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Abstract: Let e, [ and n be integers such that 1 < e < nand 3 </ < n. Let (i) denote the least

nonnegative residue of i mod n. In this paper, we investigate the following Boolean function

n—1

F Ze(xn ) = Z XiX(ire)yX(i+2ey+-X{i+(I-1)e)>
i=0

which plays an important role in cryptography and coding theory. We introduce some new sub-
functions and provide some recursive formulas for the Fourier transform. Using these recursive
formulas, we show that the nonlinearity of Fj (x") is the same as its weight for 5 < [ < 7. Our
result confirms partially a conjecture of Yang, Wu and Hong raised in 2013. It also gives a partial
answer to a conjecture of Castro, Medina and Stdnica proposed in 2018. Our result extends the result
of Zhang, Guo, Feng and Li for the case [/ = 3 and that of Yang, Wu and Hong for the case [ = 4.
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1. Introduction

Let [F) be the vector space of dimension n over the two-element field F, = {0, 1}. A Boolean function
f"(xo,- -+, x,-1) in n variables is a map from F] to [F,. Boolean functions have wide applications to
different scientific areas, like information theory, electrical engineering, game theory, cryptography
and coding theory. In 1999, Piepryzyk and Qu [8] introduced a kind of special Boolean functions such
that their evaluations on every cyclic inputs are the same, which is called rotation symmetric Boolean
functions (abbr. RSBFs). Further, Piepryzyk and Qu [8] showed that RSBFs are useful in the design of
fast hashing algorithms with strong cryptographic properties. Since then, RSBFs have attracted much
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attention for their wide applications in cryptography and coding theory ([2, 5, 9]).

For brevity, let the vectors (xo, xi, ..., X,—1) and (co,ci,...,c,—1) in F} be denoted by x" and c"
respectively. The Hamming weight of a function f"(x") is the number of x" € F] satisfying f"(x") = 1
and denoted by wt(f"). For any two n variables Boolean functions f"(x") and g"(x"), the Hamming
distance between f"(x") and g"(x") is defined as wt(f" + g"), and denoted by d(f", g"). We define the
linear function L.» by L. (x") := ¢" - x", where - is the vector dot product. The nonlinearity of f" is
defined as Ny := min{d(f", L.») | ¢" € F}}. Since hashing algorithm employing RSBFs with degree 2
as components cannot resist the linear and differential attacks [7], we need to use higher-degree
RSBFs with high nonlinearity to protect from differential attack. As early as 1998, Filiol and Fontaine
[4] studied the nonlinearity of RSBFs up to 9 variables. In this paper, we study the relation between
Hamming weights and nonlinearity of RSBFs with small degree.

By (i) we denote the least nonnegative residue of i mod n. Let e and [ be integers such that 1 <
e <nand2 <[ < n. Then the [-th rotation symmetric Boolean function F}, in n variables generated by
the monomial XX, X(2ey...X(-1)e) 15 defined as

n—1

F" = Fle(xo, ey Xp1) 1= Z XiX(iveyX(i+2e)y--X(i+(I-1)e)-
i=0

In 2009, Kim, Park and Hahn [6] explored the nonlinearity of F7 ,, and proved that if o d( > is even,
then an = wi(F7 ), otherwise, N, B, wi(F?% ). In 2010, Ciungu [3] showed that the hneanty of F},
is the same as its we1ght for the case [ = 3 and 3|n. Zhang, Guo, Feng and Li [11] totally proved the
equality of the linearity of F5 | and its weight. Later on, Yang, Wu and Hong [10] investigated the case
[ = 4 and proved that wt(F7 ) = Npr . Furthermore, Yang, Wu and Hong [10] proposed the following
conjecture.

Conjecture 1.1. [10] Lete > 1 and [ > 5 be any given integer. Then the nonlinearity of F7, is equal to
its weight.

Recently, Castro, Medina and Stanicd [2] showed that the Walsh transforms of symmetric and
rotation symmetric Boolean functions satisfy the linear recurrence with integer coefficients, and
suggested the following conjecture:

Conjecture 1.2. [2] Let [ > 1 be a fixed integer. The sequence of {N F;}izz satisfies the linear recurrence
whose characteristic polynomial is given by

=20+ X+ x4+ 1) =0

In this paper, we dedicate to prove that Conjecture 1.1 is true for some small degree cases, which
also confirms Conjecture 1.2 for / = 5,6 and 7. Particularly, we prove the following result.

