

AIMS Mathematics, 9(6): 14594–14617. DOI:10.3934/math.2024710 Received: 20 December 2023 Revised: 19 March 2024 Accepted: 16 April 2024 Published: 23 April 2024

http://www.aimspress.com/journal/Math

Research article

Analyzing the normalized Laplacian spectrum and spanning tree of the cross of the derivative of linear networks

Ze-Miao Dai¹, Jia-Bao Liu² and Kang Wang^{2,*}

- ¹ College of Information Technology, Anhui Vocational College of Defense Technology, Luan 237011, China
- ² School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China
- * Correspondence: Email: wangkang199804@163.com.

Abstract: In this paper, we focus on the strong product of the pentagonal networks. Let R_n be a hexagonal network composed of 2n pentagons and n quadrilaterals. Let P_n^2 denote the graph formed by the strong product of R_n and its copy R'_n . By utilizing the decomposition theorem of the normalized Laplacian characteristics polynomial, we characterize the explicit formula of the multiplicative degree-Kirchhoff index completely. Moreover, the complexity of P_n^2 is determined.

Keywords: (multiplicative degree) Kirchhoff index; Wiener index; Gutman index; spanning trees **Mathematics Subject Classification:** 05C50, 05C90

1. Introduction

Throughout this article, we only consider simple, undirected, and finite graphs and assume that all graphs are connected. Suppose \mathscr{G} is a graph with the vertex set $V(\mathscr{G}) = \{v_1, v_2, \dots, v_n\}$ and the edge set $E(\mathscr{G}) = \{e_1, e_2, \dots, e_m\}$. The adjacency matrix $A(\mathscr{G})$ is a $0 - 1n \times n$ matrix indexed by the vertices of \mathscr{G} and defined by $a_i j = 1$ if and only if $v_s v_t \in E_{\mathscr{G}}$. For more notation, one refer to [1].

The Laplacian matrix of graph \mathscr{G} is defined as $L(\mathscr{G}) = D(\mathscr{G}) - A(\mathscr{G})$, and assume that the eigenvalues of $L(\mathscr{G})$ are labeled $0 \le \mu_1 < \mu_2 < \cdots < \mu_n$.

$$(\mathcal{L}(\mathscr{G}))_{st} = \begin{cases} 1, & s = t; \\ -1, & s \neq t, v_s \sim v_t; \\ 0, & otherwise. \end{cases}$$
(1.1)

The normalized Laplacian matrix is given by

$$(\mathcal{L}(\mathscr{G}))_{st} = \begin{cases} 1, & s = t; \\ -\frac{1}{\sqrt{d_s d_t}}, & s \neq t, v_s \sim v_t; \\ 0, & otherwise. \end{cases}$$
(1.2)

The distance, $d_{ij} = d_{\mathscr{G}}(v_s, v_t)$, between vertices us and ut of \mathscr{G} is the length of the shortest u_s , u_t -path in \mathscr{G} . The Wiener index [2, 3] is the sum of the distances of any two vertices in the graph \mathscr{G} , that is

$$W(G) = \sum_{s < t} d_{st}.$$

In 1947, the distance-based invariant first appeared in chemistry [2, 3] and began to the applied to mathematics 30 years later [5]. Nowadays, the Wiener index is widely used in mathematics [6–8] and chemistry [9–11].

In a simple graph \mathscr{G} , the degree, $d_{ij} = d_{\mathscr{G}}(v_i)$, of a vertex v_i is the number of edges at v_i . The Gutman index [12] of the simple graph \mathscr{G} is expressed by

$$Gut(\mathscr{G}) = \sum_{s < t} d_s d_t d_{st}.$$

Klein and Randic initially outlined the concepts associated with the resistance distance of the graph. Assume that each edge is replaced by a unit resistor, and we use rst to denote the resistance distance between two vertices s and t. Similar to the Wiener index, the Kirchhoff index [13, 14] of graph \mathscr{G} is expressed as the sum of the resistance distances between each two vertices, that is

$$Kf(\mathscr{G}) = \sum_{s < t} r_{st}.$$

In 2007, Chen and Zhang [15] defined the multiplicative degree-Kirchhoff index [16, 17], that is

$$Kf^*(\mathscr{G}) = \sum_{s < t} d_s d_t r_{st}.$$

Phenyl is a conjugated hydrocarbon, and $L_n^{6,4,4}$ denote a linear chain, containing *n* hexagons and 2n - 1 squares, as shown in Figure 1.

With the rapid changes of the times, organic chemistry has also developed rapidly, which has led to a growing interest in polycyclic aromatic compounds.

In 1985, the computational method and procedure of the matrix decomposition theorem were proposed by Yang [18]. This led to the solution of some problems in graph networks and allowed the unprecedented development of self-homogeneous linear hydrocarbon chains. For example, in 2021, X.L. Ma [20] got the normalized Laplacian spectrum of linear phenylene, and the linear phenylene containing it has *n* hexagons and n - 1 squares. L. Lan [21] explored linear phenylene with *n* hexagons and *n* squares. Umar Ali [22] analyzed the strong prism of a graph *G*, which is the strong

AIMS Mathematics

product of the complete graph of order 2, and X.Y. Geng [23] obtained the Laplacian spectrum of $L_n^{6,4,4}$, which contains *n* hexagons and 2n - 1 squares. J.B. Liu [24] derived the Kirchhoff index and complexity of O_n , which denoting linear octagonal-quadrilateral networks. C. Liu [25] got the Laplacian spectrum and Kirchhoff index of L_n , and L_n has *t* hexagons and 3t + 1 quadrangles.

Inspired by these recent works, we try to investigate the Laplacians and the normalized Laplaceians for graph transformations on phenyl dicyclobutadieno derivatives.

The various sections of this article are as follows: In Section 2, we proposed some concepts and lemmas and used them in subsequent articles. In Section 3 and Section 4, we acquired the Laplacian matrix and the normalized Laplacian matrix, then we made sure the Kirchoff index, the multiplicative degree-Kirchoff index, and the complexity of L_n . In Section 5, we obtained conclusions based on the calculations in this paper.

Figure 1. Graphs of $L_n^{6,4,4}$ and L_n .

2. Preliminary works

In this article, graph L_n and graph $L_n^{6,4,4}$ are portrayed in Figure 1. Define the characteristic polynomial of matrix U of order n as $P_U(x) = det(xI - U)$.

