Research article Special Issues

Stock market uncertainty determination with news headlines: A digital twin approach

  • Received: 12 September 2023 Revised: 21 November 2023 Accepted: 23 November 2023 Published: 13 December 2023
  • MSC : 91-08, 91-10

  • We present a novel digital twin model that implements advanced artificial intelligence techniques to robustly link news and stock market uncertainty. On the basis of central results in financial economics, our model efficiently identifies, quantifies, and forecasts the uncertainty encapsulated in the news by mirroring the human mind's information processing mechanisms. After obtaining full statistical descriptions of the timeline and contextual patterns of the appearances of specific words, the applied data mining techniques lead to the definition of regions of homogeneous knowledge. The absence of a clear assignment of informative elements to specific knowledge regions is regarded as uncertainty, which is then measured and quantified using Shannon Entropy. As compared with standard models, the empirical analyses demonstrate the effectiveness of this approach in anticipating stock market uncertainty, thus showcasing a meaningful integration of natural language processing, artificial intelligence, and information theory to comprehend the perception of uncertainty encapsulated in the news by market agents and its subsequent impact on stock markets.

    Citation: Pedro J. Gutiérrez-Diez, Jorge Alves-Antunes. Stock market uncertainty determination with news headlines: A digital twin approach[J]. AIMS Mathematics, 2024, 9(1): 1683-1717. doi: 10.3934/math.2024083

    Related Papers:

  • We present a novel digital twin model that implements advanced artificial intelligence techniques to robustly link news and stock market uncertainty. On the basis of central results in financial economics, our model efficiently identifies, quantifies, and forecasts the uncertainty encapsulated in the news by mirroring the human mind's information processing mechanisms. After obtaining full statistical descriptions of the timeline and contextual patterns of the appearances of specific words, the applied data mining techniques lead to the definition of regions of homogeneous knowledge. The absence of a clear assignment of informative elements to specific knowledge regions is regarded as uncertainty, which is then measured and quantified using Shannon Entropy. As compared with standard models, the empirical analyses demonstrate the effectiveness of this approach in anticipating stock market uncertainty, thus showcasing a meaningful integration of natural language processing, artificial intelligence, and information theory to comprehend the perception of uncertainty encapsulated in the news by market agents and its subsequent impact on stock markets.



    加载中


    [1] G. Cardano, Liber de ludo aleae, In: C. Sponius (ed.), Hieronymi Cardani Mediolanensis Opera Omnia, Lyons, 1663, 1564.
    [2] B. Pascal, P. Fermat, Letters, In: Pascal Fermat Correspondence, 1654. Available from: http://www.york.ac.uk/depts/maths/histstat/pascal.pdf.
    [3] J. Bernoulli, The art of conjecturing, together with letter to a friend on sets in court tennis, English translation by Edith Sylla, Baltimore: Johns Hopkins Univ Press, 2005, 1713. https://doi.org/10.1111/j.1600-0498.2008.00117.x
    [4] F. P. Ramsey, Truth and probability, In: The Foundations of Mathematics and other Logical Essays, ed. R. B. Braithwaite, London: Routledge & Kegan Paul Ltd, 1926. https://doi.org/10.1007/978-3-319-20451-2_3
    [5] L. J. Savage, The foundations of statistics, New York: John Wiley & Sons, 1954. https://doi.org/10.1002/nav.3800010316