Theorem 1.3. Let [ € {5,6,7} and e and n be integers such that 1 < e < nandn > 2l — 1. Then
NF[”,g = wi(F},).

This paper is organized as follows. In Section 2, we study Fourier transform of Boolean functions
and obtain some recursive formulas. In Section 3, we give the proof of Theorem 1.3. The final section
is devoted to some remarks.
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2. Fourier transform of Boolean functions

We define the Fourier transform of the Boolean function f"(x") at ¢" € IF] to be

ﬁ(cn) = Z (—l)f"(x")+c"-xn-

n n
X"eF)

Obviously, we have ﬁ(c”) = 2" = 2wt(f" + L~). In particular, one has ﬁ(O) =2" = 2wt(f").

First of all, we introduce some notations. We let 7 := F},. Let /, j’ and kK’ be nonnegative integers
such that 1 <k’ < j/ — i’ + 1. Let m and ¢ be nonnegative integers such that r < m. Let X(7’, j',0) := 0,
Y(m,0) :=0,

X, k)= kZ_l IJ—[ xsand Y(m, 1) := 2 ﬁ X;.
r=0 s=i'+r r=1 s=0

Let n be an integer with n > . Then we let

n—

I
I, = Z XsXs+1ee-Xgti-1-
s=0
For any integers i, j with0 < i, j <[ -1, we let

1) =t + X = (= D,n— L) + Y(I - 1, ).

Now we let n > [. It is easy to check that if x,_; = 0, thent, =¢,.; and X(n — (I - 1),n - 1,i)) =0
for any 0 < i <[ - 1. This implies that if x,,_; = 0, then

b+ Xn—U-1),n-1,i)=t, 2.1)
with0 <i<[l-1.If x,_; = 1, then we derive that

i1+ X(n-Ln-2,i+1), ifi=0,1,..,1-2,

tiep + X(n=-ILn=-2,0)+1, ifi=1[1-1. (2:2)

th+Xn—(-1),n-1,i) = {
Lemma 2.1. Let | and n be integers such thatn > 1 > 5. Let i and j be integers suchthat 0 < i, j < [—1.
If0<i<I-2, then

AL = £ (@) + (=D frl e
Ifi=1-1, then

£ = fiH (@) = (Do e,
Proof. We only prove the relation f’il\ olc") = Efg\l(c”‘l) — (=1)t Eo(c”‘l). The remaining relations
can be handled similarly. It follows from (2.1) and (2.2) that

Eo(cn):( Z i Z )(_1)t,1+X(n—(l—1),n—1,l—1)+c"~x"

Xixyo1=0  x"ix,o=1

n—1_,n-1 T n_D I_ n—1_,n-1
— Z(_l)t,,_1+L X + Z(_l)t,,_1+X(n Ln=2,1-1)+1+c,—1+c X"

X1 xn-1
_ —1( .n—1 Cp— -1 n—1
- (;Z,() (C ) - (_1) : 1’11’0(0 )
as desired. Thus Lemma 2.1 is proved. O
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Let (Cpots1s Coots2s - - - » Cpm1) € B 1 If n > 21 — 1, then F' can be written as

2 1
Fl =ty + Z l_[ X(n—14j+i)-

i=1-1 j=1

Now we let (X,_+1, - , X,_1) take all values in F;'. If / = 5, then
—_— 3 -_ -_
Fi(e") = [ [+ Do) fagt @) + (Do (1 + (D) £ ()
s=2
— 2 —
F D+ D e + | D i)
s=1
2 — —
+ (_1)0,174 l—[(_l)cnﬂflrf;t(cn_z‘) + (_1)Cn74+cn71‘](‘1l’l’?4(cn_4)
s=1
3 - 2 -
#| e gt + | | i)
s=1 s=1
2 - 3 - 4 -
+ n(_l)cn—(s-s) . (_l)cn_|f£I4(Cn_4) + n(_1)0»1—(5-s>f3r564(cn—4) + n(_l)cn-sﬁf(cn%)_
s=1 s=1 s=1

