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1. Introduction

In recent years, approximation theory has attracted the attention of many mathematicians, especially
in the field of mathematical analysis. In this context, many new positive and linear operators have been
introduced and their approximate properties have been given. In this direction, Bernstein’s main work
on Bernstein polynomials has long maintained the primary position of approximation theory. More
specifically, the Bernstein polynomial is defined as

Bn(σ, x) =

n∑
k=0

σ(
k
n

)Ck
nxk(1 − x)n−k, x ∈ [0, 1]

for any σ ∈ C[0, 1].
In 1950, Szász [1] introduced the generalization of Bernstein polynomials to infinite intervals called

the classical Szász-Mirakyan operators which are defined by

S n(σ, x) =

∞∑
k=0

σ(
k
n

)sn,k(x) (1.1)
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where sn,k(x) = e−nx · (nx)k/k!.
The operators S n have always been a research hotspot as can be seen in [2–8].
In 1969, Stancu hoped to select nodes in a different way to achieve greater flexibility. In this way,

he defined and studied the following linear and positive operators which are defined by [9]

Bγ,δ
n (σ, x) =

n∑
k=0

σ(
k + γ

n + δ
)Ck

nxk(1 − x)n−k

where x ∈ [0, 1], 0 ≤ γ ≤ δ. When γ = δ = 0, Bγ,δ
n become to the classical Bernstein polynomials.

Many scholars have shown great interest in the study of Stancu type operators [10–12].
Bézier curve with shape parameters is one of the important research fields of computer graphics

and computer aided geometric design (CAGD). Because of its simple and stable calculation, Bézier
curve is widely used in fuselage design, numerical solution of partial differential equations, networks,
animation, robotics and other fields. The selection of shape parameters is important so Bézier curves
and surfaces can be represented by their control grids.

Recently, Ye [13] presented the Bézier basis with shape parameter λ ∈ [−1, 1]. In this article,
the authors constructed a new class of basis functions for single shape parameter curves and used these
basis functions to provide a practical curve modeling algorithm. Later, Cai [14] introduced λ-Bernstein
operators and studied some approximation properties of the operators. Finally, Cai gave some graphs
and numerical examples to show the convergence of λ-Bernstein operators. They have also shown that
in some cases the errors were smaller than the classical Bernstein operators. Many scholars have done
research on this type of operators [15–20].

Influenced by the construction of this type operators based on parameter λ, Qi [21] introduced the
λ-Szász-Mirakjan operators as follows,

S n,λ(σ, x) =

∞∑
k=0

σ(
k
n

)s(λ)
n,k(x) (1.2)

where λ ∈ [−1, 1] and

s(λ)
n,0(x) = sn,0(x) −

λ

n + 1
sn+1,1(x),

s(λ)
n, j(x) = sn, j(x) + λ

(
n − 2 j + 1

n2 − 1
sn+1, j(x) −

n − 2 j − 1
n2 − 1

sn+1, j+1(x)
)
,

j = 1, 2, · · · ,∞, x ∈ [0,∞).
In [21], the Korovkin type approximation theorem, the Voronovskaja-type asymptotic

formula and the Grüss-Voronovskaja type theorem for the operators S n,λ were investigated. Then,
Aslan [22,23] studied the Kantorovich type and Durrmeyer type of operators S n,λ, respectively. In
order to prove the accuracy and effectiveness of the discussed operators, Aslan provided a comparison
of the convergence of the constructed operators for certain functions under certain parameters and
provided some graphical explanations.

Based on the work of Qi and Aslan, we propose a new family of Stancu operators S γ,δ
n,λ(σ, x) in the

following way:

S γ,δ
n,λ(σ, x) =

∞∑
k=0

σ(
k + γ

n + δ
)s(λ)

n,k(x). (1.3)
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Obviously, when γ = δ = 0 the operators S γ,δ
n,λ reduce to the operators S n,λ defined by (1.2). When

α = β = λ = 0, the operators S γ,δ
n,λ reduce to the operators S n defined by (1.1).