It is easy to understand that $\pi = (1, 1')(2, 2') \cdots ((4n), (4n)')$ is an automorphism. Let $V_1 = \{u_1, u_2, \cdots, u_{4n+1}, v_1, \cdots, v_{4n}\}, V_2 = \{u'_1, u'_2, \cdots, u'_{4n}, v'_1, \cdots, v'_{4n+1}\}, |V(L_n)| = 8n$ and $|E(L_n)| = 19n - 4$. Thus, the (normalized) Laplacians matrix can be expressed in the form of a block matrix, that is

$$\mathcal{L}(L_n) = \begin{pmatrix} \mathcal{L}_{V_0V_0} & \mathcal{L}_{V_0V_1} & \mathcal{L}_{V_0V_2} \\ \mathcal{L}_{V_1V_0} & \mathcal{L}_{V_1V_1} & \mathcal{L}_{V_1V_2} \\ \mathcal{L}_{V_2V_0} & \mathcal{L}_{V_2V_1} & \mathcal{L}_{V_2V_2} \end{pmatrix},$$

AIMS Mathematics

where $L_{V_sV_t}$ and $\mathcal{L}_{V_sV_t}$ are a submatrix consisting of rows corresponding to the vertices in V_s and columns corresponding to the vertices in V_t , s, t = 0, 1, 2. Let

$$Q = \begin{pmatrix} I_t & 0 & 0\\ 0 & \frac{1}{\sqrt{2}}I_{4n} & \frac{1}{\sqrt{2}}I_{4n}\\ 0 & \frac{1}{\sqrt{2}}I_{4n} & -\frac{1}{\sqrt{2}}I_{4n} \end{pmatrix},$$

then

$$QL(L_{\mathscr{G}})Q' = \begin{pmatrix} L_A(\mathscr{G}) & 0\\ 0 & L_S(\mathscr{G}) \end{pmatrix}, QL(\mathcal{L}_{\mathscr{G}})Q' = \begin{pmatrix} \mathcal{L}_A(\mathscr{G}) & 0\\ 0 & \mathcal{L}_S(\mathscr{G}) \end{pmatrix}$$

and Q' is the transposition of Q.

$$L_A = L_{V_1V_1} + L_{V_1V_2}, L_S = L_{V_1V_1} - L_{V_1V_2}, \mathcal{L}_A = \mathcal{L}_{V_1V_1} + \mathcal{L}_{V_1V_2}, \mathcal{L}_S = \mathcal{L}_{V_1V_1} - \mathcal{L}_{V_1V_2}$$

Lemma 2.1. [20] If \mathscr{G} is a graph and suppose that $L_A(\mathscr{G}), L_S(\mathscr{G}), L_A(\mathscr{G})$, and $L_S(\mathscr{G})$ are determined as above, then

$$\vartheta_{L(L_n)}(\mathbf{y}) = \theta_{L_A(\mathcal{G})}(\mathbf{y})\theta_{L_S(\mathcal{G})}(\mathbf{y}), \\ \vartheta_{\mathcal{L}(L_n)}(\mathbf{y}) = \theta_{\mathcal{L}_A(\mathcal{G})}(\mathbf{y})\theta_{\mathcal{L}_S(\mathcal{G})}(\mathbf{y}).$$

Lemma 2.2. [26] With the extensive study of the Kirchhoff index, Gutman and Mohar proposed an algorithm based on the relation between the Kirchhoff index and the Laplacian eigenvalues, namely

$$Kf(\mathscr{G}) = n \sum_{t=2}^{n} \frac{1}{\xi_t},$$

and the eigenvalues of $L(\mathscr{G})$ are $0 = \xi_1 < \xi_2 \ge \cdots \ge \xi_n (n \ge 2)$.

Lemma 2.3. [14] Suppose that the eigenvalues of $L(\mathscr{G})$ are $\xi_1 \leq \xi_2 \leq \cdots \leq \xi_n$, then its multiplicative degree-Kirchhoff index can be denoted by

$$Kf^*(\mathscr{G}) = 2m \sum_{t=2}^n \frac{1}{\xi_t}.$$

Lemma 2.4. [1] The number of spanning trees in \mathscr{G} can also be called the complexity of \mathscr{G} . If \mathscr{G} is a graph with $|V_{\mathscr{G}}| = n$ and $|E_{\mathscr{G}}| = m$. Let $\lambda_i (i = 2, 3, \dots, n)$ be the eigenvalues of $L(\mathscr{G})$. Then the complexity of \mathscr{G} is

$$2m\tau(\mathscr{G}) = \prod_{i=1}^n d_i \cdot \prod_{i=2}^n \lambda_i.$$

AIMS Mathematics

3. Kirchhoff index of L_n

In this section, the main objective is to find out the Kirchhoff index of L_n . Then, combining the definition of the Laplacian matrix and Eq (1.1), we can write these block matrices as follows:

$$L_{V_1V_1} = \begin{pmatrix} 3 & -1 & & & \\ -1 & 4 & -1 & & & \\ & -1 & 5 & -1 & & & \\ & & -1 & 5 & -1 & & & \\ & & & -1 & 5 & -1 & & \\ & & & & \ddots & & & \\ & & & & -1 & 5 & -1 & & \\ & & & & & -1 & 5 & -1 & \\ & & & & & & -1 & 5 & -1 & \\ & & & & & & & -1 & 3 & \\ \end{pmatrix}_{(4n)\times(4n)}$$

and

Hence,

$$L_{A} = \begin{pmatrix} 2 & -2 \\ -2 & 4 & -2 \\ & -2 & 4 & -2 \\ & & -2 & 4 & -2 \\ & & & -2 & 4 & -2 \\ & & & & -2 & 4 & -2 \\ & & & & & \ddots \\ & & & & & -2 & 4 & -2 \\ & & & & & & -2 & 4 & -2 \\ & & & & & & & -2 & 4 & -2 \\ & & & & & & & & -2 & 2 \end{pmatrix}_{(4n) \times (4n)}$$

AIMS Mathematics

,

and

$$L_S = diag(4, 4, 6, 6, 6, 4, \dots, 6, 4, 6, 4).$$

Assume that $0 \le \alpha_1 < \alpha_2 \le \alpha_3 \le \cdots \le \alpha_{4n}$ are the roots of $P_{L_A}(x) = 0$, and $0 \le \beta_1 \le \beta_2 \le \beta_3 \le \cdots \le \beta_{4n}$ are the roots of $P_{L_S}(x) = 0$. By Lemma 2.2, we immediately have

$$Kf(L_n^2) = 2(4n) \left(\sum_{i=2}^{4n} \frac{1}{\alpha_i} + \sum_{j=1}^{4n} \frac{1}{\beta_j} \right).$$
(3.1)

