirchhoff index of L,. Besides, we calculate the complexity of L,. Then

=L
75
=1L 1 =L
V12 V20
=L 1 -1
V20 5
=L 1 =
5 5
-1 1 =1
5 V20
=L 1 =L
Ly, V20 V20 :
-1 1 =L
5 V20
=1 1 =1
V20 | V20 |
wols
=L 1
Vis (4n)x(4n)
and
-1 =L
3 V12
=L 0 =L
vi2 1 @ 1
V20 55
e e e §
5 5 5
e e .
5 5 V20
=L o =L
-l:vlvz = V20 V20
-1 -1 =L
5 5 V20
=L 0 =L
m 1 @ 1
V20 ?1 E
Vi5 3 Janyxan
AIMS Mathematics
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Therefore,
2 -1
33
=L 1 =L
V3 V3
-1 4 2
V5 5 5
2 4 =2
5 5 5
=2 4 -1
: —51 ¥ -1
Ly = w 1w :
—_2- 4 -1
5 5 s
=L 1 =L
V3 V5
-t 4 =2
V5 5 Vis
=2 2
VI5 3 Jdn)x@n)
and 4 6 6 6 6 6 4
:d _’1’_’_7_""’_919_’_-
Ls =diag(z. L5 5o 5 v 5 b 3)
Assume that the roots of Py, (x) =0are 0 <& <&H <6<~ <agp,and 0 <y <yp <y3<--- <

Yan are the roots of P, (x) = 0. By Lemma 2.3, we can get

4n 4n
Kf (L2 =2(19n - 4)( > é +> l)

i= ST =/

Since L is a diagonal matrix. Obviously, its diagonal elements 1,‘3—1 and g correspond to the
eigenvalues of L, respectively. Then, it can be clearly obtained as

1 2In-1
o=t (4.1)
i1 Vi 6
Let
Py, (x) =det(xI — L) = x" + bix" '+ + byp_1x, by, # 0,
é, 5}3, RN ﬁare the roots of the following equation

2

by 1 X"+ by x4+ bix+ 1 =0.

Based on the Vieta’ s theorem of P;,(x), we can get

i L (D" by,
g (=D by,

Similarly, we can get another two interesting facts.
Theorem 4.1. (—=1)*~'by,_; = 2(38n — 8)(73:)".

AIMS Mathematics Volume 9, Issue 6, 14594-14617.
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_ _2 . _1 _2 _ 4

Proof. Let s, = detF,, then we have s; = 5:82= 3,53 = 135,54 = 7z, and
_ 4 4 .
S4p = 584p-1 — 3554p-25

4

_ 4 .

S4p+1 = 384p = 3554p-15
1, .
S4p+2 = S4p+1 — §S4p»

4 1
S4p+3 = 384p+2 — 584p+1-

After further simplification, the transformation form of the above formula is obtained.

S4p:_ (125) 1<p<l’l

Sap+1 :%'(ﬁ)l,oﬁpﬁﬂ— I;

S4p+2 :% (]25)i70<p <n-1
L

1\
Sap+3 = 13 (E)I,OSPSVZ— 1.

U-’Il\)

4

Similarly, we have t; = £,00 = 15,013 = 5,14 = 75, and

— 2 2 .
lap = 5lap-1 — 5lap-2;
_ 4 4 .

Iapr1 = 5lap — 35lap-1;
_ 4 4, .
Lap+2 = Slap+1 — 35l4p;

_ 1
lap+3 = lapsa — 5lap+1.

Therefore, the transformation form of the above formula is obtained.

lapa =3 ()P 1 < p<m

t4,,_3:%-(%)”,OSpSn—l;
fipr =15 ()0<p<n—1;
p1 = % (33390 p<n—1.

Since the (—1)*~'hy,_; is the total of all the principal minors of order 4n — 1 of L,, we have

4n

Z detNLA[i] + 4, + 14,
i= 2

(=) by,

—(38n - 8)(@)

The proof of Theorem 4.1 completed. O
Theorem 4.2. (—1)"2by,_, = 55:5(14520n° + 4599n* — 1496n + 3)(337)".