This article is organized in this way. First, the authors caculate the first to fourth moments of
the operators. In the second section, by tools such as modulus of continuity and K-functional the
approximation properties of the operators are discussed. The estimation of the Lipschitz function class
by the operators is also studied. Later, the Voronvskaya type asymptotic expansion of the operators is
established. Finally, we compare the convergence of these newly defined operators for certain functions
with certain graphs.

2. Some lemmas

Our results are based on the following lemmas.
Lemma 2.1. ([21]) For x ∈ [0,∞), ei = ti, i = 0, 1, 2, we have the following equalities:

S n,λ(e0, x) = 1,

S n,λ(e1, x) = x + λ

[
1 − e−(n+1)x − 2x

n(n − 1)

]
,

S n,λ(e2, x) = x2 +
x
n

+ λ

[
e−(n+1)x − 1 + 2nx − 4(n + 1)x2

n2(n − 1)

]
.

Lemma 2.2. Let the operators S γ,δ
n,λ be defined by (1.3), we have

S γ,δ
n,λ(e0, x) = 1,

S γ,δ
n,λ(e1, x) = x +

γ − δx
n + δ

+ λ

[
1 − e−(n+1)x − 2x
(n + δ)(n − 1)

]
= $n,γ,δ,λ(x),

S γ,δ
n,λ(e2, x) = x2 +

γ2 + n(2γ + 1)x − (2nδ + δ2)x2

(n + δ)2

+ λ

[
(2γ − 1)(1 − e−(n+1)x) + (2n − 4γ)x − 4(n + 1)x2

(n + δ)2(n − 1)

]
.

Proof. By Lemma 2.1, we have

S γ,δ
n,λ(e0, x) =

∞∑
i=0

s(λ)
n,i (x) = S n,λ(e0, x) = 1.

S γ,δ
n,λ(e1, x) =

∞∑
i=0

i + γ

n + δ
s(λ)

n,i (x) =
n

n + δ
S n,λ(e1, x) +

γ

n + δ
S n,λ(e0, x)

= x +
γ − δx
n + δ

+ λ

[
1 − e−(n+1)x − 2x
(n + δ)(n − 1)

]
.
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S γ,δ
n,λ(e2, x) =

∞∑
i=0

( i + γ

n + δ

)2

s(λ)
n,i (x)

=
n2

(n + δ)2 S n,λ(e2, x) +
2nγ

(n + δ)2 S n,λ(e1, x) +
γ2

(n + δ)2 S n,λ(e0, x)

= x2 +
γ2 + n(2γ + 1)x − (2nδ + δ2)x2

(n + δ)2

+ λ

[
(2γ − 1)(1 − e−(n+1)x) + (2n − 4γ)x − 4(n + 1)x2

(n + δ)2(n − 1)

]
.

Using a completely similar derivation method we can get the expression of S γ,δ
n,λ(e3, x) and S γ,δ

n,λ(e4, x).
Here, we omit it.

From Lemma 2.2 and simple calculation, we can get the following.
Lemma 2.3. For x ∈ [0,∞), we have

S γ,δ
n,λ(t − x, x) =

γ − δx
n + δ

+ λ

[
1 − e−(n+1)x − 2x
(n + δ)(n − 1)

]
, (2.1)

S γ,δ
n,λ((t − x)2, x) = ξn,γ,δ,λ(x), (2.2)

S γ,δ
n,λ((t − x)4, x) = O(n−2), (2.3)

lim
n→∞

nS γ,δ
n,λ(t − x, x) = γ − δx, (2.4)

lim
n→∞

nS γ,δ
n,λ((t − x)2, x) = x (2.5)

where ξn,γ,δ,λ(x) is defined as follows

ξn,γ,δ,λ(x) =
γ2 + (n − 2γδ)x + δ2x2

(n + δ)2

+ λ

[
(2γ − 1 − 2x(n + δ))(1 − e−(n+1)x) + (2n − 4γ)x − 4nx2

(n + δ)2(n − 1)

]
.