    [6] J. M. Keynes, A treatise on probability, Macmillan & Co., 1921. https://doi.org/10.2307/2178916
    [7] F. H. Knight, Risk, uncertainty and profit, Chicago University Press, 31 (1921). https://doi.org/10.1017/CBO9780511817410.005
    [8] M. Kurz, M. Motolese, Endogenous uncertainty and market volatility, Econ. Theory, 17 (2001), 497–544. http://dx.doi.org/10.2139/ssrn.159608 doi: 10.2139/ssrn.159608
    [9] M. B. Beck, Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23 (1987), 1393–1442. https://doi.org/10.1029/WR023i008p01393 doi: 10.1029/WR023i008p01393
    [10] S. O. Funtowicz, J. R. Ravetz, Uncertainty and quality in science for policy, Springer Science & Business Media, 1990. http://dx.doi.org/10.1007/978-94-009-0621-1
    [11] M. B. A. van Asselt, J. Rotmans, Uncertainty in integrated assessment modelling, Climatic Change, 54 (2002), 75–105. https://doi.org/10.1023/A:1015783803445 doi: 10.1023/A:1015783803445
    [12] E. F. Fama, The behavior of stock-market prices, J. Bus., 38 (1965), 34–105. http://dx.doi.org/10.1086/294743 doi: 10.1086/294743
    [13] A. Alchian, Uncertainty, evolution and economic theory, J. Polit. Econ., 58 (1950), 211–221. http://dx.doi.org/10.1086/256940 doi: 10.1086/256940
    [14] A. Sandroni, Do Markets favor agents able to make accurate predictions? Econometrica, 68 (2000), 1303–1341. http://dx.doi.org/10.1111/1468-0262.00163 doi: 10.1111/1468-0262.00163
    [15] A. Sandroni, Efficient markets and Bayes' rule, Econ. Theory, 26 (2005) 741–764. http://dx.doi.org/10.1007/s00199-004-0567-4 doi: 10.1007/s00199-004-0567-4
    [16] L. Blume, D. Easley, Evolution and market behavior, J. Econ. Theory, 58 (1992), 9–40. http://dx.doi.org/10.1016/0022-0531(92)90099-4 doi: 10.1016/0022-0531(92)90099-4
    [17] L. Blume, D. Easley, If you're so smart, why aren't you rich? Belief selection in complete and incomplete markets, Econometrica, 74 (2006), 929–966. http://dx.doi.org/10.1111/j.1468-0262.2006.00691.x doi: 10.1111/j.1468-0262.2006.00691.x
    [18] O. San, The digital twin revolution, Nat. Comput. Sci., 1 (2021), 307–308. https://doi.org/10.1038/s43588-021-00077-0 doi: 10.1038/s43588-021-00077-0
    [19] G. Caldarelli, E. Arcaute, M. Barthelemy, M. Batty, C. Gershenson, D. Helbing, et al., The role of complexity for digital twins of cities, Nat. Comput. Sci., 3 (2023), 374–381. https://doi.org/10.1038/s43588-023-00431-4 doi: 10.1038/s43588-023-00431-4
    [20] H. M. Markowitz, Portfolio selection, J. Financ., 7 (1952) 77–91. http://dx.doi.org/10.2307/2975974 doi: 10.2307/2975974
    [21] Z. Y. Guo, Heavy-tailed distributions and risk management of equity market tail events, J. Risk Control, 4 (2017), 31–41. http://dx.doi.org/10.2139/ssrn.3013749 doi: 10.2139/ssrn.3013749
    [22] R. E. Lucas, Asset prices in an exchange economy, Econometrica, 46 (1978), 1429–1445. https://doi.org/10.2307/1913837 doi: 10.2307/1913837
    [23] J. H. Cochrane, Asset pricing, Princeton University Press, 2005. https://doi.org/10.1016/j.jebo.2005.08.001
    [24] D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econ., 75 (1961), 643–669. http://dx.doi.org/10.2307/1884324 doi: 10.2307/1884324
    [25] H. R. Varian, Differences of opinion in financial markets, In: C. C. Stone, (eds) Financial Risk: Theory, Evidence and Implications, Springer, Dordrecht., 1989. https://doi.org/10.1007/978-94-009-2665-3_1
    [26] B. Liu, Uncertainty theory, In: Uncertainty Theory, Studies in Fuzziness and Soft Computing, Berlin: Springer, 154 (2007). https://doi.org/10.1007/978-3-540-73165-8_5
    [27] B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16.