Proof. We observe that the sum of all the principal minors of order 4n in Ly is (—1)*""2b,_,, then

(-1)" by = > detLals,f]- fir fin (4.2)

1<s<t<4n
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By Eq (4.8), we know that the result of detL,[s, ] will change with the values of s and 7. Then we
can get the following twenty cases:

Casel.i=4s,j=4t,1 <s<t<n,

det ¢

Case2.i=4s, j=4t+1,1<s<t<n-1,

det ¢

4 L
5 Vs
_%Fs 1 _%
14 _2
5 5 5
= 2
5
4 \t-s
= 10(t—s)(ﬁ) .
4 L
5 V5
_\/Lg 1 _%
_1 4 _ 2
5 5 5
= 5

(41 — 4s + 1)(1475)H.

Case3d.i=4s,j=4t+2,1<s<t<n-1,

det ¢

AIMS Mathematics

TNIN
Sl
sl

w|—
Sl

s

g(zt _ 25+ 1)(%)”.

4 2
5 5
=2 _4 _ 1L
5 5 v5
1
s 1
=2
5
4 -l
51 > 1
i 4 1 N
5 V5
_ L 4
V5 5
=2
5
1 =L
V5
—L 4 =2
v5 5 5
-2 4
5 5
=2
5

u-u;&l.—

u'”;&\l'\’

(W ENV 1]

(41-4s-1)

(41-4s)

(41—4s+1)

Volume 9, Issue 6, 14594-14617.
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Cased.i=4s, j=4t+3,1<s<t<n-1,

4 __L
5 V5
-L 1 =1
V5 5
_1 4 _2
5 5 V5
detp = 1 4 2
-V 5 s
_2 4 =2
5 5 5
_2 4 L
5 5 V5
-L 1
V5 (41—4s5+2)
1 4 \t-s
= —(4r-4s+3)—=) .
5040 =45 +3)(33)
CaseS.i=0,j=4n,1<s<t,
4 __L
5 V5
-2 1 =1
V5 5
1 4 2
-5 5 s
dety = » 4 2
5 5. 75
_2 4 =1
5 5 N
=L 1 L
V5 V5
_2 4
V5 5 (4n—4s-1)
- 10(n—s)(i)n_s.
125
Case6.i=4s+1,j=4t,1 <s<t<n,
1
=%
_L 4 _2
V505 V5
_2 4 2
VA V5
det ¢ = 5 A 5
-5 5. 75
2 4 1
5 5 T
L 1 4L
NG V5
_1 4
V505 (41—45-2)

_ ?(m — 45— 1)(%)”5
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Case7.i=4s+1,j=4+1,1<s<t<n-1,

det ¢

- =
_
S

10(7 — s)(l%)’_s.

Case8.i=4s+1,j=4t+2,1<s<t<n-—1,

det ¢

1 —

—L

\/>

W
[ES
S gl
g

| .
wni .

(41 — 4s + 1)(%)’”.

Case9.i=4s+1,j=4t+3,0<s<t<n-1,

det ¢

AIMS Mathematics

s~
s> sl
gl

A

s

(2t — 25 + 1)(%)”.

A

4 _ L
5 V5
L1 L
V5 V5
L 4
N
—2
5
1 _ L
V5
-L 4 _2
N 5
-2 4
5 5
—2
5
4 _2
5 5
2 4 2
5 5 5
-2 4
5 5
—L
V5

|
v

wils

|
—_
&!

(41-4s5-1)

(41-4s)

(4t—4s+1)
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Casel0.i=1,j=4n+1,0<s<n,

det ¢

-
-
P

o2 R

2 4
§(4n —4s - 1)(

Casell.i=4s5s+2,j=4t,0<s<t<n,

det ¢

RRTITS
wit

I e |
Wi [V,1]8]

2
75
2 _2
5 V5
2
-5
125) '
2
=5
£ 2
5 5
2
=5

25(21 — 25 — 1)(1%)’_“.

