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1. Introduction and preliminaries

In the history of hypergeometric functions, Gauss first summarized his studies of the hypergeometric
functions which have been of great significance for the mathematical modeling of physical phenomena
and other applications (see [1-6]). The Gauss hypergeometric function is defined by the following
power series:

[ee)

F(uy,up,us3;0) = Z M &

o ) g

{eC, (1.1)

which is absolutely and uniformly convergent if |[{] < 1, and where u;—u3 are complex parameters with
u3 € C\ Z;, where
F(u1+J): M](M]+1)(M1+J—1), JEN, MIEC,

1.2
['(uy) (12)

(Ml)j =
1, j=0, uy € C\ {0}

is the Pochhammer symbol (or the shifted factorial) and I'(v) is the gamma function defined by

I(v) = f 0" 'e’dy, veC\Z,. (1.3)
0
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The generalized (Wright) hypergeometric function was first studied by Virchenko et al. [7],
as follows:

T(@3) v @) TG+ 1))

R, (3,9 05;,13m) = - —,
R VTR P YT

TeRY, gl <1, (1.4)

where #;—}; are complex parameters such that Re(:#;) > 0, Re(:},) > 0 and Re(¥)3) > 0.

Recently, various developments and expansions of the Wright (7-Gauss) hypergeometric function
have been archived (see, e.g., [8—13]).

In 1998, J6dar and Cortés [14,15] gave the matrix version of the gamma and beta functions and the
Gauss hypergeometric function. These works have been carried out for many special polynomials and
functions; see [16]. In [17,18], the authors presented interesting expansions of the k-gamma, k-beta, k-
Pochhammer and k-hypergeometric matrix functions. Further, extensions of the gamma, beta, Bessel
and hypergeometric matrix functions have been given in [19-28]. More recently, Bakhet et al. [29]
introduced the Wright hypergeometric functions and discussed some of its properties. In a similar vein,
Abdalla investigated some fractional operators for Wright hypergeometric matrix functions in [30].
Motivated by these recent studies on the Wright hypergeometric matrix functions, in this manuscript,
we introduce the matrix version of new extended Wright hypergeometric functions and investigate
some of its properties.

This manuscript is organized as follows. In Section 2, we define the extended (k, 7)-Wright
hypergeometric matrix functions {W;kﬁ) and several special cases. Also, we prove some derivative
formulas. In Section 3, we discuss the Mellin transform of the extended (k, 7)-Wright hypergeometric
matrix functions. Certain integral representations for the extended (k,7)-Wright hypergeometric
matrix functions are established in Section 4. The k-fractional calculus operators for the matrix
functions 3‘W;k’7) are investigated in Section 5. In Section 6, we investigate the solutions of fractional
kinetic equations involving the extended (k, 7)-Wright hypergeometric matrix function. Finally, in
Section 7, concluding remarks are given.

For B € C™™, let o(B) be the set of all eigenvalues of B which is called the spectrum of B. Also,
for B € C™™, let

u(B) := max{Re({) : { € 0(B)} and u(B) := min{Re(?{) : ¢ € o(B)},

which imply u(B) = —u(—B). Here, u(B) is called the spectral abscissa of B, and the matrix B is said
to be positive stable if u(B) > 0.
For k € R*, the k-gamma function I';(¢) is defined by (see [31])

[0 = f @l Fdo, 5eC\KZ;. (1.5)
0

We note that I',(6) — I'(6), as k — 1, and (6) j« is the k-Pochhammer symbol given by (see [31])
(6 + jk) 50O0+k)y---(6+(—-1k), jeEN, 6§eC,

1.6
[;(6) (1.6)

(0 =
1, Jj=0,keR",6eC\ {0}

Clearly, the case k = 1 in (1.6) reduces to the Pochhammer symbol defined in (1.2).
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If B is a positive stable matrix in C™ and k € R*, then the k-gamma matrix function I';(B) is well
defined, as follows (see [17]):

e wk Bk B
[«(B) = f et whldw = ke’ F(E)’ w8 = exp ((B - I)Inw). (1.7)
0

If B is a matrix in C™" such that B + ¢kI is an invertible matrix for every ¢ € Ny and k € R*, then
I';(B) is invertible, its inverse is F,;l(B), and one finds (see [17])

(B)ex = BB +KI)---(B+ (£ —1)kI) = Tu(B + tkI) T;'(B), € €Ny, keR". (1.8)

Remark 1.1. For k = 1, (1.7) and (1.8) will reduce to the gamma matrix function I'(B) and
Pochhammer matrix symbol, respectively (see [14]).

Further, let B be a positive stable matrix in C™". Then an extension of the k-gamma of the matrix
argument given by (1.7) is defined in [19] as follows:

0 wk _i
I(B) = fo wh! e(‘T ) dw, peRg, keR" (1.9)
For a, 8 € C, the k-beta function B;(«, 8) is defined by (see [31])

1.
Bk(a,ﬁ):%f yEI(1 = )i ldy, keR*, Re(@) >0, Re(8) > 0. (1.10)
0

When k = 1 in (1.10) reduces to the following beta function B(«, ),

1
B(a,ﬁ):f v 11 =y 'dy, Re(a) >0, Re(B) >0, (1.11)
0
and

1
B ) = 1860

The k-beta matrix function is defined by (see [17,19])

1
By(E,F) = %f ur (1 —w)t'du, keR", (1.12)
0

where E and F are positive stable matrices in C™. Further, if E and F are diagonalizable matrices in
C™™ such that EF = FE, then (cf. [17,19])