If [ > 6, then ﬁ(c”) can be decomposed as follows:

-2 -4 =2 —
Fie) = [ |1+ Do fgg ey + Z [ [ [Ta+Enms e

j=1 t=1 s=j+2
-4 i I=i-2 -
“n—(1- ‘n—s =(-1) —(I-1

> | e [ a+ Enmngy e

i=1 t=1 §=2

-4 j+i<l-4 i 1—-i-2

Cn—(1-t Cn—t Cp—s 1 (l Dy n— (l 1)

+ ﬂ( 1 wﬂ( e [ A+ Enm g e)

=l j= n= §= j+2

-3

:1

(1 £ S D) 4 (= ﬂ( DA D)

~ =
I Q.

-2—-i i

+ Z l_[( 1)Cn (I-t}) n( 1)C'l_t2ﬁf(l\_l)(cn_(l_l))
-3

=2 j=l-3-it

+ (=)D l_[( 1) f] n— (l 1)( n—(I- 1))+ 1_[( 1yer- ‘f" (1= 1)( n—(l- 1))

-

-3
(—1)“t- r)ffi (1= ])(c” (- 1)) " n( 1)<n-tn (=)<t n3(l 1)( n—(l- 1))

:lw

NH
I\)»—-

s Tty D (ent- ”)+ﬂ( Do D (D), (2.3)

=1

AIMS Mathematics Volume 5, Issue 5, 4581-4595.



4585

Now we let ¢ = (0,---,0). Clearly, we have fl.f‘j(xo,...,x,,_l) = f]{’i(xn_l,...,xo). Hence ZZ(O) =
£7:(0). Thus we conclude that if / = 5, then

FI(0) =4£754(0) + 4174(0) + 2/15°(0) + 2£75%(0) + f174(0) + 2£254(0) + f154(0).
And if [ > 6, then

-4 j+i<l-4
FO=3, 3 2700+ 50+ 267500
i=0  j=0
-4 12—
+ Z f;n] (- 1)(0) _I_zzfl’l (- 1)(O)+ﬁn1(1 1)(0) (24)
i=2 jol3—i

Let [x] denote the largest integer that is less than or equal to the real number x. In what follows, we
give some recursive relations about f,(c") for any integer i and j with 0 < i, j < /- 1.

Lemma 2.2. Let n,l,i, j and k be integers such thatl > 5, n > 2,0 <i,j<l—-1land 1 < k < n.

Let ¢" = (Co, ..., Ca1) € Fy such that c,_; = 0. Let c* be the vector consisting of the first k bits of ¢". If
i=1-1, then

=2

5 2s
. 2 i H( l)c’” n (23+1)( n— (2v+1)) + 21—[( 1)‘" [f}n 1l (Cn l) lfl is odd,
e =1 e
2 Z H( I)C” , £h— (2s+1)(cn (2s+1)) + 21—[( 1)en- ,f(;1jl(cn l) lfl is even.
s=1 t=2
Ifi=1-2, then
el I (2s+1>
. Z 1—[ )cn, ( n— (2v+1)) + 21—[( 1)‘" [f}nll (Cn l) lfl is Odd
fin'(cn) — i =2
! z 125 Z(25%1)
Z H )c,Hf(;lj s (Cn—(2s+1)) +2 H(_l)c‘n—rﬁ;l(cn—l)’ ifi is even.
s=1 1=2 ’ =2 :
If0<i<I[-3, then
-2 s
2 H —1)en- tfn (Y+1)( =5ty 4 2 H( 1) tfn l(cn b, ifi=
s=1t=1
& {yes =G n(s+1) s =01 n=(i=1)
2 1l_[ D= fo (e )+2H( D= fo (e )
s=11=1
1
+2 le(—l)“"*'ﬂi‘lf j(c”‘l), ifi=1,
i s — I-1-i — ,
— 2 3 TICDw fo e D) + 2 T (Do (f7 ()
fn.(Cn) = s;l =1 -/ t=2 J
i,J [5]125-1 o n@lv) _(l-i125) i = y
+ Z I (_1)Ln—(l—1+k)f0,j (Cn i+2s ) + lg)(_l)c'l_([_l+k)f}’il,j(cn )),
ifi >2isodd,
s - (s+1) 1 R - (1 ) -
o) [T(=1)f; ("GDy £ 2 H( 1)Cnr( (¢
s=1 t=1
§ 251 , _
+ 22: (_1)c',,_([_i+k)fg;(l—t+2s)(cn—(l—l+23‘)))’ lf‘l > 2 is even.
s=1 k=0 ?
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Proof. Note that ¢,_; = 0. We divide the proof into the following three cases.
Casg 1. i =1 —1. For any integer j with 0 < j < /-1, by Lemma 2.1 we conclude that