Lemma 2.4. For x ∈ [0,∞), we have

S γ,δ
n,λ(|t − x|, x) ≤

√
ξn,γ,δ,λ(x). (2.6)

Proof. Because of S γ,δ
n,λ(1, x) = 1, by Cauchy-Schwarz inequality and (2.2) we get

S γ,δ
n,λ(|t − x|, x) ≤

√
S γ,δ

n,λ
(
(t − x)2, x

)
·

√
S γ,δ

n,λ (1, x) =
√
ξn,γ,δ,λ(x).

3. Results

Let CB[0,∞) be defined as the space of bounded and uniformly continuous functions σ on [0,∞),
endowed with the norm ‖σ‖ = supx∈[0,∞)|σ|.
Theorem 3.1. For σ ∈ CB[0,∞), x ∈ [0,∞), the following inequality holds

‖S γ,δ
n,λ(σ, x)‖ ≤ ‖σ‖. (3.1)
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Proof. Since S γ,δ
n,λ(1, x) = 1, we get

‖S γ,δ
n,λ(σ, x)‖ ≤ S γ,δ

n,λ(1, x) · ‖σ‖ = ‖σ‖.

Theorem 3.2. For σ ∈ CB[0,∞), x ∈ [0,∞), the following equality holds

lim
n→∞

S γ,δ
n,λ(σ, x) = σ(x). (3.2)

Proof. By Lemma 2.2, we get
lim
n→∞

S γ,δ
n,λ(ek, x) = xk, k = 0, 1, 2.

The Korovkin theorem [24] is applied to obtain the conclusion.
Theorem 3.3. Let σ ∈ CB[0,∞), τ > 0 and

ω(σ, τ) = sup
0<ε≤τ

sup
x,x+ε∈[0,∞)

|σ(x + ε) − σ(x)| .

When n sufficiently large we have∣∣∣S γ,δ
n,λ(σ, x) − σ(x)

∣∣∣ ≤ 2ω
(
σ,

√
ξn,γ,δ,λ(x)

)
.

Proof. For ν > 0 and ρ > 0, it is widely known that ω(σ, νρ) ≤ (ρ + 1)ω(σ, ν). So, we get∣∣∣S γ,δ
n,λ(σ, x) − σ(x)

∣∣∣ ≤ ∣∣∣S γ,δ
n,λ (|σ(t) − σ(x)|, x)

∣∣∣ ≤ ∣∣∣S γ,δ
n,λ (ω(σ, |t − x|), x)

∣∣∣
=

∣∣∣∣∣∣S γ,δ
n,λ

(
ω(σ,

|t − x|
ν
· ν), x

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣S γ,δ

n,λ

(
ω(σ, ν)(1 +

|t − x|
ν

), x
)∣∣∣∣∣∣

= ω(σ, ν)
(
1 +

1
ν

S γ,δ
n,λ(|t − x|, x)

)
≤ ω(σ, ν)

(
1 +

1
ν

√
ξn,γ,δ,λ(x)

)
.

The last inequality is obtained from (2.6). Let ν =
√
ξn,γ,δ,λ(x), we get Theorem 3.3 immediately.

For τ > 0 and W2[0,∞) = {g|g, g′′ ∈ CB[0,∞)}, the appropriate Peetre’s K-functional is defined by

K2(σ, τ) = inf
g∈W2[0,∞)

{‖σ − g‖ + τ‖g′′‖}.