B(E, F) = TW(E)TW(F)T;'(E + F). (1.13)

When k£ = 1, (1.12) and (1.13) will reduce to the beta matrix function B(E, F), defined by Jodar
and Cortés in [14]. Let p, g € Ny. Also, let (A), and (B), be the arrays of p commutative matrices
A, Ay, ..., A, and g commutative matrices By, B,, ..., B, in C™", respectively, such that B, + {I is
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invertible for 1 < s < ¢ and all £ € Ny; then, the generalized hypergeometric matrix function
Fy ((A)p; (B)q;g) (¢ € C) is defined by (see, e.g., [15,16])

q s
@, [ Jisoa s (1.14)

i=1

Fy (@ B:8)= ) |

)4
s=0 j=1
In particular, the Gauss hypergeometric matrix function ,F; (A;,A;A3;¢) = H(A, A A5 E) s
defined by

¢

E’

H(A,Ay; A3 6) = Z (A1)s (A2)s [(A3z)s]

s=0

for matrices Ay, A, and Az in C™ such that As + €I is invertible for all £ € N,.

(1.15)

2. Extended (k, 7)-Wright hypergeometric matrix function

In this section, we introduce the extended (k, 7)-Wright hypergeometric matrix functions 3‘W;k’T)
and some derivative formula as follows:

Definition 2.1. Assume that D, E, F, G and H are positive stable matrices in C™", such that G + €1
and H + €I are invertible for all ¢ € Ny, p € Ry and k,v € R*. Then, for |§| < 1, the extended
(k, T)-Wright hypergeometric matrix function is defined in the following form:

WD) = W

(D, k;p), (E, k), (F,k) }
;€

(G, k), (H, k)
= T (BTG (F)C(H)

oo (2.1)
X Z(D; 0k TN (G + krsDTW(E + ktsI)
5=0
X TN (H + krsDT(F + ktsI) ;
where (D; p)s is the generalized k-Pochhammer matrix symbol defined as
(D +sDTN(D), @(D)>0, p,keR", seN,
(D;p)sx =13 (D)sss p=0, keR" seN, (2.2)

1, s=0,p=0, k=1
Or, equivalently, by means of the integral formula given by (1.9), as follows:
et (-4-2) _
(D;p)sx = T1(D) j; gD \TE TR dg, ke RY, p € RS, @(D + sI) > 0.

Remark 2.1. The following are some of the special cases of the extended (k, T)-Wright hypergeometric
. . (k,T) . .
matrix functions W, given by (2.1):
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(i) When k = 1, (2.1) reduces to the following set of extended t-Wright hypergeometric matrix
functions (see [29,30]):

(D; p), (E), (F)

WD E) = ;W &

(G), (H)

S | -1
=T OEE)I“(G)I“ (F)T(H) 03
% Z(D; 0)s TUG + tsDT(E + 7sI)

s=0
\

x TV H + tsDT(F + tsI) g_'
S

where D, E, F, G and H are positive stable matrices in C"™", such that G + €I and H + (I are
invertible for all t € Ny, p € Rj and 7 € R*.

(i) When v = 1 in (2.1), and by using some properties of k-Pochhammer matrix symbols, we obtain
the following extended k-Gauss hypergeometric matrix function (see [18]):

(D; k, p), (E, k), (F, k)

WP = WP &

(G, k), (H, k) (2.4)

= D DBk (Fos (G ™S
s=0 !

where D, E, F, G and H are positive stable matrices in C"™", such that G + €I and H + (I are
invertible for all t € Ny, p € Rj and k € R".

(iii) When F = H, (2.1) reduces to the extended (k,7)-Wright hypergeometric matrix function
ZR(lk’T;p (&) defined by

2RI 1= RY((D, k; p), (E, k)3 (G, K); €)
& (2.5

= T (EYTU(G) ) (D3 p)sslT (G + krsDTW(E + kesD),

s=0

where D, E and G are positive stable matrices in C"™", such that E + €I and G + €I are invertible
forall t e Ny, p € Rj and 7 € R™.

(iv) If we set p = 0 and F = H, then (2.1) reduces to the (k,T)-Gauss hypergeometric matrix function
zR(lk’T)(f) given by (see [32])

REV©@) = RY((D, k), (E, k); (G, k); €)

0 s 2.6
=T N (E)YTW(G) Z(D)S,kr,;l(c; + krsDI(E + km)f -

_Y’
=0 S

where D, E and G are positive stable matrices in C™", such that E + €I and G + €I are invertible
forall ¢ € Ny and k, T € R™.
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(v) When v = 1 in (2.6), and by using some properties of k-Pochhammer matrix symbols, we obtain
the following k-hypergeometric matrix function (see [18]):

&

E»

HA(D, E;G:£) = 3 " (D)a(F)oil(G) il @.7)
s=0

where k € R* and D, E and G are positive stable matrices in C"™", such that G + €I is invertible
for all € € Ny

(vi) When k = 1, (2.6) reduces to the following Wright hypergeometric matrix function (see [23]):
RO(D, E;G;€) 1= T (E)(G) ) (DTG + 7sDT(E +TsI)=, (2.8)
s!

s=0

where T € R* and D, E and G are positive stable matrices in C™™, such that G + €I is invertible
for all € € Ny,

(vii) If we set k = 1, (2.7) will yield the hypergeometric matrix function defined in (1.15).

Now, we will present some derivative formulas of the extended (k, 7)-Wright hypergeometric matrix
function defined by (2.1).