    [28] B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), 1–15. http://dx.doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1
    [29] M. Segoviano, C. A. Goodhart, Banking stability measures, International Monetary Fund, 2009. https://doi.org/10.5089/9781451871517.001
    [30] L. Liu, T. Zhang, Economic policy uncertainty and stock market volatility, Financ. Res. Lett., 15 (2015), 99–105. https://doi.org/10.1016/j.frl.2015.08.009 doi: 10.1016/j.frl.2015.08.009
    [31] H. Asgharian, C. Christiansen, A. J. Hou, The effect of uncertainty on stock market volatility and correlation, J. Bank. Financ., 154 (2023), 106929. https://doi.org/10.1016/j.jbankfin.2023.106929 doi: 10.1016/j.jbankfin.2023.106929
    [32] T. Simin, The poor predictive performance of asset pricing models, J. Financ. Quant. Anal., 43 (2008), 355–380. http://dx.doi.org/10.1017/S0022109000003550 doi: 10.1017/S0022109000003550
    [33] J. H. Boyd, J. Hu, R. Jagannathan, The stock market's reaction to unemployment news: Why bad news is usually good for stocks, J. Financ., 60 (2005), 649–672. http://dx.doi.org/10.1111/j.1540-6261.2005.00742.x doi: 10.1111/j.1540-6261.2005.00742.x
    [34] R. P. Schumaker, H. Chen, Textual analysis of stock market prediction using breaking financial news: The AZFin text system, ACM Trans. Inform. Syst., 27 (2009), 1–19. https://doi.org/10.1145/1462198.1462204 doi: 10.1145/1462198.1462204
    [35] M. T. Suleman, Stock market reaction to good and bad political news, Asian J. Financ. Account., 4 (2012), 299–312. https://doi.org/10.5296/ajfa.v4i1.1705 doi: 10.5296/ajfa.v4i1.1705
    [36] C. O. Cepoi, Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil, Financ. Res. Lett., 36 (2020), 101658. https://doi.org/10.1016/j.frl.2020.101658 doi: 10.1016/j.frl.2020.101658
    [37] A. Caruso, Macroeconomic news and market reaction: Surprise indexes meet nowcasting, Int. J. Forecasting, 35 (2019), 1725–1734. https://doi.org/10.1016/j.ijforecast.2018.12.005 doi: 10.1016/j.ijforecast.2018.12.005
    [38] E. F. Fama, Efficient capital markets: Ⅱ, J. Financ., 46 (1991), 1575–1617. https://doi.org/10.2307/2328565 doi: 10.2307/2328565
    [39] J. D. Thomas, K. Sycara, Integrating genetic algorithms and text learning for financial prediction, In: Proceedings of GECCO '00 Workshop on Data Mining with Evolutionary Algorithms, 2000, 72–75.
    [40] P. C. Tetlock, Giving content to investor sentiment: The role of media in the stock market, J. Financ. Forthcoming, 62 (2007), 1139–1168. https://dx.doi.org/10.2139/ssrn.685145 doi: 10.2139/ssrn.685145
    [41] S. Kogan, D. Levin, B. R. Routledge, J. S. Sagi, N. A. Smith, Predicting risk from financial reports with regression, In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics on - NAACL '09, 2009,272–280. http://dx.doi.org/10.3115/1620754.1620794
    [42] J. L. Rogers, D. J. Skinner, A. Van Buskirk, Earnings guidance and market uncertainty, J. Account. Econ., 48 (2009), 90–109. https://doi.org/10.1016/j.jacceco.2009.07.001 doi: 10.1016/j.jacceco.2009.07.001
    [43] J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for stock prediction, In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2 (2013), 24–29.
    [44] X. Ding, Y. Zhang, T. Liu, J. Duan, Using structured events to predict stock price movement: An empirical investigation, In: Proceedings of the 2014 conference on empirical methods in natural language processing, 2014, 1415–1425. http://dx.doi.org/10.3115/v1/D14-1148
    [45] W. Y. Wang, Z. Hua, A semiparametric gaussian copula regression model for predicting financial risks from earnings calls, In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 1 (2014), 1155–1165. http://dx.doi.org/10.3115/v1/P14-1109
    [46] R. Luss, A. d'Aspremont, Predicting abnormal returns from news using text classification, Quant. Financ., 15 (2015), 999–1012. https://doi.org/10.1080/14697688.2012.672762 doi: 10.1080/14697688.2012.672762
    [47] P. K. Narayan, D. Bannigidadmath, Does financial news predict stock returns? New evidence from Islamic and non-Islamic stocks, Pac.-Basin Financ. J., 42 (2017) 24–45. https://doi.org/10.1016/j.pacfin.2015.12.009 doi: 10.1016/j.pacfin.2015.12.009
    [48] F. Larkin, C. Ryan, Good news: Using news feeds with genetic programming to predict stock prices, In: European Conference on Genetic Programming, 4971 (2008), 49–60. https://doi.org/10.1007/978-3-540-78671-9_5
    [49] Y. Kim, S. R. Jeong, I. Ghani, Text opinion mining to analyze news for stock market prediction, Int. J. Adv. Soft Comput. Appl., 6 (2014), 2074–8523.