Let
ω2(σ, τ) = sup

0<|h|≤τ
sup

x,x+h,x+2h∈[0,∞)
|σ(x + 2h) − 2σ(x + h) + σ(x)|

where ω2 is the second order modulus of continuity of σ ∈ CB[0,∞).
From [25], there exists an absolute constant D > 0 such that

K2(σ, τ) ≤ D · ω2(σ,
√
τ). (3.3)

Theorem 3.4. For σ ∈ CB[0,∞) there exists an absolute constant D > 0 such that

|S γ,δ
n,λ(σ, x) − σ(x)| ≤ D · ω2

σ, 1
2

√
ξn,γ,δ,λ(x) +

(
$n,γ,δ,λ(x) − x

)2


+ ω
(
σ,$n,γ,δ,λ(x) − x

)
. (3.4)
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Proof. We introduce the auxiliary operators

S̃ γ,δ
n,λ(σ, x) = S γ,δ

n,λ(σ, x) + σ(x) − σ($n,γ,δ,λ(x)). (3.5)

By Lemma 2.2, we get
S̃ γ,δ

n,λ(1, x) = S γ,δ
n,λ(1, x) = 1, (3.6)

S̃ γ,δ
n,λ(t, x) = S γ,δ

n,λ(t, x) + x −$n,γ,δ,λ(x) = x. (3.7)

Let g ∈ W2. By Taylor’s expansion, we get

g(t) = g(x) + g′(x)(t − x) +

∫ t

x
(t − u)g′′(u)du, x, t ∈ [0,∞).

Apply the operators S̃ γ,δ
n,λ to the above equality and note that (3.5)–(3.7), we have

S̃ γ,δ
n,λ(g, x) = g(x) + S̃ γ,δ

n,λ
( ∫ t

x
(t − u)g′′(u)du, x

)
= g(x) + S γ,δ

n,λ
( ∫ t

x
(t − u)g′′(u)du, x

)
−

∫ $n,γ,δ,λ(x)

x

(
$n,γ,δ,λ(x) − u

)
g′′(u)du.

So,

|S̃ γ,δ
n,λ(g, x) − g(x)| ≤ S γ,δ

n,λ

(∫ t

x
|t − u||g′′(u)|du, x

)
+

∣∣∣∣∣∣
∫ $n,γ,δ,λ(x)

x

∣∣∣$n,γ,δ,λ(x) − u
∣∣∣ |g′′(u)|du

∣∣∣∣∣∣
≤ ‖g′′‖

{
S γ,δ

n,λ
(
(t − x)2, x) +

(
$n,γ,δ,λ(x) − x

)2
}

= ‖g′′‖
{
ξn,γ,δ,λ(x) +

(
$n,γ,δ,λ(x) − x

)2
}
.

By (3.5) and Theorem 3.1, we get

|S̃ γ,δ
n,λ(σ, x)| ≤ |S γ,δ

n,λ(σ, x)| + |σ(x)| + |σ($n,γ,δ,λ(x))| ≤ 3‖σ‖.

So,

|S γ,δ
n,λ(σ, x) − σ(x)| ≤

∣∣∣∣S̃ γ,δ
n,λ(σ, x) − σ(x) + σ(x) − σ

(
$n,γ,δ,λ(x)

)∣∣∣∣
≤ |S̃ γ,δ

n,λ(σ − g, x)| + |S̃ γ,δ
n,λ(g, x) − g(x)|

+ |σ(x) − g(x)| +
∣∣∣∣σ(x) − σ

(
$n,γ,δ,λ(x)

)∣∣∣∣
≤ 4‖σ − g‖ + ‖g′′‖

{
ξn,γ,δ,λ(x) +

(
$n,γ,δ,λ(x) − x

)2
}

+ ω
(
σ,$n,γ,δ,λ(x) − x

)
.

Taking the infimum on the right hand side over all g ∈ W2, we obtain

|S γ,δ
n,λ(σ, x) − σ(x)| ≤ 4K2

(
σ,

1
4

{
ξn,γ,δ,λ(x) +

(
$n,γ,δ,λ(x) − x

)2
})

+ ω
(
σ,$n,γ,δ,λ(x) − x

)
.