Theorem 2.1. Under the conditions of the hypothesis in Definition 2.1, the following derivative
formulas for 3W;k’7)(§) hold true:

ar k1)
dé" {3W2
(G,k),(H, k)
=(D)x TW(GTW(E + tknDT;(E) (G + thnl)

(D, k; p), (E, k), (F, k)
&

-1 -1 (2.9)
X Ty(H)CW(F + thnDU, (F)L, (H + thnl)
(D + nkl, k; p), (E + tnkl, k), (F + tnkl, k)
(G + tnkl k), (H + tnkl, k)
and
. (D, k; p), (E, k), (F, k)
K [f AW LwE” ]
¢ (G, k), (H, k)
(2.10)

(D, k;p), (E, k), (F, k)
(G-nkI)

=¢ t T TWG)ING - nkl) ;WD

; wf’] ,
(G — nkl, k), (H, k)

where w € C, p € Rj and k, 7 € R".
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Proof. Differentiating n times both sides of (2.1) with respect to &, we can easily obtain the derivative
formula for the set of extended (k, 7)-Wright hypergeometric matrix functions {W;k’T)(g) asserted
by (2.9).

Next, we will prove the derivative formula given by (2.10) according to the uniform convergence of
the series given by (2.1), differentiating term by term under the sign of summation before using (2.1)
to get the right-hand side of (2.10) after minimal simplifications. O

Theorem 2.2. Assume that w € C and a, ¢ € C\ {0} with Re(§) > Re(a), p € R] and k,7 € R". Also,
let u € C\ {—1}, and n € N. Further, let D, E, G and H be positive stable matrices in C™"™, such that
G + (I and H + LI are invertible for all £ € Ny. Then, we have

e 1 dyn
& dé
=k~ (u + 1) To(H) TN (H = nkl) (&1 — o) E -0
(D, k; p), (E, k), (H, k)

=) {(f“” ) E REV((D, ks p), (E, 6); (G, by 0 (€7 — o) )T)}

(2.11)

X 3(W;k"r)

;w(§y+l _ a/l+l)T] )
(G, k),(H — nkl, k)

Proof. For convenience, we denote the left-hand side of (2.11) by L. By invoking (2.5) and
interchanging the order of summation and differentiation, we find that

S

b =G (E) Z (D, k; p)sx TW(E + skrD) T; (G + skTI) =
s=0

{(;‘u dé:) (§y+l ay+l)1k{+(Ts—1)I}

(G (E) Z (D, k; p)sx T(E + skrD) T; (G + skTI) =
s=0

X {(ﬂ +1) F(? +7s1) r-l(% +(ts —m) (&' - a"+1)7+(”_”_1)1}.

Making use of the relation given by (1.7), we arrive to

' = (ﬂ + 1)n f’”] ,4+1)%—(n+1)1
X TG Y(E) Z (D, k; )sx TR(E + sktl) T;'(G + sktl)
s=0
w(§p+l _ a,p+l)'r}s
X TW(H + tskl) T;'(H + k(ts — n)I) ' ,
s!
which, in view of (2.1), leads to the right-hand side of (2.11) in Theorem 2.2. ]

Remark 2.2. If we take Remark 2.1 into account, then we can get several special cases of Theorems 2.1
and 2.2.
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3. Mellin transform

The Mellin transform of a suitable integrable function Y(u) is defined, as usual, by
M{W(w) : u— &} = f w W(u)du, ee€R, 3.1)
0

provided that the improper integral in (3.1) exists.
The following lemma will be useful in the sequel.

Lemma 3.1. For a matrix F in C™", p € R and k, & € R*, we have
M{Fi(F) o> 3} =D (F+el) uF+el)>0whenk=1), (3.2)

where I (F) is the extended k-gamma of a matrix argument defined in (1.9).

Proof. From (3.1), the Mellin transform of F‘Z(F )inpis

k

00 00 Wk e
M{Fi(F) P> s} = f p°! f wh! e(_T k””‘) dw dp.
0 0
An application of the Fubini theorem [33], with few calculations, yields
. € “ o
M{F’;(F) ip > s} = k%_l.l“(%) f wiHE=D o= dw,
0
Upon using the relation given by (1.7), we can complete the proof of (3.2). O

Remark 3.1. Ifk = 1 in (3.2), we have a matrix version of the result of Chaudhry and Zubair [33, p. 16,
Eq. (1.110)] in the following form:

f ) o' TP(F) dp =T(el) T(F + &l), a(F +&l) > 0. (3.3)
0

Theorem 3.1. Under the conditions of the hypothesis in Definition 2.1, the Mellin transform of the set
of extended (k, T)-Wright hypergeometric matrix functions _{Wék’T)(f), defined by (2.1), is given as

p > e}
(G, k), (H, k)
(D + €l k; p), (E, k), (F, k) }
€S

(D, k; p), (E, k), (F, k)

M{ 3(W§k"r) 3

(3.4)

=I4(&) (D)es s W

(G, k), (H, k)
where Re(g) > 0 and u(D + €l) > 0 when p = 0 and k = 1.
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Proof. According to Definitions (2.1) and (3.1), we find that

:p—>8}

= f ) P! {F,:l(E)Fk(G)F,jl(F)Fk(H) X Z(D; 0)sxk TN (G + krsDTW(E + krsI)
0 s=0

(D, k; p), (E, k), (F, k)

M{ ;WD &

(G, k), (H,k)