    [50] A. E. Khedr, S. E. Salama, N. Yaseen, Predicting stock market behavior using data mining technique and news sentiment analysis, Int. J. Adv. Soft Comput. Appl., 9 (2017), 22–30. https://doi.org/10.5815/ijisa.2017.07.03 doi: 10.5815/ijisa.2017.07.03
    [51] X. Zhou, H. Zhou, H. Long, Forecasting the equity premium: Do deep neural network models work? Mod. Financ., 1 (2023), 1–11. https://doi.org/10.61351/mf.v1i1.2 doi: 10.61351/mf.v1i1.2
    [52] X. Dong, Y. Li, D. E. Rapach, G. Zhou, Anomalies and the expected market return, J. Financ., 77 (2022), 639–681. https://doi.org/10.1111/jofi.13099 doi: 10.1111/jofi.13099
    [53] N. Cakici, C. Fieberg, D. Metko, A. Zaremba, Do anomalies really predict market returns? New data and new evidence, Rev. Financ., 2023, rfad025. https://doi.org/10.1093/rof/rfad025 doi: 10.1093/rof/rfad025
    [54] W. Shengli, Is human digital twin possible? Comput. Method. Prog. Biomed. Update, 1 (2021), 100014. https://doi.org/10.1016/j.cmpbup.2021.100014 doi: 10.1016/j.cmpbup.2021.100014
    [55] M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, D. Devine, Digital twin: Origin to future, Appl. Syst. Inno., 4 (2021), 36. https://doi.org/10.3390/asi4020036 doi: 10.3390/asi4020036
    [56] H. D. Critchley, C. J. Mathias, R. J. Dolan, Neural activity in the human brain relating to uncertainty and arousal during anticipation, Neuron, 29 (2001), 537–545. https://doi.org/10.1016/s0896-6273(01)00225-2 doi: 10.1016/s0896-6273(01)00225-2
    [57] H. A. Simon, Rational decision-making in business organizations, Am. Econ. Rev., 69 (1979), 493–513.
    [58] R. M. Hogarth, N. Karelaia, Regions of rationality: Maps for bounded agents, Decis. Anal., 3 (2006), 124–144. http://dx.doi.org/10.1287/deca.1060.0063 doi: 10.1287/deca.1060.0063
    [59] Y. Wang, N. Zhang, Uncertainty analysis of knowledge reductions in rough sets, The Scientific World J., 2014 (2014), 576409. https://doi.org/10.1155/2014/576409 doi: 10.1155/2014/576409
    [60] K. Erk, Understanding the combined meaning of words, Nat. Comput. Sci., 2 (2022), 701–702. https://doi.org/10.1038/s43588-022-00338-6 doi: 10.1038/s43588-022-00338-6
    [61] M. Toneva, T. M. Mitchell, L. Wehbe, Combining computational controls with natural text reveals aspects of meaning composition, Nat. Comput. Sci., 2 (2022), 745–757. https://doi.org/10.1038/s43588-022-00354-6 doi: 10.1038/s43588-022-00354-6
    [62] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [63] G. E. Hinton, Distributed representations, Carnegie Mellon University, 1984.
    [64] D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533–536. http://dx.doi.org/10.1038/323533a0 doi: 10.1038/323533a0
    [65] J. L. Elman, Finding structure in time, Cognitive Sci., 14 (1990), 179–211. http://dx.doi.org/10.1207/s15516709cog1402_1 doi: 10.1207/s15516709cog1402_1
    [66] Y. Bengio, H. Schwenk, F. Morin, J. L. Gauvain, Neural probabilistic language models, In: Innovations in Machine Learning: Theory and Applications, 2006,137–186. https://doi.org/10.1007/3-540-33486-6_6
    [67] R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, In: Proceedings of the 25th international conference on Machine learning - ICML '08, 2008,160–167. https://doi.org/10.1145/1390156.1390177
    [68] A. Mnih, G. E. Hinton, A scalable hierarchical distributed language model, Adv. Neural Inform. Process. Syst., 21 (2008), 1081–1088. https://dl.acm.org/doi/10.5555/2981780.2981915 doi: 10.5555/2981780.2981915
    [69] T. Mikolov, J. Kopecky, L. Burget, O. Glembek, J. Cernocky, Neural network based language models for highly inflective languages, In: 2009 IEEE international conference on acoustics, speech and signal processing, 2009, 4725–4728. https://doi.org/10.1109/ICASSP.2009.4960686
    [70] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch, J. Mach. Learn. Res., 12 (2011), 2493–2537. https://dl.acm.org/doi/10.5555/1953048.2078186 doi: 10.5555/1953048.2078186
    [71] E. H. Huang, R. Socher, C. D. Manning, A. Y. Ng, Improving word representations via global context and multiple word prototypes, In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, 1 (2012), 873–882.
