In this paper, we studied a double-phase eigenvalue problem with large variable exponents. Let $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ be the first eigenvalues and $ u_{n} $ be the first eigenfunctions, normalized by $ \|u_{n}\|_{\mathcal{H}_{n}} = 1 $. Under some assumptions on the variable exponents $ p_{n}(\cdot) $ and $ q_{n}(\cdot) $, we showed that $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ converges to $ \Lambda_{\infty} $, $ u_{n} $ converges to $ u_{\infty} $ uniformly in the space $ C^{\alpha}(\Omega)\, (0 < \alpha < 1) $ and $ u_{\infty} $ is a nontrivial viscosity solution to a Dirichlet $ \infty $-Laplacian problem. Even in the case where the variable exponents reduce to the constant exponents, our work is the first one dealing with a double-phase eigenvalue problem with large exponents.
Citation: Lujuan Yu, Beibei Wang, Jianwei Yang. An eigenvalue problem related to the variable exponent double-phase operator[J]. AIMS Mathematics, 2024, 9(1): 1664-1682. doi: 10.3934/math.2024082
In this paper, we studied a double-phase eigenvalue problem with large variable exponents. Let $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ be the first eigenvalues and $ u_{n} $ be the first eigenfunctions, normalized by $ \|u_{n}\|_{\mathcal{H}_{n}} = 1 $. Under some assumptions on the variable exponents $ p_{n}(\cdot) $ and $ q_{n}(\cdot) $, we showed that $ \lambda^{1}_{(p_{n}(\cdot), \, q_{n}(\cdot))} $ converges to $ \Lambda_{\infty} $, $ u_{n} $ converges to $ u_{\infty} $ uniformly in the space $ C^{\alpha}(\Omega)\, (0 < \alpha < 1) $ and $ u_{\infty} $ is a nontrivial viscosity solution to a Dirichlet $ \infty $-Laplacian problem. Even in the case where the variable exponents reduce to the constant exponents, our work is the first one dealing with a double-phase eigenvalue problem with large exponents.
[1] | G. Franzina, P. Lindqvist, An eigenvalue problem with variable exponents, Nonlinear Anal., 85 (2013), 1–16. http://doi.org/10.1016/j.na.2013.02.011 doi: 10.1016/j.na.2013.02.011 |
[2] | V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR Izv., 29 (1986), 675–710. http://doi.org/10.1070/IM1987v029n01ABEH000958 doi: 10.1070/IM1987v029n01ABEH000958 |
[3] | V. V. Zhikov, On Lavrentiev's phenomenon, Russ. J. Math. Phys., 3 (1995), 249–269. |
[4] | V. V. Zhikov, On some variational problems, Russ. J. Math. Phys., 5 (1997). |
[5] | V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Homogenization of differential operators and integral functionals, Heidelberg: Springer Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5 |
[6] | A. Bahrouni, V. D. Rădulescu, D. D. Repov$\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{{\rm{s}}}$, Double phase transonic flow problems with variable growth: Nonlinear patterns and stationary waves, Nonlinearity, 32 (2019), 2481. http://doi.org/10.1088/1361-6544/ab0b03 doi: 10.1088/1361-6544/ab0b03 |
[7] | V. Benci, P. D'Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick's problem and infinitely many solutions, Arch. Ration. Mech. Anal., 154 (2000), 297–324. https://doi.org/10.1007/s002050000101 doi: 10.1007/s002050000101 |
[8] | L. Cherfils, Y. Il'yasov, On the stationary solutions of generalized reaction diffusion equations with $p, q$- Laplacian, Commun. Pure Appl. Anal., 4 (2005), 9–22. http://doi.org/10.3934/cpaa.2005.4.9 doi: 10.3934/cpaa.2005.4.9 |
[9] | F. Colasuonno, M. Squassina, Eigenvalues for double phase variational integrals, Ann. Mat. Pura Appl., 195 (2016), 1917–1959. https://doi.org/10.1007/s10231-015-0542-7 doi: 10.1007/s10231-015-0542-7 |
[10] | Z. H. Liu, N. S. Papageorgiou, Unbounded spectrum for a nonlinear eigenvalue problem with a variable exponent, Appl. Math. Lett., 145 (2023), 108768. https://doi.org/10.1016/j.aml.2023.108768 doi: 10.1016/j.aml.2023.108768 |
[11] | Z. H. Liu, N. S. Papageorgiou, On a nonhomogeneous, nonlinear Dirichlet eigenvalue problem, Math. Nachr., 296 (2023), 3986–4001. https://doi.org/10.1002/mana.202200040 doi: 10.1002/mana.202200040 |
[12] | Z. H. Liu, N. S. Papageorgiou, On an anisotropic eigenvalue problem, Results Math., 78 (2023). https://doi.org/10.1007/s00025-023-01954-y doi: 10.1007/s00025-023-01954-y |
[13] | L. J. Yu, A double phase eigenvalue problem with large exponents, Open Math., 21 (2023), 20230138. http://doi.org/10.1515/math-2023-0138 doi: 10.1515/math-2023-0138 |
[14] | L. Diening, P. Harjulehto, P. Hasto, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, In: Lecture notes in mathematics, Heidelberg: Springer Berlin, 2017 (2011). http://doi.org/10.1007/978-3-642-18363-8 |
[15] | X. L. Fan, An imbedding theorem for Musielak-Sobolev spaces, Nonlinear Anal., 75 (2012), 1959–1971. http://doi.org/10.1016/j.na.2011.09.045 doi: 10.1016/j.na.2011.09.045 |
[16] | J. Musielak, Orlicz spaces and modular spaces, In: Lecture notes in mathematics, Heidelberg: Springer-Verlag, 1034 (1983). https://doi.org/10.1007/BFb0072210 |
[17] | B. B. Wang, D. C. Liu, P. Zhao, Hölder continuity for nonlinear elliptic problem in Musielak-Orlicz-Sobolev space, J. Differ. Equ., 266 (2019), 4835–4863. https://doi.org/10.1016/j.jde.2018.10.013 doi: 10.1016/j.jde.2018.10.013 |
[18] | Á. Crespo-Blanco, L. Gasiński, P. Harjulehto, P. Winkert, A new class of double phase variable exponent problems: Existence and uniqueness, J. Differ. Equ., 323 (2022), 182–228. http://doi.org/10.1016/j.jde.2022.03.029 doi: 10.1016/j.jde.2022.03.029 |
[19] | L. J. Yu, The asymptotic behaviour of the $p(x)$-Laplacian Steklov eigenvalue problem, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 2621–2637. http://doi.org/10.3934/dcdsb.2020025 doi: 10.3934/dcdsb.2020025 |