Citation: Shuai Wang, Zhongyan Li, Jinyun Zhu, Zhicen Lin, Meiru Zhong. Stock selection strategy of A-share market based on rotation effect and random forest[J]. AIMS Mathematics, 2020, 5(5): 4563-4580. doi: 10.3934/math.2020293
[1] | H. Yuan, Overview of the application of data mining models in stock market prediction, Chin. Collect. Econ., 33 (2017), 66-67. |
[2] | G. Quigley, R. Sinquefield, Performance of UK Equity Unit Trusts, J. Asset Manage., 1 (2000), 72-92. doi: 10.1057/palgrave.jam.2240006 |
[3] | K. Froot, M. Teo, Style investing and institutional investors, J. Financ. Quant. Anal., 43 (2008), 883-906. doi: 10.1017/S0022109000014381 |
[4] | J. Xiao, Y. X. Wang, W. Z. Chen, et al. Empirical Research on style level momentum strategy in the China stock market, Finance Econ., 03 (2006), 23-29. |
[5] | Y. R. Guo, X. L. Wang, Rotational forecast of stock market over and under style based on BP neural network, Comput. Simulat., 36 (2019), 239-242. |
[6] | P. S. Mohanram, Separating winners from losers among low Book-to-Market stocks using financial statement analysis, Rev. Account. Stud., 10 (2005), 133-170. doi: 10.1007/s11142-005-1526-4 |
[7] | F. Pan, Multi-factor Stock Selection Model Based on Effective Factors, Shenzhen: Anxin Securities Research Center, (2011), 1-21. |
[8] | J. B. Guerard Jr., H. M. Markowitz, G. L. Xu, et al. Earnings forecasting in a global stock selection model and efficient portfolio construction and management, Int. J. Forecasting, 31 (2015), 550-560. doi: 10.1016/j.ijforecast.2014.10.003 |
[9] | V. DeMiguel, A. Martin-Utrera, F. J. Nogales, et al. A Transaction-Cost perspective on the multitude of firm characteristics, LBS Working Paper, 2017. |
[10] | S. Kozak, S. Nagel, S. Santosh, et al. Shrinking the Cross- section, J. Financ. Econ., 135 (2020), 271-292. doi: 10.1016/j.jfineco.2019.06.008 |
[11] | L. Khaidem, S. Saha, S. R. Dey, et al. Predicting the direction of stock market prices using random forest, Appl. Math. Financ., (2016), 1-20. |
[12] | J. B. Guerard, R. A. Gillam, H. Markowitz, et al. Data mining corrections testing in Chinese stocks, Interfaces, 48 (2018), 108-120. doi: 10.1287/inte.2017.0908 |
[13] | H. Phillip, Using autoregressive modelling and machine learning for stock market prediction and trading: ICICT 2018, Adv. Intel. Sys. Comput., 2 (2018), 767-774. |
[14] | Z. F. Dai, H. Zhu, Stock return predictability from a mixed model perspective, J Pacific-Basin Financ. J., (2020), 101267. |
[15] | Z. F. Dai, H. T. Zhou, Prediction of stock returns: Sum-of-the-Parts method and economic constraint method, Sustainability, 12 (2020), 541. |
[16] | Z. H. Zhou, Machine Learning, Tsinghua University Press Bei Jing, 2016. |
[17] | H. M. Markowitz, Portfolio selection, J. Financ., 7 (1952), 77-91. |
[18] | H. M. Markowitz, Portfolio selection: Efficient diversification of investment, John Wiley and Sons, New York, 1959. |
[19] | H. M. Markowitz, Mean-Variance analysis in portfolio choice and capital markets, Basil Blackwell, London, 1987. |
[20] | J. B. Guerard, H. M. Markowitz, G. Xu, et al. Earnings forecasting in a global stock selection model and efficient portfolio construction and management, Int. J. Forecasting, 31 (2015), 550-560. doi: 10.1016/j.ijforecast.2014.10.003 |
[21] | H. M. Markowitz, Risk-Return analysis: The theory and practice of rational investing, McGrawHill, New York, 2013. |
[22] | J. Z. Xu, Analysis of quantitative stock selection based on multi-factor model, Financ. Theor. Explorat., 3 (2017), 30-38. |
[23] | H. Zhang, H. L. Shen, Y. C. Liu, et al. Research on Multi-factor Quantitative Stock Picking Problem Based on Self-Attention Neural Network. Mathematical Statistics and Management, 2020. Available from: https://doi.org/10.13860/j.cnki.sltj.20200403-001. |