X T, (H + krsDT(F + ktsI) f—'} dp
S

=L ' (E)YT(G)I} (F)Tk(H) X Z [ NG + krsDTW(E + ktsT)
s=0

X TN (H + krsDU(F + ktsI) g_' x I (D) f p° ' TU(D + sI) dp.
S 0

Applying Lemma 3.1, we arrive to

(D, k; p), (E, k), (F, k)

M{ 3(W§k’T) ;€

:p—>a}

=T (EYTWUG)T (F)CW(H) X ) TG + krsDUW(E + krsl)

s=0
S

X T (H + krsDUW(F + krsI) = x T (D) Ty(el) T(D + (s + )
S

(G, k), (H, k)

=T (&) (D)ex T} (E)TW(G) (F)Ti(H) x Z (D + &l;0)5x T (G + krsDT(E + ktsI)

s=0
S

X T (H + krsDT(F + ktsl) ‘f—'
s!
which, upon expression in terms of (2.1), leads to the desired formula given by (3.4). O

Remark 3.2. If we take the results (2.3)—(2.5) in Remark 2.1 into account, then we can obtain some
special cases of Theorem 3.1. Further, the result proved in (3.4), which involves certain matrices in
C™™ may reduce to the corresponding classical one when m = 1 and k = 1 (see, e.g., [12, 13]).

4. Integral representations

In this section, we show certain integral representations for the extended (k,7)-Wright
hypergeometric matrix functions.

Theorem 4.1. Let £,w € C, Re(w) > 0, k,7 € RY, p € R and |¢V7| < 1. Also, let D, E, F, G, H and

AIMS Mathematics Volume 7, Issue 8, 14474-14491.
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G — E be positive stable matrices in C™™ such that GE = EG. Then

. (D, k;p), (E, k), (F, k)
3(W; i 3
(G, k), (H, k) 4.1)
1 ~1 —1 : E_g GE_| (1) T
= UG (EXNG =B | vE (1 =) RO (Do ks p). (FLK): (HL Ky 07,
0
Proof. Loading the following elementary identity involving the k-beta matrix function
(E)ne[(Ghinr] ™ = T (E)L (G + kntDTW(G)TW(E + kntl)
4.2)

1 'k >
= T EX(G - EW(G) f pEHOTDI )Tl gy,
0

in (2.1), and by using the series representation in (2.5), then we obtain the required integral
representation given by (4.1). O

Theorem 4.2. Leté,a € C, Re() > 0, k,t e R, pe Rjand |aé| < 1. Let D, E, F, G, H, T and G+T
be positive stable matrices in C™™ such that GE = EG. Then, we have

(D, k; p), (E, k), (F, k)

I (DN GTWG + T) f wi(¢ —uy k! Wk cau| du
0

G.k),(H, k
(G, k), (H, k) 43)

G+T

eI (k,7)
—f 3 3(14/2

(D, k; p), (E, k), (F, k)
yaé

(G +T.,k),(H, k)
Proof. Suppose that T is the left-hand side of (4.3). By invoking (2.1), we have

T = (T (G)TW(G + T) f utl(E — uye!
0
X T E)W(G)T ! (F)TW(H)
X > (D3 p)oi T (G + krsDTY(E + krsI)
5s=0

« T2\ (H + krsDTL(F + krsT) )

s!

du.

Substituting # = £v, we find that
T = TN E (DTG + T) T} (F)TW(H)

1
x f pEREDI e gy
0

X (D3 p)sx TG + krsDUW(E + kes)
s=0
(¢a)’
st
Employing (1.12) and after simple computations, we obtain the right-hand side of (4.3). O

X T, (H + krsDT(F + ktsI)
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14484

Remark 4.1. From the special cases in Remark 2.1, we can obtain many special cases of (4.1)
and (4.3).

5. k-fractional calculus approach

In recent years, various studies on k-fractional calculus operators were archived by many researchers
(see, for example, [34-37]). Here, Iﬁ k is the k-Riemann-Liouville fractional integral operator and
chlfr,k is the k-Riemann-Liouville fractional differential operator of order u € C, Re(u) > 0, which are
defined as (see [32,36])

(I, @)® = krkl(#) 7 ?(vv))l_ﬁdv, pueC, Re(u) >0, (5.1)
and
(D, @)@ = (d%)"(knlg’ij,fq))(g), peC, Re(u)>0, n=[Re(u)]+1, (5.2)
respectively.

The following lemma will be required in this section.

Lemma 5.1. [32] Let E be a positive stable matrix in CN*N. Then, the k-Riemann-Liouville fractional
integrals of order u, such that Re(u) > 0 is given as

E+pl

v ¢ -of o =rmr E+une-a) "L £

Theorem 5.1. Assume that D, E, F, G and H are positive stable matrices in C"™" and k,7 € R",
p € R, @ € R} and p,w € C such that Re(u) > 0. Then, for ¢ > a and |(§ — @)"| < 1, we
have k-Riemann-Liouville fractional integral and derivative representations of order u of the extended
(k, 7)-Wright hypergeometric matrix functions {Wg”)(.f) as follows:

(D, k; p), (E, k), (F, k)

If;’k[(v —a)t! sWED ;v —a)
H
(G, k), (H, k) 53)
G+,uI_I (D,k,P)’ (E’ k)’ (F7k)
=(¢-a) " TWGITG +pul) s W Jw(E—a)
(G + ul, k), (H, k)
and
G_g (D, k’p), (E9 k)9 (F’ k)
o (v-a)" o o=y
(G, k), (H, k)
5.4
Gl (D, k; p), (E, k), (F, k)
TUG)(E-a) TG —pul) Wy (- a)|.
(G —ul,k),(H, k)
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Proof. By virtue of the formulas given by (5.1) and (2.1), and via application of Lemma 5.1, we obtain