By the inequality of (3.3), we get Theorem 3.4 immediately.
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Remark 3.1. When γ = δ = 0, Theorem 3.4 is the form of the Theorem 3.2 of Qi [21].
Let φ(x) =

√
x and σ ∈ CB[0,∞). The first order Ditzian-Totik modulus of smoothness and

corresponding K-functional are given by

ωφ(σ, τ) = sup
0<h≤τ

∣∣∣∣∣σ(x +
hφ(x)

2
) − σ(x −

hφ(x)
2

)
∣∣∣∣∣ , x ± hφ(x)

2
∈ [0,∞)

and
Kφ(σ, τ) = inf

g∈Wφ[0,∞)
{‖σ − g‖ + τ‖φg′‖}(τ > 0),

respectively. Here, Wφ[0,∞) = {g|g ∈ AC[0,∞), ‖φg′‖ < ∞} means that g is differentiable and
absolutely continuous on every compact subset of [0,∞). By [26], there exists a constant E > 0
such that

Kφ(σ, τ) ≤ E · ωφ(σ, τ). (3.8)

Theorem 3.5. For σ ∈ CB[0,∞) there exists an absolute constant E > 0 such that

∣∣∣S γ,δ
n,λ(σ, x) − σ(x)

∣∣∣ ≤ E · ωφ

σ, √
ξn,γ,δ,λ(x)
√

x

 . (3.9)

Proof. Applying the operators S γ,δ
n,λ(·, x) to the representation

g(t) = g(x) +

∫ t

x
g′(u)du,

we have

S γ,δ
n,λ(g, x) = g(x) + S γ,δ

n,λ

(∫ t

x
g′(u)du, x

)
.

For any x, t ∈ (0,∞), we can get∣∣∣∣∣∣
∫ t

x
g′(u)du

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ t

x

g′(u)φ(u)
φ(u)

du

∣∣∣∣∣∣ ≤ ‖φg′‖

∣∣∣∣∣∣
∫ t

x

1
φ(u)

du

∣∣∣∣∣∣ ≤ 2‖φg′‖
|t − x|
φ(x)

.

By (2.6), we have

|S γ,δ
n,λ(g, x) − g(x)| ≤ 2‖φg′‖φ−1(x)S γ,δ

n,λ(|t − x|, x)

≤ 2‖φg′‖φ−1(x) ·
√
ξn,γ,δ,λ(x).

Thus,

|S γ,δ
n,λ(σ, x) − σ(x)| ≤ |S γ,δ

n,λ(σ − g, x)| + |σ − g| + |S γ,δ
n,λ(g, x) − g(x)|

≤ 2‖σ − g‖ + 2‖φg′‖ · φ−1(x) ·
√
ξn,γ,δ,λ(x).

Taking the infimum on the right hand side over all g ∈ Wφ(0,∞), we can get

|S γ,δ
n,λ(σ, x) − f (x)| ≤ 2Kφ

(
σ, φ−1(x) ·

√
ξn,γ,δ,λ(x)

)
.

By (3.8) and the above inequality, we get (3.9) immediately. This completes the proof of Theorem 3.5.
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Now we compute the rate of convergence of the operators S γ,δ
n,λ(σ, x) for the Lipschitz class

LipM(κ)(0 < κ ≤ 1,M > 0). As usual, we say that a function σ belongs to LipM(κ) if the inequality

|σ(t) − σ(x)| ≤ M|t − x|κ

holds for all t, x ∈ R.
Theorem 3.6. For σ ∈ LipM(κ)

⋂
CB[0,∞) and x ∈ [0,∞), we have∣∣∣S γ,δ
n,λ(σ, x) − σ(x)

∣∣∣ ≤ M
[
ξn,γ,δ,λ(x)

]κ/2
. (3.10)

Proof. Let e1 = 2
κ
, e2 = 2

2−κ . Then, 1
e1

+ 1
e2

= 1. By the Hölder inequality, we get

|S γ,δ
n,λ(σ, x) − σ(x)| ≤ S γ,δ

n,λ(|σ(t) − σ(x)|, x)

≤ M · S γ,δ
n,λ(|t − x|κ, x) = M · S γ,δ

n,λ(|t − x|κ · 1, x)

≤ M
(
S γ,δ

n,λ ((t − x)κe1 , x)
)1/e1
·
(
S γ,δ

n,λ (1e2 , x)
)1/e2

= M
(
S γ,δ

n,λ((t − x)2, x)
)1/e1
· 1 = M

[
ξn,γ,δ,λ(x)

]κ/2
.