Obviously, $\sum_{j=1}^{4n} \frac{1}{\beta_j}$ can be obtained according to L_S .

$$\sum_{j=1}^{4n} \frac{1}{\beta_j} = \frac{1}{6} \times (3n-2) + \frac{1}{4} \times (n+2) = \frac{9n+2}{12}.$$
(3.2)

Next, we focus on computing $\sum_{i=1}^{4n} \frac{1}{\alpha_i}$. Let

$$P_{L_A}(x) = det(xI - L_A) = x(x^{4n-1} + a_1x^{4n-2} + \dots + a_{4n-2}x + a_{4n-1}), a_{4n-1} \neq 0.$$

Based on Vieta's theorem of $P_{L_A}(x)$, we can exactly get the following equation:

$$\sum_{i=2}^{4n} \frac{1}{\alpha_i} = \frac{(-1)^{4n-2} a_{4n-2}}{(-1)^{4n-1} a_{4n-1}}.$$
(3.3)

For the sake of convenience, let M_s be used to express the s - th order principal minors of matrix A, and $m_s = det M_s$ is recorded. We can get $m_1 = 2, m_2 = 4, m_3 = 8$.

And

$$m_s = 4m_{s-1} - 4m_{s-2}, 4 \le s \le 4n,$$

by further induction, we have

 $m_s = 2^s$.

In this way, we can get two theorems. **Theorem 3.1.** $(-1)^{4n-1}a_{4n-1} = (4n)2^{4n-1}$.

Proof. Due to the sum of all the principal minors of order 4n - 1 of L_A is $(-1)^{4n-1}a_{4n-1}$,

$$(-1)^{4n-1}a_{4n-1} = \sum_{s=1}^{4n} det L_A[s]$$

= $\sum_{s=1}^{4n} det \begin{pmatrix} M_{s-1} & 0 \\ 0 & U_{4n-s} \end{pmatrix}$
= $\sum_{s=1}^{4n} det M_{s-1} \cdot det U_{4n-s},$

AIMS Mathematics

where

$$M_{s-1} = \begin{pmatrix} l_{11} & -2 & \cdots & 0 \\ -2 & l_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & l_{s-1,s-1} \end{pmatrix}_{(s-1)\times(s-1)},$$

$$U_{4n-s} = \begin{pmatrix} l_{s+1,s+1} & \cdots & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \cdots & l_{4n-1,4n-1} & \vdots \\ 0 & \cdots & -2 & l_{4n,4n} \end{pmatrix}_{(4n-s)\times(4n-s)}.$$

Let $m_0 = 1$, $det U_0 = 1$, because of the symmetry of matrix L_A , then $det U_{4n-s} = det M_{4n-s}$. Hence

$$(-1)^{4n-1}a_{4n-1} = \sum_{s=1}^{4n} detm_{s-1} \cdot detm_{4n-s}$$
$$= (4n)2^{4n-1},$$

as desired.

Theorem 3.2. $(-1)^{4n-2}a_{4n-2} = \frac{(4n-1)(4n)(4n+1)2^{4n-1}}{3}.$

Proof. Since the $(-1)^{4n-2}a_{4n-2}$ is the tatal of all the principal minors of order 4n - 2 of L_A , we have

$$(-1)^{4n-1}a_{4n-1} = \sum_{1 \le s < t \le 4n} det L_A[s,t] \\ = \sum_{1 \le s < t \le 4n} det M_{s-1} det N_{t-s-1} det U_{4n-t},$$

where

$$L_{A}[s,t] = \begin{pmatrix} M_{p-1} & 0 & 0 \\ 0 & N_{t-s-1} & 0 \\ 0 & 0 & U_{4n-t} \end{pmatrix}, 1 \le s < t \le 4n$$

and

$$N_{t-s-1} = \begin{vmatrix} 4 & -2 & & & \\ -2 & 4 & -2 & & & \\ & -2 & 4 & -2 & & \\ & & \ddots & & & \\ & & -2 & 4 & -2 & \\ & & & -2 & 4 & -2 \\ & & & & -2 & 4 \end{vmatrix}_{(t-s-1)}$$
$$= (t-s)2^{t-s-1}.$$

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

Therefore, we can have

$$(-1)^{4n-2}a_{4n-2} = \sum_{1 \le s < t \le 4n} det M_{s-1} \cdot det N_{t-s-1} \cdot det U_{4n-t}$$
$$= \sum_{1 \le s < t \le 4n} (t-s)2^{t-s-1} \cdot det m_{s-1} \cdot m_{4n-t}$$
$$= \frac{(4n-1)(4n)(4n+1)2^{4n-1}}{3}.$$

The proof is over.

From the results of Theorem 3.1 and Theorem 3.2, we can get

$$\sum_{i=2}^{4n} \frac{1}{\alpha_i} = \frac{(-1)^{4n-2} a_{4n-2}}{(-1)^{4n-1} a_{4n-1}} = \frac{16n^2 - 1}{12},$$
(3.4)

where the eigenvalues of L_A are $0 \le \alpha_1 < \alpha_2 \le \alpha_3 \le \cdots \le \alpha_{4n}$. **Lemma 3.3.** Suppose $L_n^{6,4,4}$ be the dicyclobutadieno derivative of phenylenes and the graph L_n be obtained from the transformation of the graph $L_n^{6,4,4}$.

$$Kf(L_n) = \frac{32n^3 + 18n^2 + 2n}{3}.$$

Proof. Substituting Eqs (3.5) and (3.6) into (3.4), the Kirchhoff index of L_n can be expressed

$$Kf(L_n) = 2(4n) \left(\sum_{i=2}^{4n} \frac{1}{\alpha_i} + \sum_{j=1}^{4n} \frac{1}{\beta_j} \right)$$

= $(8n) \left(\frac{9n+2}{12} + \frac{(4n+1)(4n-1)}{12} \right)$
= $\frac{32n^3 + 18n^2 + 2n}{3}.$

The result is as desired.

The Kirchhoff index of L_n from L_1 to L_{12} is shown in Table 1.

Table 1. The Kirchhoff indices of L_1 , L_2 , ..., L_{12} .

G	$Kf(\mathcal{G})$	G	$Kf(\mathcal{G})$	G	$Kf(\mathcal{G})$
L_1	17.3	L_5	1486.7	L_9	8268.0
L_2	110.7	L_6	2524.0	L_{10}	24457.3
L_3	344.0	L_7	3957.3	L_{11}	30454.7
L_4	781.3	L_8	5850.7	L_{12}	37360.0

Next, we will further consider the Wiener index of L_n .