(D, k; p), (E, k), (F, k)

If;,k[w — )t WD Lw(v - a)?} ](f)

(G, k), (H, k)

(D, k; p), (E, k), (F, k)

G
1 S (v—a)t !
( ) (k,7) ;(JJ(V _ a/)‘r

:krk(ll) « (v—a)k 22

dv

(G, k), (H, k)

=T (EYWGT; (F)YT(H) X (D3 p)ei T3 (G + krsDT(E + kel
s=0
x T (H + ktsDTw(F + ktsI) %I§+,k[(" _ a)%+rs—1]
(D, k; p), (E, k), (F, k)

GHul

~(¢-a)’

'rk((;)r,;1 (G + ul) s W T - a)T} .

(G +ul, k), (H, k)

Next, from (2.1) and (5.2), we have

(D, k; p), (E, k), (F, k)
D/

at.k

[(V _ a/)%—l 3(ng,r) ;(L)(V _ Q)T} ]

(G, k), (H, k)

(D, k: p). (E, k), (F,K)
y LW - @) ](f)}

ffersfo-ar
(G, k), (H, k)

dn |, G (-1 -
:(d_g) {k (£-a) TG, (G + (nk — )
(D, k; p), (E, k), (F, k)

x3 WD (& - oz)ﬂ }

(G + (nk — w1, k), (H, k)

Upon using (2.10), we thus arrive to the desired result given by (5.4) in Theorem 5.1. O

Remark 5.1. For p = 0 and F = H in Theorem 5.1, we get interesting results concerning the k-
fractional calculus of the (k, T)-Wright hypergeometric matrix function (cf. [32]).

Remark 5.2. Fork =1, p = 0and F = H in Theorem 5.1, we get interesting results concerning the
fractional calculus of the Wright hypergeometric matrix function (see [29, 30]).

6. Applications: Fractional kinetic equations

Recently, fractional kinetic equations have attracted the attention of many researchers due to their

importance in diverse areas of applied science such as astrophysics, dynamical systems, control

systems and mathematical physics. The kinetic equations of fractional order have been used to
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determine certain physical phenomena. Especially, the kinetic equations describe the continuity of the
motion of substances. Therefore, a large number of articles in the solution of these equations have
been published in the literature (see [38—43]).

The fractional kinetic equation

N(t) =Ny = -CoD,”’N(t), C>0,t>0, (6.1)
is the fractional version of the classical kinetic equation
N(t) - Ny = —-CoD;'N(t), C>0,t>0, (6.2)

or equivalently, the destruction-production time dependence equation derived in 2002 by Haubold and

Mathai [38,39]:
AN _ _S(NY + p(V)
dr PUY),

where N = N(¢) is the rate of reaction, 6(Nt) is the rate of destruction, and p = p(N) is the rate of
production. In (6.1), ¢D;” is the well-known Riemann-Liouville fractional integral operator, defined as

1 t
oDV f(t) = o fo (t—5)""' f(s)ds, Re(v) > 0.

oD, in (6.2), is the classical integral operator with respect to ¢, and a special case of (D;”.

Theorem 6.1. Let C be a positive stable and invertible matrix in C"™", and let the hypothesis assumed
in Definition 2.1 still hold true . Then the solution to the generalized fractional kinetic matrix equation

NI = Nos W) = =C” oD N(b), (6.3)
is given as
NI =No T (EYTU(G)T (F)L(H)
X i (D; )3, T (G + ktsDTW(E + krsDU ' (H + krsDT(F + ktsl) (6.4)

5s=0
X tSEv,s+1 (_CVIV) ’

where E, ;.1 (=C"t") is the generalized Mittag-Leffler matrix function, defined as (cf. [44,45])

vr

By (-C'7) = D (=1)C” (6.5)
r=0

T +s+1)
Proof. First, recall that the Laplace transform of a Riemann-Liouville fractional integral is [46]
LoD fO1(p) = p~ f(p),
where f(p) is the Laplace transform of f(r). Applying the Laplace transform to (6.3) gives
(I+p~C) N(p) = NoL [sW5"0)| (p)

=No I (BTG, (F)L(H) Z (D:p)sx T (G + krsDT(E + kts])
s=0
X TN (H + krsDU(F + krsDp™ ¢+,
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Hence,
N(p)I =Ny T (E)TW(G)T  (F)Ci(H)

X Z (D; )3, T (G + krsDTW(E + krsDU;'(H + krsDTW(F + ktsi)
s=0

X Z(_l)rcvrp—(vr+s+l).
r=0

Taking the inverse Laplace transform of the above result, and by using the fact that

p—1

f
L' [p7#] = =—, Re(u) > 0,
[p™] T (u
we get
NI =No T} (E)YTW(G)T; ' (F)Tw(H)
X Z (D; )3, Tt (G + krsDTW(E + krsDU;'(H + krsDT(F + ktsi)
s=0
o vr+s
X _1 err—’
;( ) IF'vr+s+1)
which is the targeted result given by (6.4). O

Theorem 6.2. Let C be a positive stable matrix in C™"™, where @ € C with Re(a) > 0, and let the
hypothesis given in Definition 2.1 be satisfied. Then the generalized fractional kinetic matrix equation

NI = NosWe(@'t) = =C* 4D N(1) (6.6)
is solvable, and its solution is
NI =No T (E)CW(G)T (F)TW(H)

X Z (D; )3, T (G + krsDTW(E + krsDU ' (H + krsDTW(F + ktsl)
s=0
X a'vstsEv,vs+l (_Cvtv) )

where E, . (—=C"t") is the generalized Mittag-Leffler matrix function defined in (6.5).

