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1. Introduction and preliminaries

In the history of hypergeometric functions, Gauss first summarized his studies of the hypergeometric
functions which have been of great significance for the mathematical modeling of physical phenomena
and other applications (see [1–6]). The Gauss hypergeometric function is defined by the following
power series:

F(u1, u2, u3; ζ) =

∞∑
j=0

(u1) j (u2) j

(u3) j

ζ j

j!
, ζ ∈ C, (1.1)

which is absolutely and uniformly convergent if |ζ | < 1, and where u1–u3 are complex parameters with
u3 ∈ C \ Z

−
0 , where

(u1) j =
Γ(u1 + j)

Γ(u1)
=


u1(u1 + 1) · · · (u1 + j − 1), j ∈ N, u1 ∈ C,

1, j = 0, u1 ∈ C \ {0}
(1.2)

is the Pochhammer symbol (or the shifted factorial) and Γ(v) is the gamma function defined by

Γ(v) =

∫ ∞

0
θv−1e−θdθ, v ∈ C \ Z−0 . (1.3)
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The generalized (Wright) hypergeometric function was first studied by Virchenko et al. [7],
as follows:

2R1(ϑ1, ϑ2;ϑ3; τ; η) =
Γ(ϑ3)
Γ(ϑ2)

∞∑
j=0

(ϑ1) jΓ(ϑ2 + τ j)
Γ(ϑ3 + τ j)

η j

j!
, τ ∈ R+, |η| < 1, (1.4)

where ϑ1–ϑ3 are complex parameters such that Re(ϑ1) > 0, Re(ϑ2) > 0 and Re(ϑ3) > 0.
Recently, various developments and expansions of the Wright (τ-Gauss) hypergeometric function

have been archived (see, e.g., [8–13]).
In 1998, Jódar and Cortés [14,15] gave the matrix version of the gamma and beta functions and the

Gauss hypergeometric function. These works have been carried out for many special polynomials and
functions; see [16]. In [17,18], the authors presented interesting expansions of the k-gamma, k-beta, k-
Pochhammer and k-hypergeometric matrix functions. Further, extensions of the gamma, beta, Bessel
and hypergeometric matrix functions have been given in [19–28]. More recently, Bakhet et al. [29]
introduced the Wright hypergeometric functions and discussed some of its properties. In a similar vein,
Abdalla investigated some fractional operators for Wright hypergeometric matrix functions in [30].
Motivated by these recent studies on the Wright hypergeometric matrix functions, in this manuscript,
we introduce the matrix version of new extended Wright hypergeometric functions and investigate
some of its properties.

This manuscript is organized as follows. In Section 2, we define the extended (k, τ)-Wright
hypergeometric matrix functions 3W

(k,τ)
2 and several special cases. Also, we prove some derivative

formulas. In Section 3, we discuss the Mellin transform of the extended (k, τ)-Wright hypergeometric
matrix functions. Certain integral representations for the extended (k, τ)-Wright hypergeometric
matrix functions are established in Section 4. The k-fractional calculus operators for the matrix
functions 3W

(k,τ)
2 are investigated in Section 5. In Section 6, we investigate the solutions of fractional

kinetic equations involving the extended (k, τ)-Wright hypergeometric matrix function. Finally, in
Section 7, concluding remarks are given.

For B ∈ Cm×m, let σ(B) be the set of all eigenvalues of B which is called the spectrum of B. Also,
for B ∈ Cm×m, let

µ(B) := max{Re(ζ) : ζ ∈ σ(B)} and µ̃(B) := min{Re(ζ) : ζ ∈ σ(B)},

which imply µ̃(B) = −µ(−B). Here, µ(B) is called the spectral abscissa of B, and the matrix B is said
to be positive stable if µ̃(B) > 0.