T e =E;:1(c"-1) (=D e
FI22) + (=D 2 = (2 + (Do 2 ()
=2(=1)" fo'ff(c”—3) + (=D fz'f;3(c"-3) +(-1)° f,ﬁfj(c"—3))

15

1 2s
=2 1_[( 1)Cnr n— (2s+1)(cn (2s+1)) + l_[( 1)Cnt f}n21+1(cn l+1) + (- 1)1 lf}n]l+1(cn l+1))

s =1 1=2

If [ is even, then by Lemma 2.1 one derives that

=2
2

2s 1
Frey =2 3 [ ]enm @ ey s o [ b s ).
=2

=2

©
—_

If [ is odd, it then follows from Lemma 2.1 that

(5321 25

=2 [ v e <2‘+”>+2H< D),

s=1 t=2

This finishes the proof of Lemma 2.2 in this case.
Casg 2. i =1 —2. Then by Lemma 2.1, we have

T (e =@ + e
=252+ (DR fA () + (=D 2 ()
=2fy () + (1 (BPE) + DU ()

(54 25-1 -1
-2 (1) rfn 23( n—ZS) n 1_[( 1) ,(flnzlﬂ( n— l+1) + (= l)l Zfln 1l+1( n— l+1))
s=1 =1 =2

If [ is even, then one derives that

[%]25—
fia () =2 (=1 fo 2s - 25)+2n( 1yor ff(;z/(cn .
s=1 t=1
If / is odd, then
2s-1 I .
f} ZJ(C ) =2 Z rl( l)cn 'fn 2S(C'”_z‘(") +2 l—[(_l)cmzf}ri—lfj(cn—l).
s=1 t=1 )
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Thus Lemma 2.2 is proved in this case.
Case 3. 0 <i <[-3. Then by Lemma 2.1, we have

T =R @ + D e

I-i-2 s I—1—-i
=2 Z l—[( 1)cn ff(;l](wl)(cn (s+1)) + 1—[( 1)Cnt flnz(l i- l)(cn (I-i- 1)) +f[n 1(l i- 1)(cn (I—i— 1)))
s=1 t=1
-i-2 s I—1—i
=2 Z l_[( I)Ln 1fn (s+1)( n— (s+1)) + 1—[( 1) S (25)
s=1 t=1

Note that 0 < i <[ - 3. From Lemma 2.1 we derive that

Tn—(l—i—l) — 2 n— (l l)( n—(l- z)) + (- l)cn - ,)( lnl(ll lj)( o (- 1)) ln l(j z)( n—(l—i))). (2.6)

If i = 0, then it is easy to see that 7,,__;) = 2]70"31(0"‘1). It follows from (2.5) that

f()](c ) — 22 rl( 1)cn ,f(;l](wl)(cn (s+1)) +2 l—[( I)L” ,f(;;jl(cn l)

s=1 t=1
If i = 1, then by (2.6) and Lemma 2.1, we have
Toogeicny = 205 (D) + 2(= 1yt frol (7)),
Thus from (2.5), we obtain that

fl](c) 22 1_[( 1)c,,, n— (s+1)(cn (s+l))+2l_[( l)c’" n— (l 1)(Cn (- 1))+21—[( 1)0,1 tﬁnll‘](cn 1)

s=1 =1

If 2 <i <[- 3, then by (2.6) and Lemma 2.1, we have

[]2vl

Tn (—icl) _2 n— (l l)( n—(l- l)) + ZZ n( l)C,, (I—i+k) £1— (l l+25)( n—(l— l+2S))