Case12.i=45+2,j=4r+1,0<s<t<n-1,

det ¢

AIMS Mathematics

OIS
[T 1\)

| (LI E I
Wi [\

(SRS I
Wi
o
Wi

A

4 2
5 5
~2 4 _ 1
5 5 NG
-L 1 L
V5 V5
_1 4
V5 5 (4n—4s5-2)
4 2
5 5
_2 4 __L
5 5 5
_L |
V5 V5
1L 4
V5 5 (41-45-3)
1 =L
V5
S
V5 5 5
_2 4 _2
5 5 5
_2 4
5 5 (41-45-2)

5(4t —4s — 1)(%)”.
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Casel3.i=4s5+2,j=4t+2,0<s<t<n-1,

4 _2
5 5
_2 4 _2
5 5 5
_2 4 _2
5 5 5
detyp = B 1 .
Vs V5
1 4 2
s 5 5
2 4 2
5 5. 75
_2 4
5 5 (At-4s—1)
4 \t-s
= 8t—-s)—) .
( s)(125)
Caseld.i=4s+2,j=4t+3,0<s<t<n-—-1,
4 2
5 75
_2 4 _2
5 5 5
_2 4 _2
5 5 5
det ¢ = _L. 4 2
N 5
2 4 2
5 5. 75
2 4 1
55 T%
-L 1
V5 (41-4s)
(4 — 45 + 1) 4 )
= —4s — .
125
CaselS.i=2,j=4t+3,0<s<n-1,
4 _2
5 5
2 4 2
5 5 753
2 4 _2
5 5 5
detSD = _g. 4 2
5 5 5
_2 4 __L
5 5 V5
-L 1 L
V5 v5
__L 4
A 5 (4n—4s-3)
4 \n-s
= 252n-2s-1Hl—) .
(2n =25 )(125)
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Casel16.i=4s5+3,j=41,0<s<t<n,

4 _2
5 5
_2 4 L
5 5 NS
-L 1 41
V5 V5
dety = 2 4 2
s 5 5
_2 4 _ L
5 5 N
-L 1
V3 1
s
125 4 \t-s
= —@t-4s-3)—) .
g s )(125)
Casel7.i=4s+3,j=4t+1,0<s<t<n-1,
4 _2
5 5
_2 4 __L
5 5 NS
-L 1 L
V5 V5
detp = _Z. P
5 5 NS
-L 1 L
V5 V5
__L 4
V5 51
V5
4 t—s
= 25Q2t-2s-Dl—) .
2= 25 = 1)(333)
Casel8.i=4s5+3,j=4t+2,0<s<t<n-—1,
4 _2
5 5
_2 4 __L
5 5 NS
-L 1 4L
V5 V5
detp = _L' L
V5 V5
__L 4 _2
N 5
_2 4
5 5
_2
5

_ 23_5(4z — 45— 1)(%)”5

AIMS Mathematics

1
V5
4
5 (41—4s—4)
_L
\5
4
5 (41-45-3)
_2
5
4
5 (41—4s-3)
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Casel19.i=45+3,j=4t+3,0<s<t<n-1,

det ¢

Case20.i=3,j=41,0<s<n-1,

det ¢

TIFS

|
N

OIS
(V1]

4 _2
5 5
_2 4 1
5 5 N
-L 1 4L
V5 V5
= L
‘/g
-5
= 10(t - )
( s)(125)
4 _2
5 5
2 4
5 5 NS
_L 1 _L
V5 V5
= 2
5
125 4 \n-s
= Un—ds- _
(4n = 4s=3)(133)

Therefore, we can get

where

AIMS Mathematics

2
B
4 2
5. 75
2 4 1
s 5 Ts
-L
V5
2
-2 1
L -5
L1 4L
V5 V5
L 4
N

(=1)*"2by, » = E| + Ey + E5 + Ey,

4
E, = —(908n + 3431712 +523n)(

4 n—1
E, :—(227n + 34752 —574n+4)(125) .

125)

4 \n

= — (4543 + 1 ~1
( 54n® + 137512 079n)(125)
E, = —(92 +561n° — 611n)(—< 4 )"_1
= n l’l n 125 .