For k ∈ R+, the k-gamma function Γk(ξ) is defined by (see [31])

Γk(δ) =

∫ ∞

0
θδ−1e−

θk
k dθ, δ ∈ C \ kZ−0 . (1.5)

We note that Γk(δ)→ Γ(δ), as k → 1, and (δ) j,k is the k-Pochhammer symbol given by (see [31])

(δ) j,k =
Γk(δ + jk)

Γk(δ)
=


δ(δ + k) · · · (δ + ( j − 1)k), j ∈ N, δ ∈ C,

1, j = 0, k ∈ R+, δ ∈ C \ {0}.
(1.6)

Clearly, the case k = 1 in (1.6) reduces to the Pochhammer symbol defined in (1.2).
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If B is a positive stable matrix in Cm×m and k ∈ R+, then the k-gamma matrix function Γk(B) is well
defined, as follows (see [17]):

Γk(B) =

∫ ∞

0
e−

wk
k wB−I dw = k

Bk
k −I Γ(

B
k

), wB−I := exp
(
(B − I) ln w

)
. (1.7)

If B is a matrix in Cm×m such that B + `kI is an invertible matrix for every ` ∈ N0 and k ∈ R+, then
Γk(B) is invertible, its inverse is Γ−1

k (B), and one finds (see [17])

(B)`,k = B(B + kI) · · · (B + (` − 1)kI) = Γk(B + `kI) Γ−1
k (B), ` ∈ N0, k ∈ R+. (1.8)

Remark 1.1. For k = 1, (1.7) and (1.8) will reduce to the gamma matrix function Γ(B) and
Pochhammer matrix symbol, respectively (see [14]).

Further, let B be a positive stable matrix in Cm×m. Then an extension of the k-gamma of the matrix
argument given by (1.7) is defined in [19] as follows:

Γ
ρ
k(B) =

∫ ∞

0
wB−I e

(
−wk

k −
ρk

kwk

)
dw, ρ ∈ R+

0 , k ∈ R+. (1.9)

For α, β ∈ C, the k-beta function Bk(α, β) is defined by (see [31])

Bk(α, β) =
1
k

∫ 1

0
y
α
k −1(1 − y)

β
k−1dy, k ∈ R+, Re(α) > 0, Re(β) > 0. (1.10)

When k = 1 in (1.10) reduces to the following beta function B(α, β),

B(α, β) =

∫ 1

0
yα−1(1 − y)β−1dy, Re(α) > 0, Re(β) > 0, (1.11)

and

Bk(α, β) =
1
k
B(
α

k
,
β

k
).

The k-beta matrix function is defined by (see [17, 19])

Bk(E, F) =
1
k

∫ 1

0
u

E
k −I (1 − u)

F
k −I du, k ∈ R+, (1.12)

where E and F are positive stable matrices in Cm×m. Further, if E and F are diagonalizable matrices in
Cm×m such that EF = FE, then (cf. [17, 19])

Bk(E, F) = Γk(E) Γk(F) Γ−1
k (E + F). (1.13)

When k = 1, (1.12) and (1.13) will reduce to the beta matrix function B(E, F), defined by Jódar
and Cortés in [14]. Let p, q ∈ N0. Also, let (A)p and (B)q be the arrays of p commutative matrices
A1, A2, . . . , Ap and q commutative matrices B1, B2, . . . , Bq in Cm×m, respectively, such that Bs + `I is
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invertible for 1 ≤ s ≤ q and all ` ∈ N0; then, the generalized hypergeometric matrix function
pFq

(
(A)p; (B)q; ξ

)
(ξ ∈ C) is defined by (see, e.g., [15, 16])

pFq

(
(A)p; (B)q; ξ

)
=

∞∑
s=0

p∏
j=1

(A j)s

q∏
i=1

[(Bi)s]−1 ξ
s

s!
. (1.14)

In particular, the Gauss hypergeometric matrix function 2F1 (A1, A2; A3; ξ) ≡ H (A1, A2; A3; ξ) is
defined by

H (A1, A2; A3; ξ) =

∞∑
s=0

(A1)s (A2)s [(A3)s]−1 ξ
s

s!
, (1.15)

for matrices A1, A2 and A3 in Cm×m such that A3 + `I is invertible for all ` ∈ N0.

