In this work, we apply generalized Saigo fractional differential and integral operators having $ k $-hypergeometric function as a kernel, to extended Lommel-Wright function. The results are communicated in the form of the k-Wright function and are utilized to compute beta transform. The novelty and the generalization of the obtained results are shown by relating them with existing literature as special cases.
Citation: Saima Naheed, Shahid Mubeen, Thabet Abdeljawad. Fractional calculus of generalized Lommel-Wright function and its extended Beta transform[J]. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479
In this work, we apply generalized Saigo fractional differential and integral operators having $ k $-hypergeometric function as a kernel, to extended Lommel-Wright function. The results are communicated in the form of the k-Wright function and are utilized to compute beta transform. The novelty and the generalization of the obtained results are shown by relating them with existing literature as special cases.
[1] | B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699–4707. doi: 10.1016/j.aej.2020.08.027 |
[2] | P. H. Lu, B. H. Wang, C. Q. Dai, Fractional traveling wave solutions of the $(2+1)$-dimensional fractional complex Ginzburg-Landau equation via two methods, Math. Meth. Appl. Sci., 43 (2020), 8518–8526. doi: 10.1002/mma.6511 |
[3] | J. J. Fang, C. Q. Dai, Optical solitons of a time-fractional higher-order nonlinear Schr$\ddot{o}$dinger equation, Optik, 209 (2020), 164574. doi: 10.1016/j.ijleo.2020.164574 |
[4] | H. B. Han, H. J. Li, C. Q. Dai, Wick-type stochastic multi-soliton and soliton molecule solutions in the framework of nonlinear Schrödinger equation, Appl. Math. Lett., 120 (2021), 107302. doi: 10.1016/j.aml.2021.107302 |
[5] | D. Kumar, J. Singh, S. D. Purohit, R. Swroop, A hybrid analytic algorithm for nonlinear wave-like equations, Math. Model. Nat. Phenom., 14 (2019), 304. doi: 10.1051/mmnp/2018063 |
[6] | A. Yokus, S. G$\ddot{u}$lbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear Sci., 4 (2019), 35–42. doi: 10.2478/AMNS.2019.1.00004 |
[7] | K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3+1)-dimensional space-time fractional modified KdV-Zakharov Kuznetsov equation, Appl. Math Nonlinear Sci., 4 (2019), 289–304. doi: 10.2478/AMNS.2019.2.00026 |
[8] | K. M. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with non integer-order derivative, Chaos, 29 (2019), 013145. doi: 10.1063/1.5086909 |
[9] | L. Galu$\acute{e}$, S. L. Kalla, T. V. Kim, Composition of Erdelyi-Kober fractional operators, Integr. Transf. Spec. F., 9 (2000), 185–196. doi: 10.1080/10652460008819254 |
[10] | V. N. Mishra, D. L. Suthar, S. D. Purohit, Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function, Cogent Math., 4 (2017), 1320830. doi: 10.1080/23311835.2017.1320830 |
[11] | M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Mathematical reports of College of General Education, Kyushu University, 11 (1978), 135–143. |
[12] | M. Saigo, A certain boundary value problem for the Euler-Darboux equation I, Math. Japonica, 24 (1979), 377–385. |
[13] | D. L. Suthar, M. Andualem, B. Debalkie, A study on generalized multivariable Mittag-Leffler function via generalized fractional calculus operators, J. Math., 2019 (2019), 9864737. |
[14] | V. Kiryakova, A brief story about the operators of the generalized fractional calculus, Fract. Calc. Appl. Anal., 11 (2008), 203–220. |
[15] | H. M. Srivastava, R. K. Saxena, Operators of fractional integration and their applications, Appl. Math. Comput., 118 (2001), 1-52. doi: 10.1016/S0096-3003(99)00208-8 |
[16] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional diferential equations, Amsterdam, Netherlands: Elsevier, 2006. |
[17] | A. M. Mathai, R. K. Saxena, H. J. Haubold, The H-function: Theory and applications, New York, USA: Springer, 2010. |
[18] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, theory and applications, Yverdon, Switzerland: Gordon and Breach, 1993. |
[19] | S. Mubeen, G. M. Habibullah, $k$-fractional integrals and application, Int. J. Contemp. Math. Sci., 7 (2012), 89–94. |
[20] | G. A. Dorrego, An alternative definition for the $k$-Riemann-Liouville fractional derivative, Appl. Math. Sci., 9 (2015), 481–491. |
[21] | M. Samraiz, Z. Perveen, T. Abdeljawad, S. Iqbal, S. Naheed, On certain fractional calculus operators and applications in mathematical physics, Phys. Scr., 95 (2020), 115210. doi: 10.1088/1402-4896/abbe4e |
[22] | M. Samraiz, Z. Perveen, G. Rahman, K. S. Nisar, D. Kumar, On the $(k, s)$-Hilfer-Prabhakar fractional derivative with applications to mathematical physics, Front. Phys., 8 (2020), 309. doi: 10.3389/fphy.2020.00309 |
[23] | H. T. Nguyen, H. C. Nguyen, R. H. Wang, Y. Zhou, Initial value problem for fractional Volterra integro-differential equations with Caputo derivative, Discrete Cont. Dyn.-B, 2021, DOI: 10.3934/dcdsb.2021030. |
[24] | N. H. Can, N. H. Luc, D. Baleanu, Y. Zhou, L. D. Long, Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel, Adv. Differ. Equ., 2020 (2020), 210. doi: 10.1186/s13662-020-02657-2 |
[25] | N. H. Can, Y. Zhoub, , N. H. Tuan, T. N. Thach, Regularized solution approximation of a fractional pseudo-parabolic problem with a nonlinear source term and random data, Chaos Solitons Fract., 136 (2020), 109847. doi: 10.1016/j.chaos.2020.109847 |
[26] | A. Gupta, C. L. Parihar, Saigo's $k$-Fractional calculus operators, Malaya J. Mat., 5 (2017), 494–504. |
[27] | K. S. Gehlot, J. C. Prajapati, Fractional calculus of generalized $k$-Wright function, J. Fract. Calc. Appl., 4 (2013), 283–289. |
[28] | R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulgaciones $Matem\acute{a}$ticas, 15 (2007), 179–192. |
[29] | M. B. M. de Oteiza, S. Kalla, S. Conde, Un estudio sobre la funcition Lommel- Maitland, Revista Técnica de la Facultad de Ingenieria de la Universidad del Zulia, 9 (1986), 33–40. |
[30] | G. N. Watson, A treatise on the theory of Bessel functions, 2 Eds., London, New York: Cambridge University Press, 1944. |
[31] | D. L. Suthar, Composition formulae for the $k$-fractional calculus operators associated with $k$-Wright Function, J. Math., 2020, 5471715. |
[32] | R. Agarwal, S. Jain, R. P. Agarwal, D. Baleanu, A remark on the fractional integral operators and the image formulas of generalized Lommel-Wright function, Front. Phys., 6 (2018), 79. doi: 10.3389/fphy.2018.00079 |
[33] | A. I. Prieto, S. S. de Romero, H. M Srivastava, Some fractional calculus results involving the generalized Lommel-Wright and related functions. Appl. Math. Lett., 20 (2007), 17–22. |
[34] | R. Diaz, C. Teruel, $q, k$-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12 (2005), 118–134. doi: 10.2991/jnmp.2005.12.1.10 |