Lemma 3.4. Let $L_n^{6,4,4}$ be the dicyclobutadieno derivative of [n]phenylenes, and the graph L_n be obtained from the transformation of the graph $L_n^{6,4,4}$, then

$$\lim_{n\to\infty}\frac{Kf(L_n)}{W(L_n)}=\frac{1}{4}.$$

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

Proof. Consider d_{st} for all vertices. For the sake of convenience, we divide the vertices of the graph into the following five categories:

Case 1. Vertex 1 of L_n :

$$g_1(i) = 1 + 2(\sum_{k=1}^{4n-1} k).$$

Case 2. Vertex $4j - 3(j = 1, 2, \dots, n)$ of L_n , i = 4j - 3:

$$g_2(i) = 1 + 2(\sum_{k=1}^{4n-1} k + \sum_{k=1}^{4n-i} k).$$

Case 3. Vertex $4j - 2(j = 1, 2, \dots, n)$ of L_n , i = 4j - 2:

$$g_3(i) = 1 + 2(\sum_{k=1}^{4n-1} k + \sum_{k=1}^{4n-i} k).$$

Case 4. Vertex $4j - 1(j = 1, 2, \dots, n)$ of L_n , i = 4j - 1:

$$g_4(i) = 1 + 2(\sum_{k=1}^{4n-1} k + \sum_{k=1}^{4n-i} k).$$

Case 5. Vertex $4j(j = 1, 2, \dots, n)$ of L_n , i = 4j:

$$g_5(i) = 1 + 2(\sum_{k=1}^{4n-1} k + \sum_{k=1}^{4n-i} k).$$

Hence, we have

$$\begin{split} W(L_n) &= \frac{4g_1(i) + 2\sum_{i=4j-3}g_2(i) + 2\sum_{i=4j-2}g_3(i) + 2\sum_{i=4j-1}g_4(i) + 2\sum_{i=4j}g_5(i)}{2} \\ &= \frac{4(1 + 2\sum_{k=1}^{4n-1}k) + 2\sum_{j=1}^{n}[1 + 2(\sum_{k=1}^{4j-k}k + \sum_{k=1}^{4n-4j+2}k)]}{2} \\ &+ \frac{2\sum_{j=1}^{n}[2 + 2(\sum_{k=1}^{4j-3}k + \sum_{k=1}^{4n-4j+2}k)] + 2\sum_{j=1}^{n}[1 + 2(\sum_{k=1}^{4j-2}k + \sum_{k=1}^{4n-4j+1}k)]}{2} \\ &+ \frac{2\sum_{j=1}^{n-1}[1 + 2(\sum_{k=1}^{4j-1}k + \sum_{k=1}^{4n-4j}k)]}{2} \\ &= \frac{128n^3 + 48n^2 - 5n + 3}{3}. \end{split}$$

Consider the above results of the Kirchhoff index and the Wiener index. We can get following equation when n tends to infinity:

$$\lim_{n\to\infty}\frac{Kf(L_n)}{W(L_n)}=\frac{1}{4}.$$

The result is as desired.

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

4. Multiplicative degree-Kirchhoff index and complexity of L_n

In this section, we use the eigenvalues of the normalized Laplacian matrix to determine the multiplicative degree-Kirchhoff index of L_n . Besides, we calculate the complexity of L_n . Then

$$\mathcal{L}_{V_{1}V_{1}} = \begin{pmatrix} 1 & \frac{-1}{\sqrt{12}} & & & & & & \\ \frac{-1}{\sqrt{12}} & 1 & \frac{-1}{\sqrt{20}} & & & & & & \\ & \frac{-1}{\sqrt{20}} & 1 & \frac{-1}{5} & & & & & \\ & & \frac{-1}{5} & 1 & \frac{-1}{\sqrt{20}} & & & & & \\ & & & \frac{-1}{\sqrt{20}} & 1 & \frac{-1}{\sqrt{20}} & & & & \\ & & & & \ddots & & & \\ & & & & \frac{-1}{5} & 1 & \frac{-1}{\sqrt{20}} & & & \\ & & & & & \frac{-1}{\sqrt{20}} & 1 & \frac{-1}{\sqrt{20}} & \\ & & & & & \frac{-1}{\sqrt{20}} & 1 & \frac{-1}{\sqrt{15}} & \\ & & & & & \frac{-1}{\sqrt{15}} & 1 & \frac{-1}{\sqrt{15}} \\ & & & & & \frac{-1}{\sqrt{15}} & 1 & \frac{-1}{\sqrt{15}} \\ \end{pmatrix}_{(4n)\times(4n)}$$

and

$$\mathcal{L}_{V_1V_2} = \begin{pmatrix} \frac{-1}{3} & \frac{-1}{\sqrt{12}} & & & & & \\ \frac{-1}{\sqrt{12}} & 0 & \frac{-1}{\sqrt{20}} & & & & & \\ & \frac{-1}{\sqrt{20}} & \frac{-1}{5} & \frac{-1}{5} & & & & \\ & & \frac{-1}{5} & \frac{-1}{5} & \frac{-1}{\sqrt{20}} & & & & \\ & & & \frac{-1}{\sqrt{20}} & 0 & \frac{-1}{\sqrt{20}} & & & \\ & & & & \frac{-1}{5} & \frac{-1}{5} & \frac{-1}{\sqrt{20}} & & & \\ & & & & \frac{-1}{5} & \frac{-1}{5} & \frac{-1}{\sqrt{20}} & & \\ & & & & \frac{-1}{\sqrt{20}} & 0 & \frac{-1}{\sqrt{20}} & & \\ & & & & \frac{-1}{\sqrt{20}} & \frac{-1}{5} & \frac{-1}{\sqrt{15}} & \\ & & & & \frac{-1}{\sqrt{15}} & \frac{-1}{3} & \frac{-1}{\sqrt{15}} \\ & & & & & \frac{-1}{\sqrt{15}} & \frac{-1}{3} & \end{pmatrix}_{(4n)\times(4n)}$$