Upon using Remark 2.1, several special cases can be obtained from Theorems 6.1 and 6.2, such as
the following corollaries.

Corollary 6.1. Let C be a positive stable and invertible matrix in C™™ and H(D, F;G;t) be the
hypergeometric matrix function defined by (1.15); then the solution to the generalized fractional
kinetic matrix equation

NI - NoH(D, F;G;t) = =C" (D;"N(2), (6.7)
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is given as
NI = Ny Z(D)s (F)s [(G)s ] £ Byonr (=C'1), (6.8)
s=0

where B, ;11 (=C"t") is the generalized Mittag-Leffler matrix function defined by (6.5).

Corollary 6.2. Let C be a positive stable and invertible matrix in C™", where a € C with Re(a) > 0,
and H(D, F; G;t) be the hypergeometric matrix function defined by (1.15). Then the solution to the
generalized fractional kinetic matrix equation

NI - NyH(D, F;G;a’'t) = —=C" (D,;"N(t), (6.9)
is given as
N(@®)I = Ny Z (D), (F), [(G)S]_1 a”t'E, 1 (-C'F), (6.10)
s=0

where E, ;11 (=C"t") is the generalized Mittag-Leffler matrix function defined by (6.5).
7. Conclusions

Motivated by recent researches [29, 30,40-43] in the current work, we introduce an extension of
the k-Wright ((k, 7)-Gauss) hypergeometric matrix function in Definition 2.1. Several properties
which have been archived in the article include integral representations, the Mellin transform and the
k-Riemann-Liouville fractional integral and derivative of the new extended (k,7)-Gauss matrix
function. Also, many specific cases are considered. As an application, we demonstrated the
solvability of fractional kinetic matrix equations involving the new function. We also obtained many
special cases for these fractional equations.

Acknowledgements

The fourth-named author extends their appreciation to the Deanship of Scientific Research at King
Khalid University for funding this work through Larg Groups (No. R.G.P.2/11/43).

Conflicts of interest
This work does not have any conflict of interest.

References

1. P. Agarwal, R. P. Agarwal, M. Ruzhansky, Special functions and analysis of differential equations,
New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9780429320026

2. N. Kaiblinger, Product of two hypergeometric functions with power arguments, J. Math. Anal.
Appl., 479 (2019), 2236-2255. https://doi.org/10.1016/j.jmaa.2019.07.053

AIMS Mathematics Volume 7, Issue 8, 14474-14491.


http://dx.doi.org/https://doi.org/10.1201/9780429320026
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2019.07.053

14489

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. M. Hidan, S. M. Boulaaras, B. Cherif, M. Abdalla, Further results on the (p, k)-analogue of

hypergeometric functions associated with fractional calculus operators, Math. Probl. Eng., 2021
(2021), 1-10. https://doi.org/10.1155/2021/5535962

T. H. Zhao, M. K. Wang, G. J. Hai, Y. M. Chu, Landen inequalities for Gaussian hypergeometric
function, RACSAM, 116 (2022), 1-23. https://doi.org/10.1007/s13398-021-01197-y

T. H. Zhao, Z. Y. He, Y. M. Chu, On some refinements for inequalities involving
zero-balanced  hypergeometric  function, AIMS Math., 5 (2020), 6479-6495.
https://doi.org/10.3934/math.2020418

T. H. Zhao, M. K. Wang, W. Zhang, Y. M. Chu, Quadratic transformation inequalities for Gaussian
hypergeometric function, J. Inequal. Appl., 2018 (2018), 1-15. https://doi.org/10.1186/s13660-
018-1848-y

N. Virchenko, S. L. Kalla, A. Al-Zamel, Some results on a generalized hypergeometric function,
Integr. Trans. Spec. Funct., 12 (2001), 89-100. https://doi.org/10.1080/10652460108819336

N. Khan, T. Usman, M. Aman, S. Al-Omari, S. Araci, Computation of certain integral
formulas involving generalized Wright function, Adv. Differ. Equ., 2020 (2020), 1-10.
https://doi.org/10.1186/s13662-020-02948-8

A. Ghaffar, A. Saif, M. Igbal, M. Rizwan, Two classes of integrals involving extended
Wright type generalized hypergeometric function, Commun. Math. Appl., 10 (2019), 599-606.
https://doi.org/10.26713/cma.v10i3.1190

S. B. Rao, J. C. Prajapati, A. D. Patel, A. K. Shukla, Some properties of Wright-type
generalized hypergeometric function via fractional calculus, Adv. Differ. Equ., 2014 (2014), 1-11.
https://doi.org/10.1186/1687-1847-2014-119

N. U. Khan, T. Usman, M. Aman, Some properties concerning the analysis of generalized Wright
function, J. Comput. Appl. Math., 376 (2020), 112840. https://doi.org/10.1016/j.cam.2020.112840

R. K. Parmar, Extended 7-hypergeomtric functions and associated properties, C. R. Math., 353
(2015), 421-426. https://doi.org/10.1016/j.crma.2015.01.016

R. K. Gupta, B. S. Shaktawat, D. Kumar, Some results associted with extended 7-Gauss
hypergeomtric functions, Ganita Sandesh, 28 (2014), 55-60.