s=1 k=0
+ n(_l)C‘n—(l—H—k)(l + (_1)i+1)ﬁj(cn_1)‘
k=0

Hence we obtain that if i is odd, then

(5] 25-1
To-g-i-ny =2y, (l () + ZZ [ nmem g SR (et 21_[( yor-aion ol ().
s=1 k=0
By (2.5), one deduces that
-i-2 s I—1—i
f,n](c ) =2 Z rl( 1)cnz n— (s+1)( n— (v+1)) +2 l—[( 1)¢n, n— (l z)( n—(1— l))

s=1 t=1
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[5] 25-1 - i
+ (_l)cn—(l—H—k) (;l’;(l—l+2S)(Cn—(l—i+2s)) + rl(_1)cn_(,_,+k)fl,i_ll’j(cn_[)).
S=1 kZO k=0
If i is even, then
i 251
To-q-i-1y = 21y (l l)(c" =0y + 22 1—[( 1 )Cn=ti=i+h f” =i l+20( n=(=iv29))
s=1 k=0
From (2.5) we derive that
-i-2 s I-1—i
fznj(c ) =2 Z l_[( 1)Cn tfn (v+l)(cn (s+1)) +2 1_[( 1)cn, n— (l z)( n—(I- l))
s=1 t=1
i 251 -
+ Z n(_1)Cn—(/—i+k)‘fon’;(l—l"'zs)(Cn—(l—l+2s))).
s=1 k=0
Hence Lemma 2.2 holds in this case.
This completes the proof of Lemma 2.2. 0

Lemma 2.3. Let n,l,i, j and k be integers such that 1 > 5, n >2[, 0<i,j<I—-1land 1 <k < n. Let
= (cos --» Cp-1) € FS such that ¢,y = 1. Let ck denote the first k bits of c". Then

( l)cn 2fln Z(Cn 2) +( 1)1+cn zfl+2](cn 2) lfO <i<l- 3,
(I ) + (-1 ), ifi=1-2,
(526
L@ 2 S T e e 2 [T R )
fie = Y

lfl—l—llSOdd,

2f e 2)+2z T 0o e 23)+2n< Do fd e,

s=2 t=2

lfl—l—llseven.

Proof. We divide the proof into the following three cases.
Case 1. 0 <i <[ - 3. Then by Lemma 2.1 we have

FHe = 151 = e ™)
= fier 2)+< D) - fé‘,z(c” ) = (D )
= (=) [ () 4 (D) e o2 (),

Thus Lemma 2.3 is true in this case.
Case 2. i =[-2. From Lemma 2.1 one deduces that

Fo @) = f1 @™ = e
— &;Z(Cn—2) + (_l)cn 2 n Z(Cn 2) Z(Cn 2) +( 1)2+c,, Zf} 1](Cn 2)
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_( l)c,, zflan(Cn 2) +( I)Ln 2fln12 (cn 2)

Hence Lemma 2.3 holds for this case.
Case 3.1 =1[-1. It follows from Lemma 2.1 that

Fr @) =f21 @) = (=)o ol e
:2]:81’;2(611—2) + (_l)cn_z( Z(Cn 2) " 1](cn 2))

=1

- [5125-1
:2‘]151’]_.2(6'"_2) +2 H( 1)L,, ,fn 25( n— 25‘)
s=2 1=2

+ n( l)c,,, ﬁn l+1(cn l+1)+( l)l Zﬁnll+l(cn l+l))

If [ is even, then one derives that

— (511251 -1 .
flril,j(cn) — 2f&;2(cn—2) ) n — 1) ,fn 25(Cn—2s) ) n(—l)cn_’f&;l(cn_l)
§=2 1=2 =2
as desired.
If / is odd, then

=1 I _1

ﬁ 1](Cn) _ zfngZ(Cn 2) +22 I—[( 1)6,,, n— 2v(cn 25)+21_[( I)C" ; —I{j(cn—l)

s=2 t=2

as required. Hence Lemma 2.3 is proved in this case.
This finishes the proof of Lemma 2.3. O

Lemma 2.4. Let [, n, j be integers such that | > 5, n > 2l and 0 < j < | — 1. Then for integer i with
0<i<lIl-1, wehave