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

Therefore,

$$\mathcal{L}_{A} = \begin{pmatrix} \frac{2}{3} & \frac{-1}{\sqrt{3}} & & & & & \\ \frac{-1}{\sqrt{3}} & 1 & \frac{-1}{\sqrt{5}} & & & & & & \\ & \frac{-1}{\sqrt{5}} & \frac{4}{5} & \frac{-2}{5} & & & & & \\ & & \frac{-2}{5} & \frac{4}{5} & \frac{-1}{\sqrt{5}} & & & & \\ & & & \frac{-1}{\sqrt{5}} & 1 & \frac{-1}{\sqrt{5}} & & & & \\ & & & & \ddots & & & & \\ & & & & \frac{-2}{5} & \frac{4}{5} & \frac{-1}{\sqrt{5}} & & & & \\ & & & & \frac{-2}{5} & \frac{4}{5} & \frac{-1}{\sqrt{5}} & & & \\ & & & & \frac{-1}{\sqrt{5}} & 1 & \frac{-1}{\sqrt{5}} & & & \\ & & & & \frac{-1}{\sqrt{5}} & 1 & \frac{-1}{\sqrt{5}} & & & \\ & & & & \frac{-1}{\sqrt{5}} & \frac{4}{5} & \frac{-2}{\sqrt{15}} & \\ & & & & & \frac{-2}{\sqrt{15}} & \frac{2}{3} \end{pmatrix}_{(4n) \times (4n)}$$

and

$$\mathcal{L}_{S} = diag(\frac{4}{3}, 1, \frac{6}{5}, \frac{6}{5}, \frac{6}{5}, \cdots, \frac{6}{5}, 1, \frac{6}{5}, \frac{4}{3})$$

Assume that the roots of $P_{L_A}(x) = 0$ are $0 \le \xi_1 < \xi_2 \le \xi_3 \le \cdots \le \alpha_{4n}$, and $0 \le \gamma_1 \le \gamma_2 \le \gamma_3 \le \cdots \le \gamma_{4n}$ are the roots of $P_{L_S}(x) = 0$. By Lemma 2.3, we can get

$$Kf^*(L_n^2) = 2(19n - 4) \bigg(\sum_{i=2}^{4n} \frac{1}{\xi_i} + \sum_{j=1}^{4n} \frac{1}{\gamma_j} \bigg).$$

Since \mathcal{L}_s is a diagonal matrix. Obviously, its diagonal elements $1, \frac{4}{3}$ and $\frac{6}{5}$ correspond to the eigenvalues of \mathcal{L}_s , respectively. Then, it can be clearly obtained as

$$\sum_{i=1}^{4n} \frac{1}{\gamma_i} = \frac{21n-1}{6}.$$
(4.1)

Let

$$P_{\mathcal{L}_A}(x) = det(xI - \mathcal{L}_A) = x^{4n} + b_1 x^{4n-1} + \dots + b_{4n-1} x, b_{4n-1} \neq 0,$$

 $\frac{1}{\xi_2}, \frac{1}{\xi_3}, \cdots, \frac{1}{\xi_{4n+1}}$ are the roots of the following equation

$$b_{4n-1}x^{4n-1} + b_{4n-2}x^{4n-2} + \dots + b_1x + 1 = 0.$$

Based on the Vieta' s theorem of $P_{L_A}(x)$, we can get

$$\sum_{i=2}^{4n} \frac{1}{\xi_i} = \frac{(-1)^{4n-2} b_{4n-2}}{(-1)^{4n-1} b_{4n-1}}.$$

Similarly, we can get another two interesting facts. **Theorem 4.1.** $(-1)^{4n-1}b_{4n-1} = \frac{25}{9}(38n-8)(\frac{4}{125})^n$.

AIMS Mathematics

Proof. Let $s_p = det F_p$, then we have $s_1 = \frac{2}{3}$, $s_2 = \frac{1}{3}$, $s_3 = \frac{2}{15}$, $s_4 = \frac{4}{75}$, and

$$\begin{cases} s_{4p} = \frac{4}{5}s_{4p-1} - \frac{4}{25}s_{4p-2}; \\ s_{4p+1} = \frac{4}{5}s_{4p} - \frac{4}{25}s_{4p-1}; \\ s_{4p+2} = s_{4p+1} - \frac{1}{5}s_{4p}; \\ s_{4p+3} = \frac{4}{5}s_{4p+2} - \frac{1}{5}s_{4p+1}. \end{cases}$$

After further simplification, the transformation form of the above formula is obtained.

$$\begin{cases} s_{4p} = \frac{5}{3} \cdot \left(\frac{4}{125}\right)^p, 1 \le p \le n; \\ s_{4p+1} = \frac{2}{3} \cdot \left(\frac{4}{125}\right)^i, 0 \le p \le n-1; \\ s_{4p+2} = \frac{1}{3} \cdot \left(\frac{4}{125}\right)^i, 0 \le p \le n-1; \\ s_{4p+3} = \frac{1}{15} \cdot \left(\frac{4}{125}\right)^i, 0 \le p \le n-1. \end{cases}$$

Similarly, we have $t_1 = \frac{2}{3}, t_2 = \frac{4}{15}, t_3 = \frac{2}{15}, t_4 = \frac{4}{75}$, and

$$\begin{cases} t_{4p} = \frac{2}{5}t_{4p-1} - \frac{2}{5}t_{4p-2}; \\ t_{4p+1} = \frac{4}{5}t_{4p} - \frac{4}{25}t_{4p-1}; \\ t_{4p+2} = \frac{4}{5}t_{4p+1} - \frac{4}{25}t_{4p}; \\ t_{4p+3} = t_{4p+2} - \frac{1}{5}t_{4p+1}. \end{cases}$$

Therefore, the transformation form of the above formula is obtained.

$$\begin{cases} t_{4p-4} = \frac{5}{3} \cdot \left(\frac{4}{125}\right)^p, 1 \le p \le n; \\ t_{4p-3} = \frac{2}{3} \cdot \left(\frac{4}{125}\right)^p, 0 \le p \le n-1; \\ t_{4p-2} = \frac{4}{15} \cdot \left(\frac{4}{125}\right)^p, 0 \le p \le n-1; \\ t_{4p-1} = \frac{2}{15} \cdot \left(\frac{4}{125}\right)^p, 0 \le p \le n-1. \end{cases}$$

Since the $(-1)^{4n-1}b_{4n-1}$ is the total of all the principal minors of order 4n - 1 of L_A , we have

$$(-1)^{4n-1}b_{4n-1} = \sum_{i=2}^{4n} det NL_A[i] + s_{4n} + t_{4n}$$
$$= \frac{1}{45}(38n-8)(\frac{4}{125})^n.$$

The proof of Theorem 4.1 completed.

Theorem 4.2. $(-1)^{4n-2}b_{4n-2} = \frac{1}{3240}(14520n^3 + 4599n^2 - 1496n + 3)(\frac{4}{125})^n$.