L. Jédar, J. C. Cortés, Some properties of Gamma and Beta matrix functions, Appl. Math. Lett., 11
(1998), 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0

L. Jodar, J. C. Cortés, On the hypergeometric matrix function, J. Comput. Appl. Math., 99 (1998),
205-217. https://doi.org/10.1016/S0377-0427(98)00158-7

M. Abdalla, Special matrix functions: Characteristics, achievements and future directions, Linear
Multilinear Algebra, 68 (2020), 1-28. https://doi.org/10.1080/03081087.2018.1497585

S. Mubeen, G. Rahman, M. Arshad, k-gamma, k-beta matrix functions and their properties, J.
Math. Comput. Sci., 5 (2015), 647-657.

G. Rahman, A. Ghaffar, S. D. Purohit, S. Mubeen, M. Arshad, On the hypergeomtric matrix k-
functions, Bull. Math. Anal. Appl., 8 (2016), 98—111.

G. S. Khammash, P. Agarwal, J. Choi, Extended k-gamma and k-beta functions of matrix
arguments, Mathematics, 8 (2020), 1-13. https://doi.org/10.3390/math8101715

AIMS Mathematics Volume 7, Issue 8, 14474-14491.


http://dx.doi.org/https://doi.org/10.1155/2021/5535962
http://dx.doi.org/https://doi.org/10.1007/s13398-021-01197-y
http://dx.doi.org/https://doi.org/10.3934/math.2020418
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1848-y
http://dx.doi.org/https://doi.org/10.1186/s13660-018-1848-y
http://dx.doi.org/https://doi.org/10.1080/10652460108819336
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02948-8
http://dx.doi.org/https://doi.org/10.26713/cma.v10i3.1190
http://dx.doi.org/https://doi.org/10.1186/1687-1847-2014-119
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.112840
http://dx.doi.org/https://doi.org/10.1016/j.crma.2015.01.016
http://dx.doi.org/https://doi.org/10.1016/S0893-9659(97)00139-0
http://dx.doi.org/https://doi.org/10.1016/S0377-0427(98)00158-7
http://dx.doi.org/https://doi.org/10.1080/03081087.2018.1497585
http://dx.doi.org/https://doi.org/10.3390/math8101715

14490

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

. A. Bakhet, F. L. He, M. M. Yu, On the matrix version of extended Bessel functions
and its application to matrix differential equations, Linear Multilinear Algebra, 2021.
https://doi.org/10.1080/03081087.2021.1923629

M. Abdalla, S. A. Idris, I. Mekawy, Some results on the extended hypergeometric matrix functions
and related functions, J. Math., 2021 (2021), 1-12. https://doi.org/10.1155/2021/2046726

M. Abdalla, A. Bakhet, Extended Gauss hypergeometric matrix functions, Iran. J. Sci. Technol.
Trans. Sci., 42 (2018), 1465-1470. https://doi.org/10.1007/s40995-017-0183-3

F. L. He, A. Bakhet, M. Abdalla, M. Hidan, On the extended hypergeometric matrix functions and

their applications for the derivatives of the extended Jacobi matrix polynomial, Math. Probl. Eng.,
2020 (2020), 1-8. https://doi.org/10.1155/2020/4268361

M. Akel, A. Bakhet, M. Abdalla, F. L. He, On degenerate gamma matrix functions and related
functions, Linear Multilinear Algebra, 2022. https://doi.org/10.1080/03081087.2022.2040942

M. Abdalla, H. Abd-Elmageed, M. Abul-Ez, M. Zayed, Further investigations on
the two variables second Appell hypergeometric matrix function, Quaest. Math., 2022.
https://doi.org/10.2989/16073606.2022.2034680

R. Dwivedi, V. Sahai, Lie algebras of matrix difference differential operators and special matrix
functions, Adv. Appl. Math., 122 (2021), 102109. https://doi.org/10.1016/j.aam.2020.102109

M. Hidan, A. Bakhet, H. Abd-Elmageed, M. Abdalla, Matrix-valued hypergeometric Appell-type
polynomials, Electron. Res. Arch., 30 (2022), 2964—2980. https://doi.org/10.3934/era.2022150

A. Verma, J. Younis, H. Aydi, On the Kampé de Fériet hypergeometric matrix function, Math.
Probl. Eng., 2021 (2021), 1-11. https://doi.org/10.1155/2021/9926176

A. Bakhet, Y. Jiao, F. L. He, On the Wright hypergeometric matrix functions
and their fractional calculus, [Integr. Trans. Spec. Funct., 30 (2019), 138-156.
https://doi.org/10.1080/10652469.2018.1543669

M. Abdalla, Fractional operators for the Wright hypergeometric matrix functions, Adv. Differ. Equ.,
2020 (2020), 1-14. https://doi.org/10.1186/s13662-020-02704-y

R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat., 15
(2007), 179-192.

H. Abd-Elmageed, M. Hosny, S. Boulaaras, Results on the (k, 7)-analogue of hypergeometric
matrix functions and k-fractional calculus, Fractals, 2022, In press.

M. A. Chaudhry, S. M. Zubair, On a class of incomplete gamma functions with applications, New
York: Chapman and Hall/CRC, 2002. https://doi.org/10.1201/9781420036046

S. Naz, M. N. Naeem, On the generalization of k-fractional Hilfer-Katugampola derivative with
Cauchy problem, Turk. J. Math., 45 (2021), 110-124.