!
f10)=2 Z £173(0). 2.7)
s=2
Proof. It follows from Lemma 2.2 that for any integer j with 0 < j <[ -1, we have
!
fo @ =2) 7O
s=2

Thus (2.7) is true when i = 0 and 0 < j < [ — 1. Note that ]75(0) = fE(O). Then for0 <i <[/-1, one
has

!
fio0) =2 )" fi75(0).
s=2

Then by the definition of j/fif’\j(O) and the assumption n > 2/ — 1, we can conclude that (2.7) holds for
any integer 0 < i, j </ — 1. Hence Lemma 2.4 is proved. O
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In the following, we show that the weight of F}' satisfies a linear recurrence, which is also proved
by Castro, Chapman, Medina and Sepulveda [1].

Proposition 2.5. Let [ and n be integers such that | > 5 and n > 2l. Then
—_— l —
Fr(0) =2 Z Fr=5(0).
s=2

Proof. We only prove the case [ > 6 since the case [ = 5 can be done similarly. Let [ > 6. It then
follows from (2.4) and Lemma 2.4 that

-4 j+i<l—4

ﬁ(o) :22 Z 2[—3—1‘—]Zf;n] 1+1- s(O) + Zfolz I+1- 5(0) + 42 an 1+1- s(O)
i=0 j— s=2 i=0 s=2
-4 1-2-i 1
+22 Z m s(0)+42]¢8111+1 Y(0)+22f}nll+l 3(0)
i=2 j=l-3-i s=2

Then by (2.4), we deduce that

ﬁ(o) :22(2 V 21 3—i— sznj T Y(O)_i_flnllﬂ Y(O)_i_z fn T 5(0)

—

+ f;n] I+1- V(O)+2J¢811[+1 s(o)_i_]c}nllﬂ S‘(O))

The proof of Proposition 2.5 is complete. O

Lemn}g 2.6 (Proposition 3.1, [10]). Let f*(x") be a Boolean function with n variables. If ﬁ(O) =
max{|f"(c")| : " € F}}, then Np = wt(f").

3. Proof of Theorem 1.3

In this section, we show Theorem 1.3. For this purpose, we need the following lemma.

Lemma 3.1. Let n and | be nonnegative integers such that 5 < 1 < 7. Let c" = (co, ...,c,-1) € F. If "
such that ¢c; = 1, then for all 0 < i, j < [ — 1, we have

£ <3 F”” 1(0). (3.1)

Proof. We prove Lemma 3.1 by induction on n. When/ < n <2/ -1 and ¢; # 0, using Maple 17 we
can check that (3.1) holds for all 0 < i, j < [ — 1. For example, the case [ = n = 5 is given in Table 1,
we can check that ]/‘;’]‘.(cs) < 21—4?[2’?1(0) = %. In what follows, we let n > 2[. Assume that Lemma
3.1 holds for any positive integer k less than n — 1. Now we prove that Lemma 3.1 is true for the case
k = n. Since c¢; = 1, we divide the proof into the following two cases.
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—_—

Table 1. The evaluations of ]‘ifj(cs), 0 <i,j <4, where ¢ = (cy,...cs) € Fj with ¢; # 01is

denoted by 3.y ci2".

Sl g« S I N Nelg g e ela ©
SOl AN AN Aa a o [o\ I oN EEEEN o NN o\ I I o\ NN\ o] AN AN AN AN AN O O o (e}
3_ 1 1 L L e e
Qg g o« S N S N I A ©
o
Ol AN A A o (o NN o\ IR o BEREN o\ I BN o\ RN o) A A A a4 a4 O v aAa o o
— 0 1 1 L L I e . | 1 o
LTa T I o I o\ IENEN o\ NN oN BN o\ AN O A vV i ada C AN O v v o a o N
—_ T 1 1 1 [ 1 1 T = |
Al o\ I o IR o NN o\ BENN o | O O O Aa|a o S AN v a o via o O
— 1 1 1 [ N | —_— 1 [ T N D | T
1
=
Sl AN Aa a a o O AN O AaOaa oo SO Al O a4 aAa o a o (o]
— 1 1 1 ] LI | LI | 1
— e
ola q e o v © e A vla © elq e e g qla ©
Nl a v o o AN A O < | aa S VAN A A v o|la o o
[ D T Tl e e | — [ R T N | T
1 1 1
ANl N O v o o O O < O | a o C O N v vV O Vv ia o N
_— _— = — e O
1 1 1
SRR RS RS iy RAql Rl | RO R R HU RH Ry U RO Ry I

Cask 1. ¢,_; = 0. From Lemma 2.2 and Theorem 2.5, then

~10).