Proof. We observe that the sum of all the principal minors of order 4n in \mathcal{L}_A is $(-1)^{4n-2}b_{4n-2}$, then

$$(-1)^{4n-2}b_{4n-2} = \sum_{1 \le s < t \le 4n} det \mathcal{L}_A[s,t] \cdot f_{s-1} \cdot f_{4n-t}^{'}.$$
(4.2)

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

By Eq (4.8), we know that the result of $det \mathcal{L}_A[s, t]$ will change with the values of *s* and *t*. Then we can get the following twenty cases:

Case 1. $i = 4s, j = 4t, 1 \le s < t \le n$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & 1 & -\frac{1}{5} \\ & -\frac{1}{5} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & \ddots & & \\ & & \frac{-2}{5} & \frac{4}{5} & -\frac{2}{5} \\ & & & \frac{-2}{5} & -\frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{5} & 1 & -\frac{1}{\sqrt{5}} \\ & & & \frac{-2}{5} & -\frac{4}{5} \end{vmatrix} |_{(4t-4s-1)}$$
$$= 10(t-s) \left(\frac{4}{125}\right)^{t-s}.$$

Case 2. $i = 4s, j = 4t + 1, 1 \le s \le t \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{5} \\ & -\frac{1}{5} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & \ddots & & \\ & & \frac{-2}{5} & \frac{4}{5} & \frac{-1}{5} \\ & & & \frac{-1}{5} & 1 & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & & \frac{-2}{5} & -\frac{4}{5} \end{vmatrix} |_{(4t-4s)}$$
$$= (4t - 4s + 1)(\frac{4}{125})^{t-s}.$$

Case 3. $i = 4s, j = 4t + 2, 1 \le s \le t \le n - 1$,

AIMS Mathematics

Case 4. $i = 4s, j = 4t + 3, 1 \le s \le t \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{5} \\ & -\frac{1}{5} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & \ddots & & \\ & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & 1 \end{vmatrix} |_{(4t-4s+2)}$$
$$= \frac{1}{5}(4t-4s+3)\left(\frac{4}{125}\right)^{t-s}.$$

Case 5. $i \equiv 0, j = 4n, 1 \le s \le t$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{1}{\sqrt{5}} & & & \\ -\frac{2}{\sqrt{5}} & 1 & -\frac{1}{5} & & \\ & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} & & \\ & & \ddots & & & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & & \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} & \\ & & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & & & -\frac{2}{\sqrt{5}} & \frac{4}{5} \end{vmatrix} |_{(4n-4s-1)}$$
$$= 10(n-s)(\frac{4}{125})^{n-s}.$$

Case 6. i = 4s + 1, j = 4t, $1 \le s < t \le n$,

$$det \varphi = \begin{vmatrix} 1 & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & & \ddots & & \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} \\ & & & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} \end{vmatrix} |_{(4t-4s-2)}$$
$$= \frac{25}{4}(4t-4s-1)(\frac{4}{125})^{t-s}.$$

AIMS Mathematics

Case 7. $i = 4s + 1, j = 4t + 1, 1 \le s < t \le n - 1$,

$$det \varphi = \begin{vmatrix} 1 & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & \ddots & & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} \\ & & & -\frac{2}{5} & \frac{4}{5} \end{vmatrix} |_{(4t-4s-1)}$$
$$= 10(t-s)\left(\frac{4}{125}\right)^{t-s}.$$

Case 8. i = 4s + 1, j = 4t + 2, $1 \le s < t \le n - 1$,

Case 9. i = 4s + 1, j = 4t + 3, $0 \le s \le t \le n - 1$,

$$det \varphi = \begin{pmatrix} 1 & -\frac{1}{\sqrt{5}} & \\ -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} & \\ & -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} & \\ & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & & & -\frac{1}{\sqrt{5}} & 1 & \\ \\ & & & & -\frac{1}{\sqrt{5}} & 1 & \\ \\ & & & & -\frac{1}{\sqrt{5}} & 1 & \\ \\ & & & & -\frac{1}{\sqrt{5}} & 1 & \\ \\ & & & & & -\frac{1}{\sqrt{5}} & 1 & \\ \\ \end{array} \right|_{(4t-4s+1)}$$

AIMS Mathematics

Case 10. $i \equiv 1, j = 4n + 1, 0 \le s \le n$,

$$det \varphi = \begin{vmatrix} 1 & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & -\frac{2}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{\sqrt{5}} \\ & & & \ddots & & \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} \\ & & & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} \end{vmatrix} |_{(4n-4s-2)}$$
$$= \frac{25}{4}(4n-4s-1)(\frac{4}{125})^{n-s}.$$

Case 11. $i = 4s + 2, j = 4t, 0 \le s < t \le n$,

Case 12. $i = 4s + 2, j = 4t + 1, 0 \le s < t \le n - 1$,

AIMS Mathematics

Case 13. $i = 4s + 2, j = 4t + 2, 0 \le s < t \le n - 1$,

Case 14. $i = 4s + 2, j = 4t + 3, 0 \le s \le t \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{2}{5} & \\ -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & & & -\frac{1}{\sqrt{5}} & 1 \end{vmatrix} \Big|_{(4t-4s)}$$
$$= (4t - 4s + 1) \Big(\frac{4}{125}\Big)^{t-s}.$$

Case 15. $i \equiv 2, j = 4t + 3, 0 \le s \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{2}{5} & \\ -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} & \\ & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} & \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & \end{vmatrix} |_{(4n-4s-3)}$$
$$= 25(2n-2s-1)(\frac{4}{125})^{n-s}.$$

AIMS Mathematics

Case 16. i = 4s + 3, j = 4t, $0 \le s < t \le n$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{2}{5} & \\ -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} & \\ & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} & \\ & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} & \\ & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & \end{vmatrix} |_{(4t-4s-4)}$$
$$= \frac{125}{4} (4t - 4s - 3) (\frac{4}{125})^{t-s}.$$

Case 17. i = 4s + 3, j = 4t + 1, $0 \le s < t \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & \ddots & & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} \\ \end{vmatrix} |_{(4t-4s-3)}$$

$$= 25(2t-2s-1)(\frac{4}{125})^{t-s}.$$

Case 18. i = 4s + 3, j = 4t + 2, $0 \le s < t \le n - 1$,

AIMS Mathematics

Case 19. i = 4s + 3, j = 4t + 3, $0 \le s < t \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{2}{5} \\ -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & \ddots & & \\ & & -\frac{1}{\sqrt{5}} & \frac{4}{5} & -\frac{2}{5} \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} \\ & & & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & & & & -\frac{1}{\sqrt{5}} & 1 \end{vmatrix} |_{(4t-4s-1)}$$
$$= 10(t-s) \left(\frac{4}{125}\right)^{t-s}.$$