2. Extended (k, τ)-Wright hypergeometric matrix function

In this section, we introduce the extended (k, τ)-Wright hypergeometric matrix functions 3W
(k,τ)
2

and some derivative formula as follows:

Definition 2.1. Assume that D, E, F, G and H are positive stable matrices in Cm×m, such that G + `I
and H + `I are invertible for all ` ∈ N0, ρ ∈ R+

0 and k, τ ∈ R+. Then, for |ξ| < 1, the extended
(k, τ)-Wright hypergeometric matrix function is defined in the following form:

3W
(k,τ)
2 (ξ) := 3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ


:= Γ−1

k (E)Γk(G)Γ−1
k (F)Γk(H)

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

ξs

s!
,

(2.1)

where (D; ρ)s,k is the generalized k-Pochhammer matrix symbol defined as

(D; ρ)s,k =


Γ
ρ
k(D + sI) Γ−1

k (D), µ̃(D) > 0, ρ, k ∈ R+, s ∈ N,
(D)s,k, p = 0, k ∈ R+, s ∈ N,
I, s = 0, p = 0, k = 1.

(2.2)

Or, equivalently, by means of the integral formula given by (1.9), as follows:

(D; ρ)s,k = Γ−1
k (D)

∫ ∞

0
θD+(s−1)I e

(
− θ

k
k −

ρk

kθk

)
dθ, k ∈ R+, ρ ∈ R+

0 , µ̃(D + sI) > 0.

Remark 2.1. The following are some of the special cases of the extended (k, τ)-Wright hypergeometric
matrix functions 3W

(k,τ)
2 given by (2.1):
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(i) When k = 1, (2.1) reduces to the following set of extended τ-Wright hypergeometric matrix
functions (see [29, 30]):

3W
(τ)
2 (ξ) := 3W

(τ)
2


(D; ρ), (E), (F)

(G), (H)
; ξ


:= Γ−1(E)Γ(G)Γ−1(F)Γ(H)

×

∞∑
s=0

(D; ρ)s Γ−1(G + τsI)Γ(E + τsI)

× Γ−1(H + τsI)Γ(F + τsI)
ξs

s!
,

(2.3)

where D, E, F, G and H are positive stable matrices in Cm×m, such that G + `I and H + `I are
invertible for all ` ∈ N0, ρ ∈ R+

0 and τ ∈ R+.

(ii) When τ = 1 in (2.1), and by using some properties of k-Pochhammer matrix symbols, we obtain
the following extended k-Gauss hypergeometric matrix function (see [18]):

3W
(k)
2 (ξ) := 3W

(k)
2


(D; k, ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ


=

∞∑
s=0

(D; ρ)s,k(E)s,k (F)s,k [(G)s,k]−1[(H)s,k]−1 ξ
s

s!
,

(2.4)

where D, E, F, G and H are positive stable matrices in Cm×m, such that G + `I and H + `I are
invertible for all ` ∈ N0, ρ ∈ R+

0 and k ∈ R+.

(iii) When F = H, (2.1) reduces to the extended (k, τ)-Wright hypergeometric matrix function
2R(k,τ;ρ)

1 (ξ) defined by

2R(k,τ;ρ)
1 (ξ) := 2R(τ)

1

(
(D, k; ρ), (E, k); (G, k); ξ

)
:= Γ−1

k (E)Γk(G)
∞∑

s=0

(D; ρ)s,kΓ
−1
k (G + kτsI)Γk(E + kτsI)

ξs

s!
,

(2.5)

where D, E and G are positive stable matrices in Cm×m, such that E + `I and G + `I are invertible
for all ` ∈ N0, ρ ∈ R+

0 and τ ∈ R+.

(iv) If we set ρ = 0 and F = H, then (2.1) reduces to the (k, τ)-Gauss hypergeometric matrix function
2R(k,τ)

1 (ξ) given by (see [32])

2R(k,τ)
1 (ξ) := 2R(τ)

1

(
(D, k), (E, k); (G, k); ξ

)
:= Γ−1

k (E)Γk(G)
∞∑

s=0

(D)s,kΓ
−1
k (G + kτsI)Γk(E + kτsI)

ξs

s!
,

(2.6)

where D, E and G are positive stable matrices in Cm×m, such that E + `I and G + `I are invertible
for all ` ∈ N0 and k, τ ∈ R+.
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(v) When τ = 1 in (2.6), and by using some properties of k-Pochhammer matrix symbols, we obtain
the following k-hypergeometric matrix function (see [18]):

Hk(D, E; G; ξ) =

∞∑
s=0

(D)s,k(F)s,k[(G)s,k]−1 ξ
s

s!
, (2.7)

where k ∈ R+ and D, E and G are positive stable matrices in Cm×m, such that G + `I is invertible
for all ` ∈ N0.

