Citation: Liping Yang, Shaofang Hong, Yongchao Xu. The nonlinearity and Hamming weights of rotation symmetric Boolean functions of small degree[J]. AIMS Mathematics, 2020, 5(5): 4581-4595. doi: 10.3934/math.2020294
[1] | F. N. Castro, R. Chapman, L. A. Medina, et al. Recursions associated to trapezoid, symmetric and rotation symmetric functions over Galois fields, Discrete Math. 341 (2018), 1915-1931. doi: 10.1016/j.disc.2018.03.019 |
[2] | F. N. Castro, L. A. Medina and P. Stănică, Generalized Walsh transforms of symmetric and rotation symmetric Boolean functions are linear recurrent, Appl. Algebra Eng. Comm., 29 (2018), 433-453. doi: 10.1007/s00200-018-0351-5 |
[3] | L. C. Ciungu, Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity, Ph.D. Thesis, The State University of New York Buffalo, 2010. |
[4] | E. Filiol and C. Fontaine, Highly nonlinear balanced Boolean functions with a good correlation immunity. In: International Conference on the Theory and Applications of Cryptographic Techniques, 1403 (1998), 475-488, Springer, Berlin. |
[5] | S. Kavut, S. Maitra and M. D. Yucel, Search for Boolean functions with excellent profiles in the rotation symmetric class, IEEE T. Inform. Theory, 53 (2007), 1743-1751. |
[6] | H. Kim, S. Park and S. G. Hahn, On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2, Discrete Appl. Math., 157 (2009), 428-432. doi: 10.1016/j.dam.2008.06.022 |
[7] | S. Mariai, T. Shimoyama and T. Kaneko, Higher order differential attack using chosen higher order differences, International Workshop on Selected Areas in Cryptography, 1556 (1998), 106-117, Springer-Verlag, Berlin. |
[8] | J. Pieprzyk and C. X. Qu, Fast hashing and rotation-symmetric functions, J. Univers. Comput. Sci., 5 (1999), 20-31. |
[9] | P. Stănică and S. Maitra, Rotation symmetric Boolean functions count and cryptographic properties, Discrete Appl. Math., 156 (2008), 1567-1580. doi: 10.1016/j.dam.2007.04.029 |
[10] | L. P. Yang, R. J. Wu and S. F. Hong, Nonlinearity of quartic rotation symmetric Boolean functions, Southeast Asian Bull. Math., 37 (2013), 951-961. |
[11] | X. Zhang, H. Guo, R. Feng, et al. Proof of a conjecture about rotation symmetric functions, Discrete Math., 311 (2011), 1281-1289. doi: 10.1016/j.disc.2011.03.012 |