Case 20. $i \equiv 3, j = 4t, 0 \le s \le n - 1$,

$$det \varphi = \begin{vmatrix} \frac{4}{5} & -\frac{2}{5} & \frac{4}{5} & -\frac{1}{\sqrt{5}} \\ & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & \ddots & & \\ & & -\frac{2}{5} & \frac{4}{5} & -\frac{2}{5} \\ & & & -\frac{2}{5} & 1 & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & 1 & -\frac{1}{\sqrt{5}} \\ & & & -\frac{1}{\sqrt{5}} & \frac{4}{5} \end{vmatrix} |_{(4n-4s-4)}$$
$$= \frac{125}{4}(4n-4s-3)\left(\frac{4}{125}\right)^{n-s}.$$

Therefore, we can get

$$(-1)^{4n-2}b_{4n-2} = E_1 + E_2 + E_3 + E_4,$$

where

$$E_{1} = \frac{1}{18} (227n^{3} + 347n^{2} - 574n + 4) \left(\frac{4}{125}\right)^{n-1}.$$
$$E_{2} = \frac{1}{72} (908n^{3} + 3431n^{2} + 523n) \left(\frac{4}{125}\right)^{n}.$$
$$E_{3} = \frac{1}{45} (454n^{3} + 1375n^{2} - 1079n) \left(\frac{4}{125}\right)^{n}.$$
$$E_{4} = \frac{1}{81} (92n^{3} + 561n^{2} - 611n) \left(\frac{4}{125}\right)^{n-1}.$$

AIMS Mathematics

Hence

$$(-1)^{4n-2}b_{4n-2} = E_1 + E_2 + E_3 + E_4 = \frac{1}{3240}(14520n^3 + 4599n^2 - 1496n + 4)\left(\frac{4}{125}\right)^n$$

The proof of Theorem 4.2 completed.

Let $0 \le \xi_1 \le \xi_2 \le \xi_3 \le \cdots \le \xi_{3n+2}$ are the eigenvalues of \mathscr{L}_A . We can get the following exact equation:

$$\sum_{i=2}^{4n} \frac{1}{\xi_i} = \frac{(-1)^{4n-2}b_{4n-2}}{(-1)^{4n-1}b_{4n-1}} = \frac{1}{72} \Big(\frac{14520n^3 + 4599n^2 - 1496n + 8}{38n - 8} \Big).$$

Theorem 4.3. Set $L_n^{6,4,4}$ be the derivative [n]pheylenes, and the expression of the multiplicative degree-Kirchhoff index is

$$Kf^*(L_n) = \left(\frac{29040n^3 + 8996n^2 - 3198n + 8}{144}\right)$$

Proof. Together with Eq (4.7) and Theorems 4.1 and 4.2, one can get

$$\begin{split} Kf^*(L_n) &= 2(19n-4)\Big(\sum_{i=2}^{4n}\frac{1}{\xi_i}+\sum_{i=1}^{4n}\frac{1}{\gamma_i}\Big) \\ &= 2(19n-4)\Big[\frac{1}{72}\Big(\frac{14520n^3+4599n^2-1496n+8}{38n-8}\Big)+\frac{21n-1}{6}\Big] \\ &= \Big(\frac{29040n^3+8996n^2-3198n+8}{144}\Big). \end{split}$$

The result as desired.

The multiplicative degree-Kirchhoff indices of L_n from L_1 to L_{12} , see Table 2. Then we want to calculate the Gutman index of L_n .

Table 2. The multiplicative degree-Kirchhoff indices of L_1 , L_2 , ..., L_{12} .

G	$Kf^*(\mathcal{G})$	G	$Kf^*(\mathcal{G})$	G	$Kf^*(\mathcal{G})$
L_1	241.98	L_5	26659.15	L_9	151875.4
L_2	1818.86	L_6	45675.81	L_{10}	207691.9
L_3	5940.68	L_7	72077.4	L_{11}	275733.2
L_4	13817.44	L_8	107073.9	L_{12}	357209.6

Theorem 4.4. Suppose that $L_n^{6,4,4}$ is the dicyclobutadieno derivative of [n]phenylenes and the graph L_n is obtained from the transformation of the graph $L_n^{6,4,4}$, then

$$\lim_{n \to \infty} \frac{Kf^*(L_n)}{Gut(L_n)} = \frac{1}{4}$$

Proof. Consider d_{ij} for all vertices. We divide the vertices of L_n into the following four categories. **Case 1.** Vertex $4i - 2(i = 1, 2, \dots, n)$ of L_n :

$$f_{4i-2} = \frac{10}{3}n(56n^2 - 24n + 37).$$

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

Case 2. Vertex $4i - 1(i = 1, 2, \dots, n)$ of L_n :

$$f_{4i-1} = \frac{10}{3}n(152n^2 - 48n + 29).$$

Case 3. Vertex $4i(i = 1, 2, \dots, n)$ of L_n :

$$f_{4i} = \frac{10}{3}n(140n^2 - 48n + 43).$$

Case 4. Vertex $4i - 3(i = 1, 2, \dots, n)$ of L_n :

$$f_{4i-3} = \frac{10}{3}n(136n^2 - 6n + 71)$$

According to Eq (1.3), the Gutman index of L_n is

$$Gut(L_n) = \frac{f_{4i} + f_{4i-1} + f_{4i-2} + f_{4i-3}}{2}$$
$$= \frac{10n}{3}(242n^2 - 63n + 61).$$

Therefore, combining with $Kf^*(L_n)$ and $Gut(L_n)$, we have

$$\lim_{n\to\infty}\frac{Kf^*(L_n)}{Gut(L_n)}=\frac{1}{4}.$$

The result as desired.

Finally, we want to know the complexity of L_n . **Theorem 4.5.** For the graph L_n , we have

$$\tau(L_n) = 2^{3n+2} \cdot 3^{3n-2}.$$

Proof. Based on Lemma 2.4, we can get

$$\prod_{i=1}^{8n} d_i \prod_{i=2}^{4n} \alpha_i \prod_{j=1}^{4n} \beta_i = 2(19n-4) \cdot \tau(L_n).$$

Note that

$$\prod_{i=1}^{8n} d_i = 3^4 \cdot 4^{2n} \cdot 5^{6n-4}.$$
$$\prod_{i=2}^{4n} \alpha_i = \frac{25}{9} \cdot (38n-8) \cdot (\frac{4}{125})^n$$
$$\prod_{j=1}^{4n} \beta_j = (\frac{4}{3})^2 \cdot (\frac{6}{5})^{3n-2}.$$

 $\tau(L_n) = 2^{3n+2} \cdot 3^{3n-2}.$

Hence,

The proof is over.