Remark 3.2. When γ = δ = 0, Theorem 3.6 is the form of the Theorem 3.4 of Qi [21].
Lastly, we will consider the Voronvskaya type asymptotic expansion of the operators S γ,δ

n,λ(σ, x).
Theorem 3.7. Let σ′, σ′′ ∈ CB[0,∞), we have

lim
n→∞

n[S γ,δ
n,λ(σ, x) − σ(x)] = (γ − δx)σ′(x) +

x
2
σ′′(x).

Proof. In view of Taylor’s expansion formula, we have

σ(t) = σ(x) + σ′(x)(t − x) +
1
2
σ′′(x)(t − x)2 + η(t; x)(t − x)2

where η(t; x) ia a Peano of the rest term, η(t; x) ∈ C[0,∞) and lim
t→x

η(t; x) = 0.
So,

n[S γ,δ
n,λ(σ, x) − σ(x)] = nσ′(x)S γ,δ

n,λ(t − x, x) +
n
2
σ′′(x)S γ,δ

n,λ((t − x)2, x)

+ nS γ,δ
n,λ(η(t; x)(t − x)2, x). (3.11)

By Cauchy-Schwarz inequality, we have

S γ,δ
n,λ(η(t; x)(t − x)2, x) ≤

√
S γ,δ

n,λ(η2(t; x), x) ·
√

S γ,δ
n,λ((t − x)4, x). (3.12)

Noting η2(x; x) = 0, η2(t; x) ∈ C[0,∞) and Theorem 3.2, we get

lim
n→∞

S γ,δ
n,λ(η

2(t; x), x) = η2(x; x) = 0. (3.13)

By (2.3), (3.12) and (3.13), we get

lim
n→∞

nS γ,δ
n,λ(η(t; x)(t − x)2, x) = 0. (3.14)

Theorem 3.7 is obtained by (2.4), (2.5), (3.11) and (3.14).
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4. Graphical analysis

In this section, we show several graphics to present the convergence of operators (1.3) to certain
functions with different values of γ, δ, n and λ.

In Figure 1, we choose the function σ(x) = ex (black), λ = 0.9, γ = 1, δ = 2, n = 10 (red),
n = 30 (blue) and n = 50 (green).

In Figure 2, we choose the function σ(x) = cos(3πx) (black), λ = 0.5, γ = 1, δ = 2, n = 10 (red),
n = 30 (blue) and n = 50 (green).

In Figure 3, we choose the function σ(x) = 3πx · sin(3πx) (black), λ = −0.9, γ = 2, δ = 3,
n = 10 (red), n = 50 (blue) and n = 90 (green).

It is clear from Figures 1–3 that for the different values of λ as the values of n increases the
convergence of operators (1.3) to the functions σ(x) becomes better.
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Figure 1. The convergence of S γ,δ
n,λ(σ, x) to σ(x) = ex for λ = 0.9, γ = 1, δ = 2.
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Figure 2. The convergence of S γ,δ
n,λ(σ, x) to σ(x) = cos(3πx) for λ = 0.5, γ = 1, δ = 2.
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Figure 3. The convergence of S γ,δ
n,λ(σ, x) to σ(x) = 3πx · sin(3πx) for λ = −0.9, γ = 2, δ = 3.

5. Conclusions

In this paper, we introduce a class of Stancu type Szász Mirakjan operators and discuss
their approximation properties using tools such as modulus of continuity, modulus of smoothness and
K-functional. In addition, the estimation of Lipschitz function classes by the operators is also studied.
Later, the Voronvskaya type asymptotic expansion of the operators is established. Finally, we give the
comparison of the convergence of operators (1.3) to certain functions with some graphics.
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