(41-4s5-1)

(4n—4s-4)
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Hence

1 4 \n
—1)" by, 5 = E| + Ey + E3 + Ey = ——(14520n° + 45990 — 14 MH—==) .
(=" bayy = By + By + Es + Ey = 25 (14520n° + 4599n° — 14960 + )(125)
The proof of Theorem 4.2 completed. O

Let 0 < & <& < & < --- < &40 are the eigenvalues of .Z,. We can get the following exact

equation:
4n

Z 1 (=D"2by,, 1 (14520n3 +4599n% — 1496n + 8)
& (=Dnlpy, T2 38n — 8 '

i=2
Theorem 4.3. Set L5** be the derivative [n]pheylenes, and the expression of the multiplicative degree-
Kirchhoff index is

. 29040n° + 8996n* — 3198n + 8
Kf' (L) = ( o) )

Proof. Together with Eq (4.7) and Theorems 4.1 and 4.2, one can get

4n 4n
1 1
Kf(Ly = 209n-4)(> -+ > —)

R
1 (145201 + 4599n* — 1496n + 8\ 21n—1

= 2(19n-4)[—

(19n = 4)75( 38n -8 )+ =5
B (29040113 + 8996n% — 3198n + 8)
B 144 '
The result as desired. |

The multiplicative degree-Kirchhoff indices of L, from L, to L;,, see Table 2.
Then we want to calculate the Gutman index of L,.

Table 2. The multiplicative degree-Kirchhoff indices of L, L,, ..., L.

9 Kf(9) 9 KFf9 9 Kf(@
L, 24198 L; 26659.15 L, 1518754
L, 181886 Ls 4567581 Ly 207691.9
Ly 594068 L, 720774 L, 2757332
L, 1381744 Ly 1070739 L, 357209.6

Theorem 4.4. Suppose that LS** is the dicyclobutadieno derivative of [n]phenylenes and the graph L,
is obtained from the transformation of the graph L$**, then

Kf'(L) 1

1m = .
e Gut(L,) 4

Proof. Consider d;; for all vertices. We divide the vertices of L, into the following four categories.
Case 1. Vertex 4i —2(i=1,2,--- ,n) of L,:

10
Jaia = ?n(56n2 —24n + 37).

AIMS Mathematics Volume 9, Issue 6, 14594-14617.
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Case 2. Vertex 4i — 1(i=1,2,--- ,n) of L,:
10
faic1 = ?n(152n2 — 48n + 29).
Case 3. Vertex 4i(i = 1,2,--- ,n) of L,:
10
fai = ?n(140n2 — 48n + 43).
Cased. Vertex4i—3(i=1,2,--- ,n) of L,:
10
friiz = ?n(136n2 —6n+71).

According to Eq (1.3), the Gutman index of L, is
Jai + Jaict + faio + fais

2
10
T”(242n2 —63n + 61).

Gut(Ly,)

Therefore, combining with K f*(L,) and Gut(L,), we have
Kf*(L,) 1

oo Gui(L,) 4

The result as desired.

Finally, we want to know the complexity of L,,.
Theorem 4.5. For the graph L,, we have

T(Ln) — 23n+2 . 3371—2.

Proof. Based on Lemma 2.4, we can get
8n 4n 4n

[ [a] [oi| [8=2009n-4)- 2wy
=1 =2 j=1

Note that
8n
n di — 34 . 42n . 56n—4.
i=1
4n
25 4
= —-(38n—-8) - (—)".
rzl“ 5 (381 =8)- (52)
4n
_ 4, 6.5,
[[8=G7 G
j=1
Hence,

T(Ln) — 23n+2 . 33n—2.

The proof is over.

Thus, we can get the complexity of L, from W; to Wi which are listed in Table 3.

AIMS Mathematics Volume 9, Issue 6, 14594-14617.
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Table 3. The complexity of Wy, W, - - - Wy.

4 7(9) 4 (%)

W, 96 Ws 208971104256

W, 20736 We 45137758519296
W5 4478976 W, 9749755840167936
W, 967458816 Wg 2105947261476274176

5. Conclusions

In this paper, the linear chain network with n hexagons and 2n — 1 squares is considered. We have
devoted ourselves to calculating the (multiplicative degree) Kirchhoft index, Wiener index, Gutman
index, and complexity. In the meantime, we deduced that the ratio of the (multiplicative degree)
Kirchhoft index to the (Gutman) Wiener index is nearly a quarter when n tends to infinity. These rules
also apply to some other graphs.
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