Thus, we can get the complexity of L_n from W_1 to W_8 which are listed in Table 3.

AIMS Mathematics

Volume 9, Issue 6, 14594–14617.

G	$\tau(\mathscr{G})$	G	$ au(\mathscr{G})$
W_1	96	W_5	208971104256
W_2	20736	W_6	45137758519296
W_3	4478976	W_7	9749755840167936
W_4	967458816	W_8	2105947261476274176

Table 3. The complexity of $W_1, W_2 \cdots W_8$.

5. Conclusions

In this paper, the linear chain network with n hexagons and 2n - 1 squares is considered. We have devoted ourselves to calculating the (multiplicative degree) Kirchhoff index, Wiener index, Gutman index, and complexity. In the meantime, we deduced that the ratio of the (multiplicative degree) Kirchhoff index to the (Gutman) Wiener index is nearly a quarter when n tends to infinity. These rules also apply to some other graphs.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was funded by the Anhui Provincial Natural Science Research Major Project (No. 2022AH040317) and the Anhui Provincial 2023 Action Project for Cultivating Young and Middle Aged Teachers in Universities (No. DTR2023095).

Conflict of interest

No potential conflicts of interest were reported by the authors.

References

- 1. J. A. Bondy, U. S. R. Murty, Graph theory with applications, Macmillan Press Ltd., 1976.
- 2. F. R. K. Chung, Spectral graph theory, American Mathematical Society, 1997.
- 3. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005
- 4. A. Dobrynin, Branchings in trees and the calculation of the Wiener index of a tree, *MATCH Commun. Math. Comput. Chem.*, **41** (2000), 119–134.
- 5. R. C. Entringer, D. E. Jackson, D. A. Snyder, Distance in graphs, *Czechoslovak Mathematical Journal*, **26** (1976), 283–296.
- L. H. Feng, X. M. Zhu, W. J. Liu, Wiener index, Harary index and graph properties, *Discrete Appl. Math.*, 223 (2017), 72–83. https://doi.org/72-83.10.1016/j.dam.2017.01.028

- 7. A. Abiad, B. Brimkov, A. Erey, On the Wiener index, distance cospectrality and transmission-regular graphs, *Discrete Appl. Math.*, 230 (2017), 1–10. https://doi.org/10.1016/j.dam.2017.07.010
- Y. P. Mao, Z. Wang, I. Gutman, Nordhaus-Gaddum-type results for the Steiner Wiener index of graphs, *Discrete Appl. Math.*, **219** (2017), 167–175. https://doi.org/167-175.10.1016/j.dam.2016.11.014
- 9. A. R. Ashrafi, A. Ghalavand, Ordering chemical trees by Wiener polarity index, *Appl. Math. Comput.*, **313** (2017), 301–312. https://doi.org/301-312.10.1016/j.amc.2017.06.005
- 10. M. Crepnjak, N. Tratnik, The Szeged index and the Wiener index of partial cubes with applications to chemical graphs, *Appl. Math. Comput.*, **309** (2017), 324–333. https://doi.org/324-333.10.1016/j.amc.2017.04.011
- 11. A. Mohajeri, P. Manshour, M. Mousaee, A novel topological descriptor based on the expanded Wiener index: applications to QSPR/QSAR studies, *Iran. J. Math. Chem.*, **8** (2017), 107–135.
- 12. I. Gutman, Selected properties of the schultz molecular topological index, *Journal of Chemical Information and Computer Sciences*, **34** (1994), 1087–1089.
- 13. D. J. Klein, Resistance-distance sum rules, Croat. Chem. Acta, 75 (2002), 633-649.
- 14. D. J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit, *J. Math. Chem.*, **30** (2001), 271–287. https://doi.org/10.1023/A:1015119609980
- 15. H. Y. Chen, F. J. Zhang, Resistance distance and the normalized Laplacian spectrum, *Discrete Appl. Math.*, **155** (2007), 654–661. https://doi.org/10.1016/j.dam.2006.09.008
- 16. L. H. Feng, I. Gutman, G. H. Yu, Degree Kirchhoff index of unicyclic graphs, Match (2013).
- 17. J. Huang, S. H. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs, *B. Aust. Math. Soc.*, **91** (2015), 353–367. https://doi.org/10.1017/S0004972715000027
- 18. Y. L. Yang, T. Y. Yu, Graph theory of viscoelasticities for polymers with starshaped, multiple-ring and cyclic multiple-ring molecules, *Macromol. Chem. Phys.*, **186** (1985), 609–631.
- 19. G. H. Yua, L. H. Feng, On connective eccentricity index of graphs, *MATCH Commun. Math. Comput. Chem.*, **69** (2013), 611–628.
- X. L. Ma, B. Hong, The normalized Laplacians, degree-Kirchhoff index and the spanning trees of cylinder phenylene chain, *Polycyclic Aromatic Compounds*, **41** (2021), 1159–1179. https://doi.org/10.1080/10406638.2019.1665553
- 21. L. Lei, X. Y. Geng, S. Li, Y. Peng, Y. Yu, On the normalized Laplacian of Mobius phenylene chain and its applications, *Int. J. Quantum Chem.*, **119** (2019), e26044. https://doi.org/10.1002/qua.26044
- U. Ali, Y. Ahmad, S. A. Xu, X. F. Pan, On Normalized Laplacian, Degree-Kirchhoff Index of the Strong Prism of Generalized Phenylenes, *Polycyclic Aromatic Compounds*, 42 (2022), 6215–6232. https://doi.org/10.1080/10406638.2021.1977351
- 23. X. Y. Geng, L. Yu, On the Kirchhoff index and the number of spanning trees of linear phenylenes chain, *Polycyclic Aromatic Compounds*, **42** (2022), 4984–4993. https://doi.org/10.1080/10406638.2021.1923536

- 24. J. B. Liu, Z. Y. Shi, Y. H. Pan, J. D. Cao, Computing the Laplacian spectrum of linear octagonalquadrilateral networks and its applications, *Polycyclic Aromatic Compounds*, **42** (2020), 1–12. https://doi.org/10.1080/10406638.2020.1748666
- 25. C. Liu, Y. H. Pan, J. P. Li, On the Laplacian spectrum and Kirchhoff index of generalized phenylenes, *Polycyclic Aromatic Compounds*, **41** (2019), 1–10. https://doi.org/10.1080/10406638.2019.1703765
- 26. I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, *J. Chem. Inf. Model.*, **36** (1996), 982–985.

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)