    [72] Y. Zhang, R. Jin, Z. H. Zhou, Understanding bag-of-words model: a statistical framework, Int. J. Mach. Learn. Cyb., 1 (2010), 43–52. http://dx.doi.org/10.1007/s13042-010-0001-0 doi: 10.1007/s13042-010-0001-0
    [73] The lifespan of news stories, How the news enters (and exits) the public consciousness, Schema Design and Google Trends, 2019. Available from: https://newslifespan.com/.
    [74] N. Bloom, Fluctuations in uncertainty, J. Econ. Perspect., 28 (2014), 153–176. http://dx.doi.org/10.1257/jep.28.2.153 doi: 10.1257/jep.28.2.153
    [75] S. R. Baker, S. J. Davis, J. A. Levy, State-level economic policy uncertainty, J. Monetary Econ., 132 (2022), 81–99. http://dx.doi.org/10.1016/j.jmoneco.2022.08.004 doi: 10.1016/j.jmoneco.2022.08.004
    [76] S. Newcomb, A generalized theory of the combination of observations so as to obtain the best result, Am. J. Math., 1886,343–366. http://dx.doi.org/10.2307/2369392 doi: 10.2307/2369392
    [77] D. Böhning, E. Dietz, P. Schlattmann, Recent developments in computer-assisted analysis of mixtures, Biometrics, 54 (1998), 525–536. http://dx.doi.org/10.2307/3109760 doi: 10.2307/3109760
    [78] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Stat. Soc. Ser. B, 39 (1977), 1–22. http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
    [79] T. Heskes, Self-organizing maps, vector quantization, and mixture modeling, IEEE T. Neur. Net., 12 (2001), 1299–1305. http://dx.doi.org/10.1109/72.963766 doi: 10.1109/72.963766
    [80] A. Gepperth, B. Pfülb, A rigorous link between self-organizing maps and gaussian mixture models, In: Artificial Neural Networks and Machine Learning-ICANN 2020, Springer, Cham, 2020,863–872. http://dx.doi.org/10.1007/978-3-030-61616-8_69
    [81] D. Povey, L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, et al., The subspace Gaussian mixture model–-A structured model for speech recognition, Comput. Speech Lang., 25 (2011), 404–439. http://dx.doi.org/10.1016/j.csl.2010.06.003 doi: 10.1016/j.csl.2010.06.003
    [82] J. Yin, J. Wang, A dirichlet multinomial mixture model-based approach for short text clustering, In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, 2014,233–242. http://dx.doi.org/10.1145/2623330.2623715
    [83] F. Najar, S. Bourouis, N. Bouguila, S. Belghith, A comparison between different Gaussian-based mixture models, In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017,704–708. http://dx.doi.org/10.1109/AICCSA.2017.108
    [84] G. Bordogna, G. Pasi, Soft clustering for information retrieval applications, WIRES Data Min. Knowl., 1 (2011), 138–146. http://dx.doi.org/10.1002/widm.3 doi: 10.1002/widm.3
    [85] N. F. G. Martin, J. W. England, R. Baierlein, Mathematical theory of entropy, Phys. Today, 36 (1983), 66–67. http://dx.doi.org/10.1063/1.2915804 doi: 10.1063/1.2915804
    [86] S. R. Bentes, R. Menezes, Entropy: A new measure of stock market volatility? J. Phys. Conf. Ser., 394 (2012), 012033. http://dx.doi.org/10.1088/1742-6596/394/1/012033 doi: 10.1088/1742-6596/394/1/012033
    [87] K. Ahn, D. Lee, S. Sohn, B. Yang, Stock market uncertainty and economic fundamentals: An entropy-based approach, Quant. Financ., 19 (2019), 1151–1163. http://dx.doi.org/10.1080/14697688.2019.1579922 doi: 10.1080/14697688.2019.1579922