(vi) When k = 1, (2.6) reduces to the following Wright hypergeometric matrix function (see [23]):

2R(τ)
1 (D, E; G; ξ) := Γ−1(E)Γ(G)

∞∑
s=0

(D)sΓ
−1(G + τsI)Γ(E + τsI)

ξs

s!
, (2.8)

where τ ∈ R+ and D, E and G are positive stable matrices in Cm×m, such that G + `I is invertible
for all ` ∈ N0.

(vii) If we set k = 1, (2.7) will yield the hypergeometric matrix function defined in (1.15).

Now, we will present some derivative formulas of the extended (k, τ)-Wright hypergeometric matrix
function defined by (2.1).

Theorem 2.1. Under the conditions of the hypothesis in Definition 2.1, the following derivative
formulas for 3W

(k,τ)
2 (ξ) hold true:

dn

dξn

{
3

W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ


}

=(D)n,k Γk(G)Γk(E + τknI)Γ−1
k (E)Γ−1

k (G + τknI)
× Γk(H)Γk(F + τknI)Γ−1

k (F)Γ−1
k (H + τknI)

× 3W
(k,τ)
2


(D + nkI, k; ρ), (E + τnkI, k), (F + τnkI, k)

(G + τnkI, k), (H + τnkI, k)
; ξ

 ,
(2.9)

and

kn dn

dξn

[
ξ

G
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ωξτ


]

=ξ
(G−nkI)

k −I Γk(G)Γ−1(G − nkI) 3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G − nkI, k), (H, k)
;ωξτ

 ,
(2.10)

where ω ∈ C, ρ ∈ R+
0 and k, τ ∈ R+.
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Proof. Differentiating n times both sides of (2.1) with respect to ξ, we can easily obtain the derivative
formula for the set of extended (k, τ)-Wright hypergeometric matrix functions 3W

(k,τ)
2 (ξ) asserted

by (2.9).
Next, we will prove the derivative formula given by (2.10) according to the uniform convergence of

the series given by (2.1), differentiating term by term under the sign of summation before using (2.1)
to get the right-hand side of (2.10) after minimal simplifications. �

Theorem 2.2. Assume that ω ∈ C and α, ξ ∈ C \ {0} with Re(ξ) > Re(α), ρ ∈ R+
0 and k, τ ∈ R+. Also,

let µ ∈ C \ {−1}, and n ∈ N. Further, let D, E, G and H be positive stable matrices in Cm×m, such that
G + `I and H + `I are invertible for all ` ∈ N0. Then, we have( 1

ξµ
d
dξ

)n
{

(ξµ+1 − αµ+1)
H
k −I

2R(k,τ)
1

(
(D, k; ρ), (E, k); (G, k);ω (ξµ+1 − αµ+1)τ

)}
=k−n (µ + 1)n Γk(H) Γ−1

k (H − nkI) (ξµ+1 − αµ+1)
H
k −(n+1)I

× 3W
(k,τ)
2


(D, k; ρ), (E, k), (H, k)

(G, k), (H − nkI, k)
;ω(ξµ+1 − αµ+1)τ

 .
(2.11)

Proof. For convenience, we denote the left-hand side of (2.11) by Ł. By invoking (2.5) and
interchanging the order of summation and differentiation, we find that

Ł =Γk(G)Γ−1(E)
∞∑

s=0

(D, k; ρ)s,k Γk(E + skτI) Γ−1
k (G + skτI)

ωs

s!

×

{( 1
ξµ

d
dξ

)n
(ξµ+1 − αµ+1)

H
k +(τs−1)I

}
=Γk(G)Γ−1(E)

∞∑
s=0

(D, k; ρ)s,k Γk(E + skτI) Γ−1
k (G + skτI)

ωs

s!

×

{
(µ + 1)n Γ(

H
k

+ τsI) Γ−1(
H
k

+ (τs − n)I) (ξµ+1 − αµ+1)
H
k +(τs−n−1)I

}
.