1 —_—
_l+l—l(0)) — FF‘;z+l

e

n
l

+ F

——

ln—3+l—1(0) +ooen

—2+1-1 (O) + F

——

n
l

" 2
; .(C )l <ﬁ(F

n
LJj

Hence Lemma 3.1 is true in this case.
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Caske 2. ¢,-1 = 1. Then by Lemma 2.3 and Theorem 2.5 we have

— —_ 1
|f;nj(c )l < (F?—2+l—1(0) + F;z—3+l—l(0) 44 Fn —Il+1- 1(0)) Fn+l 1(0)

21-1

Thus Lemma 3.1 holds for this case.
This finishes the proof of Lemma 3.1. O

Now we present the proof of Theorem 1.3.
Proof of Theorem 1.3. From Lemma 2.6 we conclude that to prove the validity of Theorem 1.3 for
e = 1, it suffices to prove that . .
F}(0) = max{|F}(c")| : " € F3}.

From the definition of F7, we conclude that for any integer 0 < j <n -1,
F?(CO’ Ci, s Cn—]) = F?(Cj’ Cj+1’ ) c(n+j—1))'

Without loss of generality, we suppose that ¢; # 0. From Lemma 3.1, it follows that

1 —
—F7(0).

a—(=1) n—(I-1)
fi (@) < -1

It follows from (2.3) that Fj(c") is the sum of f£/*""(c""D). Hence Fj(c") < Fj(0). Namely,
Theorem 1.3 is true for the case e = 1.
Now lete > 1. Let s = ged(n, e) and = n/s. Then

n—1

Fl (x") = Z XiX(ive)X(i+2e) * * * X(i+(I-1)e)

t—1

M' [N

Xk+ jey X(k+ je+e) Xk+je+2e) * ° * X(k+je+(I-1)e)
J=0

b: kel
'—‘ (=]

D= ) 8 (X Xerkys os X((t-1)etk))- (3.2)
=0

ForO0 <k <s-1,0<j <t~ 1,substituting xu+ e by y(l.k), one gets that

-1

(k). (k) (k) (k)
gk(xk, X{e+k)s «+os X((1— 1)e+k)) Zy y<]+1>y(]+2> y<J+(1 1y

j=0

Let ck (¢, 5 Clewkys s C(a- De+ky) and x,’C = (X, X(ekys s X((—1)e+ky)- FOT any cf( # 0, we have showed
that gk(ck) < gk(O) Then for all ¢" = (cg,...,cho1) # 0, it follows from the definition of Fourier
transform and (3.2) that

.
L G Y R
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—_

s—1 1=

(_ 1 )X<k+ jey x(k+_j@+e>“'x(i+je+(l—l)e)+ci 'XZ |

1
i=0

P
- o

—_

s—1
gl < > &(0) = Fi, (0).
k=0

k=

(=]

Thus Theorem 1.3 is true for the case e > 1.
This concludes the proof of Theorem 1.3. O

4. Final remarks

In Section 2, we present some recursive formulas for the Fourier transform of fl.’fj(x”) and F}(x")
for all positive integers i, j,/ and n such that / > 5,0 < i,j <[—1and n > 2[. So to prove the truth
of Conjectures 1.1 and 1.2, it is enough to show that for any integer n such that / < n < 2] — 1, the
inequality

1 —

el < g Fr () (4.1)

is true when ¢; = 1. When [ is an integer greater than 7 but not too large, by some direct calculations
one can derive that (4.1) holds. But for the general case when [ > 7, one meets some obstructions when
one tries to prove (4.1). Hence we propose the following conjecture.