    [88] T. Kohonen, The self-organizing map, Neurocomputing, 21 (1998), 1–6. http://dx.doi.org/10.1016/S0925-2312(98)00030-7 doi: 10.1016/S0925-2312(98)00030-7
    [89] M. Y. Kiang, Extending the Kohonen self-organizing map networks for clustering analysis, Comput. Stat. Data Anal., 38 (2001), 161–180. http://dx.doi.org/10.1016/S0167-9473(01)00040-8 doi: 10.1016/S0167-9473(01)00040-8
    [90] T. Kohonen, Self-organization and associative memory, Springer Science & Business Media, 8 (2012). https://doi.org/10.1007/978-3-642-88163-3
    [91] B. Szmrecsanyi, Grammatical variation in British English dialects: A study in corpus-based dialectometry, Cambridge University Press, 2012. http://dx.doi.org/10.1017/CBO9780511763380
    [92] Dow Jones $ & $ CO WSJ.COM audience profile, comScore Media Metrix Q1, 2021. Available from: https://images.dowjones.com/wp-content/uploads/sites/183/2018/05/09164150/WSJ.com-Audience-Profile.pdf.
    [93] VIX volatility suite, Cboe Global Markets, Inc., 2021. Available from: https://www.cboe.com/tradable_products/vix/.
    [94] A. Elder, Trading for a living: Psychology, trading tactics, money management, John Wiley & Sons, 31 (1993).
    [95] SCAYLE Supercomputación Castilla y León, 2021. Available from: https://www.scayle.es.
    [96] O. A. M. Salem, F. Liu, A. S. Sherif, W. Zhang, X. Chen, Feature selection based on fuzzy joint mutual information maximization, Math. Biosci. Eng., 18 (2020), 305–327. http://dx.doi.org/10.3934/mbe.2021016 doi: 10.3934/mbe.2021016
    [97] P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, P. A. Lewis, A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering, Psychometrika, 59 (1994), 509–525. https://doi.org/10.1007/BF02294390 doi: 10.1007/BF02294390
    [98] A. Flexer, Limitations of self-organizing maps for vector quantization and multidimensional scaling, Adv. Neur. Inform. Process. Syst., 9 (1996), 445–451.
    [99] U. A. Kumar, Y. Dhamija, Comparative analysis of SOM neural network with K-means clustering algorithm, In: 2010 IEEE International Conference on Management of Innovation & Technology, 2010, 55–59. http://dx.doi.org/10.1109/ICMIT.2010.5492838
    [100] J. Han, M. Kamber, J. Pei, Data mining: Concepts and techniques, 3 Eds., Morgan Kauffman, 2012. https://doi.org/10.1016/C2009-0-61819-5
    [101] H. M. Hodges, Arbitrage bounds of the implied volatility strike and term structures of European-style options, J. Deriv., 3 (1996), 23–35. http://dx.doi.org/10.3905/jod.1996.407950 doi: 10.3905/jod.1996.407950
    [102] A. M. Malz, A simple and reliable way to compute option-based risk-neutral distributions, FRB New York Staff Rep., 677 (2014). http://dx.doi.org/10.2139/ssrn.2449692 doi: 10.2139/ssrn.2449692
    [103] B. Judge, 26 May 1896: Charles Dow launches the Dow Jones industrial average, 2015. Available from: https://moneyweek.com/392888/26-may-1896-charles-dow-launches-the-dow-jones-industrial-average/.
    [104] A. C. MacKinlay, Event studies in economics and finance, J. Econ. Lit., 35 (1997), 13–39.