Making use of the relation given by (1.7), we arrive to

Ł =
(µ + 1)n

kn (ξµ+1 − αµ+1)
H
k −(n+1)I

× Γk(G)Γ−1(E)
∞∑

s=0

(D, k; ρ)s,k Γk(E + skτI) Γ−1
k (G + skτI)

× Γk(H + τskI) Γ−1
k (H + k(τs − n)I)

{
ω(ξµ+1 − αµ+1)τ

}s

s!
,

which, in view of (2.1), leads to the right-hand side of (2.11) in Theorem 2.2. �

Remark 2.2. If we take Remark 2.1 into account, then we can get several special cases of Theorems 2.1
and 2.2.
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3. Mellin transform

The Mellin transform of a suitable integrable function Ψ(u) is defined, as usual, by

M
{
Ψ(u) : u→ ε

}
=

∫ ∞

0
uε−1 Ψ(u) du, ε ∈ R+, (3.1)

provided that the improper integral in (3.1) exists.
The following lemma will be useful in the sequel.

Lemma 3.1. For a matrix F in Cm×m, ρ ∈ R+
0 and k, ε ∈ R+, we have

M
{
Γ
ρ
k(F) : ρ→ ε

}
= Γk(εI) Γk(F + εI) (̃µ(F + εI) > 0 when k = 1), (3.2)

where Γ
ρ
k(F) is the extended k-gamma of a matrix argument defined in (1.9).

Proof. From (3.1), the Mellin transform of Γ
ρ
k(F) in ρ is

M
{
Γ
ρ
k(F) : ρ→ ε

}
=

∫ ∞

0
ρε−1

∫ ∞

0
wF−I e

(
−wk

k −
ρk

kwk

)
dw dρ.

An application of the Fubini theorem [33], with few calculations, yields

M
{
Γ
ρ
k(F) : ρ→ ε

}
= k

ε
k−1.Γ(

ε

k
)

∫ ∞

0
wF+(ε−1)I e−

wk
k dw.

Upon using the relation given by (1.7), we can complete the proof of (3.2). �

Remark 3.1. If k = 1 in (3.2), we have a matrix version of the result of Chaudhry and Zubair [33, p. 16,
Eq. (1.110)] in the following form:∫ ∞

0
ρε−1 Γρ(F) dρ = Γ(εI) Γ(F + εI), µ̃(F + εI) > 0. (3.3)

Theorem 3.1. Under the conditions of the hypothesis in Definition 2.1, the Mellin transform of the set
of extended (k, τ)-Wright hypergeometric matrix functions 3W

(k,τ)
2 (ξ), defined by (2.1), is given as

M

{
3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ

 : ρ→ ε

}

=Γk(ε) (D)ε,k 3W
(k,τ)
2


(D + εI, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ

 ,
(3.4)

where Re(ε) > 0 and µ̃(D + εI) > 0 when ρ = 0 and k = 1.
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Proof. According to Definitions (2.1) and (3.1), we find that

M

{
3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ

 : ρ→ ε

}

=

∫ ∞

0
ρε−1

{
Γ−1

k (E)Γk(G)Γ−1
k (F)Γk(H) ×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

ξs

s!

}
dρ

=Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H) ×
∞∑

s=0

Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

ξs

s!
× Γ−1

k (D)
∫ ∞

0
ρε−1 Γ

ρ
k(D + sI) dρ.

Applying Lemma 3.1, we arrive to

M

{
3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ

 : ρ→ ε

}

=Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H) ×
∞∑

s=0

Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

ξs

s!
× Γ−1

k (D) Γk(εI) Γk(D + (s + εI)

=Γk(εI) (D)ε,k Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H) ×
∞∑

s=0

(D + εI; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

ξs

s!
,

which, upon expression in terms of (2.1), leads to the desired formula given by (3.4). �

Remark 3.2. If we take the results (2.3)–(2.5) in Remark 2.1 into account, then we can obtain some
special cases of Theorem 3.1. Further, the result proved in (3.4), which involves certain matrices in
Cm×m, may reduce to the corresponding classical one when m = 1 and k = 1 (see, e.g., [12, 13]).

4. Integral representations

In this section, we show certain integral representations for the extended (k, τ)-Wright
hypergeometric matrix functions.

Theorem 4.1. Let ξ, ω ∈ C, Re(ω) > 0, k, τ ∈ R+, ρ ∈ R+
0 and |ξvτ| < 1. Also, let D, E, F, G, H and
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G − E be positive stable matrices in Cm×m such that GE = EG. Then

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
; ξ


=

1
k

Γk(G)Γ−1
k (E)Γ−1

k (G − E)
∫ 1

0
v

E
k −I (1 − v)

G−E
k −I

2R(τ)
1

(
(D, k; ρ), (F, k); (H, k); ξvτ

)
dv.

(4.1)

Proof. Loading the following elementary identity involving the k-beta matrix function

(E)k,nτ[(G)k,nτ]−1 = Γ−1
k (E)Γ−1

k (G + knτI)Γk(G)Γk(E + knτI)

=
1
k

Γ−1
k (E)Γ−1

k (G − E)Γk(G)
∫ 1

0
v

E
k +(nτ−1)I(1 − v)

G−E
k −Idv,

(4.2)

in (2.1), and by using the series representation in (2.5), then we obtain the required integral
representation given by (4.1). �

Theorem 4.2. Let ξ, α ∈ C, Re(α) > 0, k, τ ∈ R+, ρ ∈ R+
0 and |αξ| < 1. Let D, E, F, G, H, T and G + T

be positive stable matrices in Cm×m such that GE = EG. Then, we have

Γ−1
k (T )Γ−1

k (G)Γk(G + T )
∫ ξ

0
u

G
k −I(ξ − u)

T
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;αu

 du

=ξ
G+T

k −I
3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G + T, k), (H, k)
;αξ

 .
(4.3)

Proof. Suppose that Υ is the left-hand side of (4.3). By invoking (2.1), we have

Υ =Γ−1
k (T )Γ−1

k (G)Γk(G + T )
∫ ξ

0
u

G
k −I(ξ − u)

T
k −I

× Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H)

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

(uα)s

s!
du.

Substituting u = ξv, we find that

Υ =ξ
G+T

k −I Γ−1
k (E)Γ−1

k (T )Γk(G + T ) Γ−1
k (F)Γk(H)

×

∫ 1

0
v

G
k +(s−1)I(1 − v)

T
k −Idv

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

(ξα)s

s!
.

Employing (1.12) and after simple computations, we obtain the right-hand side of (4.3). �
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Remark 4.1. From the special cases in Remark 2.1, we can obtain many special cases of (4.1)
and (4.3).

5. k-fractional calculus approach

In recent years, various studies on k-fractional calculus operators were archived by many researchers
(see, for example, [34–37]). Here, Iµα+,k is the k-Riemann-Liouville fractional integral operator and
Dµ
α+,k is the k-Riemann-Liouville fractional differential operator of order µ ∈ C, Re(µ) > 0, which are

defined as (see [32, 36])(
Iµα+,kΦ

)
(ξ) =

1
kΓk(µ)

∫ ξ

α

Φ(v)

(ξ − v)1− µk
dv, µ ∈ C, Re(µ) > 0, (5.1)

and (
Dµ
α+,kΦ

)
(ξ) =

( d
dξ

)n(
knInk−µ

α+,k Φ
)
(ξ), µ ∈ C, Re(µ) > 0, n = [Re(µ)] + 1, (5.2)

respectively.
The following lemma will be required in this section.

Lemma 5.1. [32] Let E be a positive stable matrix in CN×N . Then, the k-Riemann-Liouville fractional
integrals of order µ, such that Re(µ) > 0 is given as

Iµα+,k

[
(ξ − α)

E
k −I

]
(ξ) = Γk(E)Γ−1

k (E + µI)
(
ξ − α

) E+µI
k −I

, ξ > α.

Theorem 5.1. Assume that D, E, F, G and H are positive stable matrices in Cm×m and k, τ ∈ R+,
ρ ∈ R+

0 , α ∈ R+
0 and µ, ω ∈ C such that Re(µ) > 0. Then, for ξ > α and |(ξ − α)τ| < 1, we

have k-Riemann-Liouville fractional integral and derivative representations of order µ of the extended
(k, τ)-Wright hypergeometric matrix functions 3W

(k,τ)
2 (ξ) as follows:

Iµα+,k

[
(v − α)

G
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ω(v − α)τ


=
(
ξ − α

)G+µI
k −I

Γk(G)Γ−1(G + µI) 3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G + µI, k), (H, k)
;ω(ξ − α)τ


(5.3)

and

Dµ
α+,k

[(
v − α

)G
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ω(v − α)τ


=Γk(G)

(
ξ − α

)G−µI
k −I

Γ−1
k (G − µI) 3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G − µI, k), (H, k)
;ω(ξ − α)τ

 .
(5.4)
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Proof. By virtue of the formulas given by (5.1) and (2.1), and via application of Lemma 5.1, we obtain

Iµα+,k

[
(v − α)

G
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ω(v − α)τ


]
(ξ)

=
1

kΓk(µ)

∫ ξ

α

(v − α)
G
k −I

(v − α)1− µk
3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ω(v − α)τ

 dv

=Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H) ×
∞∑

s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)

ωs

s!
Iµα+,k

[
(v − α)

G
k +τs−I

]
=
(
ξ − α

)G+µI
k −I

Γk(G)Γ−1
k (G + µI) 3W

(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G + µI, k), (H, k)
;ω(ξ − α)τ

 .
Next, from (2.1) and (5.2), we have

Dµ
α+,k

[(
v − α

)G
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ω(v − α)τ


]

=
( d
dξ

)n
{

knInk−µ
α+,k

[
(v − α)

G
k −I

3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G, k), (H, k)
;ω(v − α)τ

 ](ξ)
}

=
( d
dξ

)n
{

kn
(
ξ − α

)G−µI
k +(n−1)I

Γk(G)Γ−1
k (G + (nk − µ)I)

×3W
(k,τ)
2


(D, k; ρ), (E, k), (F, k)

(G + (nk − µ)I, k), (H, k)
;ω(ξ − α)τ


}
.

Upon using (2.10), we thus arrive to the desired result given by (5.4) in Theorem 5.1. �

Remark 5.1. For ρ = 0 and F = H in Theorem 5.1, we get interesting results concerning the k-
fractional calculus of the (k, τ)-Wright hypergeometric matrix function (cf. [32]).

Remark 5.2. For k = 1, ρ = 0 and F = H in Theorem 5.1, we get interesting results concerning the
fractional calculus of the Wright hypergeometric matrix function (see [29, 30]).

6. Applications: Fractional kinetic equations

Recently, fractional kinetic equations have attracted the attention of many researchers due to their
importance in diverse areas of applied science such as astrophysics, dynamical systems, control
systems and mathematical physics. The kinetic equations of fractional order have been used to
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determine certain physical phenomena. Especially, the kinetic equations describe the continuity of the
motion of substances. Therefore, a large number of articles in the solution of these equations have
been published in the literature (see [38–43]).

The fractional kinetic equation

N(t) − N0 = −C 0D−νt N(t), C > 0, t > 0, (6.1)

is the fractional version of the classical kinetic equation

N(t) − N0 = −C 0D−1
t N(t), C > 0, t > 0, (6.2)

or equivalently, the destruction-production time dependence equation derived in 2002 by Haubold and
Mathai [38, 39]:

dN
dt

= −δ(N) + p(N),

where N = N(t) is the rate of reaction, δ(Nt) is the rate of destruction, and p = p(N) is the rate of
production. In (6.1), 0D−νt is the well-known Riemann-Liouville fractional integral operator, defined as

0D−νt f (t) =
1

Γ(ν)

∫ t

0
(t − s)ν−1 f (s)ds, Re(ν) > 0.

0D−1
t , in (6.2), is the classical integral operator with respect to t, and a special case of 0D−νt .