M. Abdalla, M. Hidan, S. M. Boulaaras, B. Cherif, Investigation of extended k-hypergeometric
functions and associated fractional integrals, Math. Probl. Eng., 2021 (2021), 1-11.
https://doi.org/10.1155/2021/9924265

D. L. Suthar, D. Baleanu, S. D. Purohit, F. Ucar, Certain k-fractional calculus
operators and image formulas of k-Struve function, AIMS Math., § (2020), 1706-1719.
https://doi.org/10.3934/math.2020115

AIMS Mathematics Volume 7, Issue 8, 14474-14491.


http://dx.doi.org/https://doi.org/10.1080/03081087.2021.1923629
http://dx.doi.org/https://doi.org/10.1155/2021/2046726
http://dx.doi.org/https://doi.org/10.1007/s40995-017-0183-3
http://dx.doi.org/https://doi.org/10.1155/2020/4268361
http://dx.doi.org/https://doi.org/10.1080/03081087.2022.2040942
http://dx.doi.org/https://doi.org/10.2989/16073606.2022.2034680
http://dx.doi.org/https://doi.org/10.1016/j.aam.2020.102109
http://dx.doi.org/https://doi.org/10.3934/era.2022150
http://dx.doi.org/https://doi.org/10.1155/2021/9926176
http://dx.doi.org/https://doi.org/10.1080/10652469.2018.1543669
http://dx.doi.org/https://doi.org/10.1186/s13662-020-02704-y
http://dx.doi.org/https://doi.org/10.1201/9781420036046
http://dx.doi.org/https://doi.org/10.1155/2021/9924265
http://dx.doi.org/https://doi.org/10.3934/math.2020115

14491

37

38.

39.

40.

41.

42.

43.

44.

45.

46.

@ AIMS Press

. R. Yilmazer, K. Ali, Discrete fractional solutions to the k-hypergeometric differential equation,
Math. Methods Appl. Sci., 44 (2020), 7614-7621. https://doi.org/10.1002/mma.6460

R. K. Saxena, A. M. Mathai, H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci.,
282 (2002), 281-287. https://doi.org/10.1023/A:1021175108964

R. K. Saxena, A. M. Mathai, H. J. Haubold, On generalized fractional kinetic equations, Phys. A,
344 (2004), 657-664. https://doi.org/10.1016/j.physa.2004.06.048

M. Samraiz, M. Umer, A. Kashuri, T. Abdeljawad, S. Igbal, N. Mlaiki, On weighted (%, s)-
Riemann-Liouville fractional operators and solution of fractional kinetic equation, Fractal Fract.,
5 (2021), 1-18. https://doi.org/10.3390/fractalfract5030118

M. Abdalla, M. Akel, Contribution of using Hadamard fractional integral operator via Mellin
integral transform for solving certain fractional kinetic matrix equations, Fractal Fract., 6 (2022),
1-14. https://doi.org/10.3390/fractalfract6060305

P. Agarwal, S. K. Ntouyas, S. Jain, M. Chand, G. Singh, Fractional kinetic equations involving
generalized k-Bessel function via Sumudu transform, Alex. Eng. J., 57 (2018), 1937-1942.
https://doi.org/10.1016/j.a¢j.2017.03.046

K. S. Nisar, A. Shaikh, G. Rahman, D. Kumar, Solution of fractional kinetic equations
involving class of functions and Sumudu transform, Adv. Differ. Equ., 2020 (2020), 1-11.
https://doi.org/10.1186/s13662-020-2513-6

R. Garrappa, M. Popolizio, Computing the matrix Mittag-Leffler function with applications
to fractional calculus, J. Sci. Comput., 77 (2018), 129-153. https://doi.org/10.1007/s10915-018-
0699-5

A. Sadeghi, J. R. Cardoso, Some notes on properties of the matrix Mittag-Leffler function, Appl.
Math. Comput., 338 (2018), 733-738. https://doi.org/10.1016/j.amc.2018.06.037

M. Hidan, M. Akel, S. M. Boulaaras, M. Abdalla, On behavior Laplace integral operators with
generalized Bessel matrix polynomials and related functions, J. Funct. Spaces, 2021 (2021), 1-10.
https://doi.org/10.1155/2021/9967855

©2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 8, 14474-14491.


http://dx.doi.org/https://doi.org/10.1002/mma.6460
http://dx.doi.org/https://doi.org/10.1023/A:1021175108964
http://dx.doi.org/https://doi.org/10.1016/j.physa.2004.06.048
http://dx.doi.org/https://doi.org/10.3390/fractalfract5030118
http://dx.doi.org/ https://doi.org/10.3390/fractalfract6060305
http://dx.doi.org/https://doi.org/10.1016/j.aej.2017.03.046
http://dx.doi.org/https://doi.org/10.1186/s13662-020-2513-6
http://dx.doi.org/https://doi.org/10.1007/s10915-018-0699-5
http://dx.doi.org/https://doi.org/10.1007/s10915-018-0699-5
http://dx.doi.org/https://doi.org/10.1016/j.amc.2018.06.037
http://dx.doi.org/https://doi.org/10.1155/2021/9967855
http://creativecommons.org/licenses/by/4.0

	Introduction and preliminaries
	 Extended (k,)-Wright hypergeometric matrix function
	Mellin transform 
	Integral representations
	 k-fractional calculus approach 
	Applications: Fractional kinetic equations 
	Conclusions