    [105] Z. Önder, C. Şimga-Mugan, How do political and economic news affect emerging markets? Evidence from Argentina and Turkey, Emerg. Mark. Financ. Tr., 42 (2006), 50–77. http://dx.doi.org/10.2753/REE1540-496X420403 doi: 10.2753/REE1540-496X420403
    [106] N. Aktas, E. de Bodt, J. G. Cousin, Event studies with a contaminated estimation period, J. Corp. Financ., 13 (2007), 129–145. http://dx.doi.org/10.1016/j.jcorpfin.2006.09.001 doi: 10.1016/j.jcorpfin.2006.09.001
    [107] O. Arslan, W. Xing, F. A. Inan, H. Du, Understanding topic duration in Twitter learning communities using data mining, J. Comput. Assist. Learn., 38 (2022), 513–525. http://dx.doi.org/10.1111/jcal.12633 doi: 10.1111/jcal.12633
    [108] T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett., 27 (2006), 861–874. http://dx.doi.org/10.1016/j.patrec.2005.10.010 doi: 10.1016/j.patrec.2005.10.010
    [109] D. W. Hosmer, S. Lemeshow, Applied logistic regression, 2 Eds., New York: John Wiley and Sons, 2000,160–164. http://dx.doi.org/10.1002/0471722146
    [110] T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Mach. Learn., 31 (2004), 1–38.
    [111] F. Melo, Area under the ROC curve, Encyclopedia Syst. Biol., 2013 (2013). http://dx.doi.org/10.1007/978-1-4419-9863-7_209 doi: 10.1007/978-1-4419-9863-7_209
    [112] J. Cragg, R. Uhler, The demand for automobiles, Can. J. Econ., 3 (1970), 386–406. http://dx.doi.org/10.2307/133656 doi: 10.2307/133656
    [113] G. Maddala, Limited dependent and qualitative variables in econometrics, New York: Cambridge University Press, 1983. http://dx.doi.org/10.1017/CBO9780511810176
    [114] D. R. Cox, N. Wermuth, A comment on the coefficient of determination for binary responses, Am. Stat., 46 (1992), 1–4. http://dx.doi.org/10.2307/2684400 doi: 10.2307/2684400
    [115] P. Flach, J. Hernández-Orallo, C. Ferri, A coherent interpretation of AUC as a measure of aggregated classification performance, In: Proceedings of the 28th International Conference on Machine Learning, 2011.
    [116] J. A. Hanley, B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143 (1982), 29–36. http://dx.doi.org/10.1148/radiology.143.1.7063747 doi: 10.1148/radiology.143.1.7063747
    [117] B. Efron, The jackknife, the bootstrap, and other resampling plans, In: Society of Industrial and Applied Mathematics CBMS-NSF Monographs 38, 1982. http://dx.doi.org/10.1137/1.9781611970319
    [118] I. A. Boboc, M. C. Dinică, An Algorithm for testing the efficient market hypothesis, PloS One, 8 (2013), e78177. https://doi.org/10.1371/journal.pone.0078177 doi: 10.1371/journal.pone.0078177
    [119] M. A. Sánchez-Granero, K. A. Balladares, J. P. Ramos-Requena, J. E. Trinidad-Segovia, Testing the efficient market hypothesis in Latin American stock markets, Physica A, 540 (2020), 123082. https://doi.org/10.1016/j.physa.2019.123082 doi: 10.1016/j.physa.2019.123082
    [120] E. M. Sent, Rationality and bounded rationality: You can't have one without the other, Eur. J.Hist. Econ. Thou., 25 (2018), 1370–1386. http://dx.doi.org/10.1080/09672567.2018.1523206 doi: 10.1080/09672567.2018.1523206
    [121] M. Hahn, R. Futrell, R. Levy, E. Gibson, A resource-rational model of human processing of recursive linguistic structure, P. Natl. Acad. Sci., 119 (2022), e2122602119. http://dx.doi.org/10.1073/pnas.2122602119 doi: 10.1073/pnas.2122602119
    [122] M. Szczepański, M. Pawlicki, R. Kozik, M. Choraś, New explainability method for BERT-based model in fake news detection, Sci. Rep., 11 (2021), 23705. http://dx.doi.org/10.1038/s41598-021-03100-6 doi: 10.1038/s41598-021-03100-6
    [123] G. Pennycook, Z. Epstein, M. Mosleh, A. A. Arechar, D. Eckles, D. G. Rand, Shifting attention to accuracy can reduce misinformation online, Nature, 592 (2021) 590–595. http://dx.doi.org/10.1038/s41586-021-03344-2 doi: 10.1038/s41586-021-03344-2
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(11344) PDF downloads(108) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog