This paper discusses sub-base local reducts in a family of sub-bases. Firstly, definitions of sub-base local consistent sets and sub-base local reducts are provided. Using the sub-base local discernibility matrix, a necessary and sufficient condition for sub-base local consistent sets is presented. Secondly, properties of the sub-base local core are studied. Finally, sub-base local discernibility Boolean matrices are defined, and the calculation method is given. Utilizing sub-base local discernibility Boolean matrices, an algorithm is devised to obtain sub-base local reducts.
Citation: Liying Yang, Jinjin Li, Yiliang Li, Qifang Li. Sub-base local reduct in a family of sub-bases[J]. AIMS Mathematics, 2022, 7(7): 13271-13277. doi: 10.3934/math.2022732
This paper discusses sub-base local reducts in a family of sub-bases. Firstly, definitions of sub-base local consistent sets and sub-base local reducts are provided. Using the sub-base local discernibility matrix, a necessary and sufficient condition for sub-base local consistent sets is presented. Secondly, properties of the sub-base local core are studied. Finally, sub-base local discernibility Boolean matrices are defined, and the calculation method is given. Utilizing sub-base local discernibility Boolean matrices, an algorithm is devised to obtain sub-base local reducts.
[1] | Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 |
[2] | A. Campagner, D. Ciucci, T. Denœux, Belief functions and rough sets: Survey and new insights, Int. J. Approx. Reason., 143 (2022), 192–215. https://doi.org/10.1016/j.ijar.2022.01.011 doi: 10.1016/j.ijar.2022.01.011 |
[3] | W. Żakowski, Approximations in the space (U,), Demonstr. Math. 16 (1983), 761–769. |
[4] | A. H. Tan, J. J. Li, Y. J. Lin, G. P. Lin, Matrix-based set approximations and reductions in covering decision information systems, Int. J. Approx. Reason., 59 (2015), 68–80. https://doi.org/10.1016/j.ijar.2015.01.006 doi: 10.1016/j.ijar.2015.01.006 |
[5] | A. H. Tan, J. J. Li, G. P. Lin, Y. J. Lin, Fast approach to knowledge acquisition in covering information systems using matrix operations, Knowl. Based Syst., 79 (2015), 90–98. https://doi.org/10.1016/j.knosys.2015.02.003 doi: 10.1016/j.knosys.2015.02.003 |
[6] | D. G. Chen, C. Z. Wang, Q. H. Hu, A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets, Inf. Sci., 177 (2007), 3500–3518. https://doi.org/10.1016/j.ins.2007.02.041 doi: 10.1016/j.ins.2007.02.041 |
[7] | C. Z. Zhong, Q. He, D. G. Cheng, Q. H. Hu, A novel method for attribute reduction of covering decision systems, Inf. Sci., 254 (2014), 181–196. https://doi.org/10.1016/j.ins.2013.08.057 doi: 10.1016/j.ins.2013.08.057 |
[8] | T. Yang, Q. G. Li, B. L. Zhou, Related family: A new method for attribute reduction of covering information systems, Inf. Sci., 228 (2013), 175–191. https://doi.org/10.1016/j.ins.2012.11.005 doi: 10.1016/j.ins.2012.11.005 |
[9] | Q. F. Li, J. J. Li, X. Ge, Y. L. Li, Invariance of separation in covering approximation spaces, AIMS Math., 6 (2021), 5772–5785. https://doi.org/10.3934/math.2021341 doi: 10.3934/math.2021341 |
[10] | P. K. Singh, S. Tiwari, Topological structures in rough set theory: A survey, Hacett. J. Math. Stat., 49 (2020), 1270–1294. |
[11] | R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989. |
[12] | J. J. Li, Y. L. Zhang, Reduction of subbases and its applications, Utilitas Math., 82 (2010), 179–192. |
[13] | Y. L. Li, J. J. Li, Y. D. Lin, J. E. Feng, H. K. Wang, A minimal family of sub-bases, Hacett. J. Math. Stat., 49 (2019), 793–807. |
[14] | Y. D. Lin, J. J. Li, L. X. Peng, Z. Q. Feng, Minimal base for finite topological space by matrix method, Fund. Inform., 174 (2020), 167–173. https://doi.org/10.3233/FI-2020-1937 doi: 10.3233/FI-2020-1937 |
[15] | Y. L. Li, J. J. Li, H. K. Wang, Minimal bases and minimal sub-bases for topological spaces, Filomat., 33 (2019), 1957–1965. https://doi.org/10.2298/FIL1907957L doi: 10.2298/FIL1907957L |
[16] | X. D. Zhang, Matrix analysis and applications, Tsinghua University Press, Beijing, 2004 (in Chinese). |