Conjecture 4.1. Let i, j,I,n be integers such that/ > 7,/ < n <2/-1and 0 <i,j <[-1 and let
¢! = (co,-++ ,c-1) € Fy with ¢; = 1. Then

1 —

e < 5 Fi10).

Let ¢ = p” with p being a prime and r > 1. One can form the exponential sum of a function
F :F, — F, as follows:

Sg,(F) = Z o5 Treg 2, (F(X)
q b

U
X€lFy

where Tr r, represents the field trace function from F, to F,. Castro, Chapman, Medina and
Sepulveda [1] showed that the sequence of {Sg (F})}.» satisfies the linear recurrence whose
characteristic polynomial is given by

-2
x! _ qz(q NS G}
k=0

On the other hand, by Lemma 2.4, we know that for any integer i and j with 0 < i,j < [ — 1, the
sequence {Sg, ( ffj)}nzl satisfies the linear recurrence whose characteristic polynomial is given by

=2
X'-23 x* =0,
k=0

We believe that the same holds for the general finite field. That is, we suggest the following conjecture
as the conclusion of this paper.
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Conjecture 4.2. Let i, j and [ be integers with / > 3 and 0 < i, j < [ — 1. The sequence {S]pq(lej)}nzl
satisfies the linear recurrence whose characteristic polynomial is given by

-2
x! — qz(q _ 1)kX1—2—k - 0.
k=0

Acknowledgments

The authors would like to thank the anonymous referees for careful reading of the manuscript and
helpful comments and corrections that improved the presentation of this paper. Hong was supported
partially by the Fundamental Research Funds for the Central Universities.

Conflict of interest

We declare that we have no conflict of interest.

References

1. FE N. Castro, R. Chapman, L. A. Medina, et al. Recursions associated to trapezoid, symmetric and
rotation symmetric functions over Galois fields, Discrete Math. 341 (2018), 1915-1931.

2. FE N. Castro, L. A. Medina and P. Stanica, Generalized Walsh transforms of symmetric and rotation
symmetric Boolean functions are linear recurrent, Appl. Algebra Eng. Comm., 29 (2018), 433—
453.

3. L. C. Ciungu, Cryptographic Boolean functions: Thus-Morse sequences, weight and nonlinearity,
Ph.D. Thesis, The State University of New York Buffalo, 2010.

4. E. Filiol and C. Fontaine, Highly nonlinear balanced Boolean functions with a good correlation
immunity. In: International Conference on the Theory and Applications of Cryptographic
Techniques, 1403 (1998), 475-488, Springer, Berlin.

5. S. Kavut, S. Maitra and M. D. Yucel, Search for Boolean functions with excellent profiles in the
rotation symmetric class, IEEE T. Inform. Theory, 53 (2007), 1743-1751.

6. H. Kim, S. Park and S. G. Hahn, On the weight and nonlinearity of homogeneous rotation
symmetric Boolean functions of degree 2, Discrete Appl. Math., 157 (2009), 428-432.

7. S. Mariai, T. Shimoyama and T. Kaneko, Higher order differential attack using chosen higher
order differences, International Workshop on Selected Areas in Cryptography, 1556 (1998), 106—
117, Springer-Verlag, Berlin.

8. J.Pieprzyk and C. X. Qu, Fast hashing and rotation-symmetric functions, J. Univers. Comput. Sci.,
5(1999), 20-31.

9. P. Stanica and S. Maitra, Rotation symmetric Boolean functions count and cryptographic
properties, Discrete Appl. Math., 156 (2008), 1567-1580.

10. L. P. Yang, R. J. Wu and S. F. Hong, Nonlinearity of quartic rotation symmetric Boolean functions,
Southeast Asian Bull. Math., 37 (2013), 951-961.

AIMS Mathematics Volume 5, Issue 5, 4581-4595.



4595

11. X. Zhang, H. Guo, R. Feng, et al. Proof of a conjecture about rotation symmetric functions, Discrete
Math., 311 (2011), 1281-1289.

©2020 The Author(s), licensee AIMS Press. This

E% is an open access article distributed under the
% AIMS PI'CSS terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 5, 4581-4595.


http://creativecommons.org/licenses/by/4.0

	Introduction
	Fourier transform of Boolean functions 
	Proof of Theorem 1.3
	Final remarks