Theorem 6.1. Let C be a positive stable and invertible matrix in Cm×m, and let the hypothesis assumed
in Definition 2.1 still hold true . Then the solution to the generalized fractional kinetic matrix equation

N(t)I − N0 3W (k,τ)
2 (t) = −Cν

0D−νt N(t), (6.3)

is given as

N(t)I =N0 Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H)

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)Γ−1

k (H + kτsI)Γk(F + kτsI)

× tsEν,s+1 (−Cνtν) ,

(6.4)

where Eν,s+1 (−Cνtν) is the generalized Mittag-Leffler matrix function, defined as (cf. [44, 45])

Eν,s+1 (−Cνtν) =

∞∑
r=0

(−1)rCνr tνr

Γ(νr + s + 1)
. (6.5)

Proof. First, recall that the Laplace transform of a Riemann-Liouville fractional integral is [46]

L
[
0D−νt f (t)

]
(p) = p−ν f̂ (p),

where f̂ (p) is the Laplace transform of f (t). Applying the Laplace transform to (6.3) gives(
I + p−νCν) N̂(p) = N0L

[
3W (k,τ)

2 (t)
]

(p)

=N0 Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H)
∞∑

s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)

× Γ−1
k (H + kτsI)Γk(F + kτsI)p−(s+1).
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Hence,

N̂(p)I =N0 Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H)

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)Γ−1

k (H + kτsI)Γk(F + kτsI)

×

∞∑
r=0

(−1)rCνr p−(νr+s+1).

Taking the inverse Laplace transform of the above result, and by using the fact that

L−1 [
p−µ

]
=

tµ−1

Γ(µ)
, Re(µ) > 0,

we get

N(t)I =N0 Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H)

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)Γ−1

k (H + kτsI)Γk(F + kτsI)

×

∞∑
r=0

(−1)rCνr tνr+s

Γ(νr + s + 1)
,

which is the targeted result given by (6.4). �

Theorem 6.2. Let C be a positive stable matrix in Cm×m, where α ∈ C with Re(α) > 0, and let the
hypothesis given in Definition 2.1 be satisfied. Then the generalized fractional kinetic matrix equation

N(t)I − N0 3W (k,τ)
2 (ανt) = −Cν

0D−νt N(t) (6.6)

is solvable, and its solution is

N(t)I =N0 Γ−1
k (E)Γk(G)Γ−1

k (F)Γk(H)

×

∞∑
s=0

(D; ρ)s,k Γ−1
k (G + kτsI)Γk(E + kτsI)Γ−1

k (H + kτsI)Γk(F + kτsI)

× ανstsEν,νs+1 (−Cνtν) ,

where Eν,r (−Cνtν) is the generalized Mittag-Leffler matrix function defined in (6.5).

Upon using Remark 2.1, several special cases can be obtained from Theorems 6.1 and 6.2, such as
the following corollaries.

Corollary 6.1. Let C be a positive stable and invertible matrix in Cm×m and H(D, F; G; t) be the
hypergeometric matrix function defined by (1.15); then the solution to the generalized fractional
kinetic matrix equation

N(t)I − N0 H(D, F; G; t) = −Cν
0D−νt N(t), (6.7)

AIMS Mathematics Volume 7, Issue 8, 14474–14491.



14488

is given as

N(t)I = N0

∞∑
s=0

(D)s (F)s [(G)s]−1ts Eν,s+1 (−Cνtν) , (6.8)

where Eν,s+1 (−Cνtν) is the generalized Mittag-Leffler matrix function defined by (6.5).

Corollary 6.2. Let C be a positive stable and invertible matrix in Cm×m, where α ∈ C with Re(α) > 0,
and H(D, F; G; t) be the hypergeometric matrix function defined by (1.15). Then the solution to the
generalized fractional kinetic matrix equation

N(t)I − N0 H(D, F; G;ανt) = −Cν
0D−νt N(t), (6.9)

is given as

N(t)I = N0

∞∑
s=0

(D)s (F)s
[
(G)s

]−1 ανstsEν,s+1 (−Cνtν) , (6.10)

where Eν,s+1 (−Cνtν) is the generalized Mittag-Leffler matrix function defined by (6.5).

7. Conclusions

Motivated by recent researches [29, 30, 40–43] in the current work, we introduce an extension of
the k-Wright ((k, τ)-Gauss) hypergeometric matrix function in Definition 2.1. Several properties
which have been archived in the article include integral representations, the Mellin transform and the
k-Riemann-Liouville fractional integral and derivative of the new extended (k, τ)-Gauss matrix
function. Also, many specific cases are considered. As an application, we demonstrated the
solvability of fractional kinetic matrix equations involving the new function. We also obtained many
special cases for these fractional equations.
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