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Abstract: In this paper, we studied a double-phase eigenvalue problem with large variable exponents.
Let /l(lp,,(-),qn(-)) be the first eigenvalues and u, be the first eigenfunctions, normalized by [[u,|l#, = 1.
Under some assumptions on the variable exponents p,(-) and g,(-), we showed that /l(lpn(_)’ () converges
to A, u, converges to u uniformly in the space C“(2) (0 < @ < 1) and u., is a nontrivial viscosity
solution to a Dirichlet co-Laplacian problem. Even in the case where the variable exponents reduce to
the constant exponents, our work is the first one dealing with a double-phase eigenvalue problem with

large exponents.
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1. Introduction

An expedient feature of the p-Laplacian eigenvalue problem is that the eigenfunctions may be
multiplied by constant factors (in other words, the fact that if u is an eigenfunction, so is ku).
Unfortunately, the p(x)-Laplacian eigenvalue problem does not possess this expedient property. It
is important to stress that the loss of the property under consideration is not only a consequence of the
dependence on x, but it can also occur in presence of unbalanced growth. For example, the double
phase operator (that does not depend on x)

div (IVulP ™ Vu + pu(x) [Vul*™ Vur), (1.1)

loses this property. In this paper we are interested in considering that the operator has both peculiarities:
It depends on x and it is unbalanced.
Let Q ¢ R¥Y(N > 2) be a bounded domain with Lipschitz boundary dQ. This article studies an
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eigenvalue problem coming from the minimization of the Rayleigh quotient:

IVully, ’ (1.2)
llutll,
among all u € Wé’(H" (Q),u # 0. These functions belong to an appropriate Musielak-Orlicz Sobolev
space with variable exponents; see its definition in section two. The function a : Q — [0, +c0) is a C!
differentiable function.
Put

Ky(u) := IVully,, kn(e) = llullp,,

Yu pn(x)_z Yu qn(x)_z
el amam |5 ax
Salu) = TR — (1.3)
| | + au@aco [ ax
H, = P 4 a(x)tqn(x)
and define the first eigenvalue as
IVullg
1 _ n
Apuraut) = (1.4)

uewt oy lullgs, '

By a similar proof of Proposition 3.1 in [1], we can show that the following equation

. Vu Ppn(0)-2 Vl/l qn(x)=2 Vl/l
—div [(pn(x) —K,,(u) + gn(x)a(x) X0 ) K,,(u)]
u Pn(x)-2 Gn(x)—2 LA
=ﬁ<pn<->,qn<-»5n(u)m(pn<x> e B A EE] o ),ue wet@)  (1.5)

is the Euler-Lagrange equation corresponding to the minimization of the Rayleigh quotient (1.2), where
A1) = A 0,000

Here, we impose the following hypotheses on the variable exponents p,(x) and g,(x).

(H1): Assume that p,(x) and g,(x) are two sequences of C' functions in Q, ¢,(-) > p,(-) for every
n>1and

Pn(X), gn(x) = 400, uniformly for all x € Q, (1.6)
Vp. )
Pn(¥) — &1(x), uniformly for all x € Q, (1.7)
Pn(x)
Vg, )
4n(X) — &(x), uniformly for all x € Q. (1.8)
qn(X)
(H2): The following two quotients are bounded, namely,
. Pa , dn
limsup — < ky, limsup — < ky, (1.9)
n—+o0 Py n—+oo gy

where for a function g we denote

g =ming(x), g" = max g(x).
xeQ) xeQ
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(H3): We also assume that

_ . ‘N 1
p,>LlLg, >1,—<1+—, (1.10)
Pa N
then we can find a positive and continuous function 8 (0 < 6 < +0c0), such that
lim 49 _ ) (1.11)
n—eo py(X)

uniformly for all x € Q.
The differential operator in (1.5) is the double-phase operator with variable exponents, which can
be given by
div (|VuP" 7 Vu + pu(x) Va7 V) (1.12)

This operator is the classical double phase operator (1.1) when p,(x) and ¢, (x) are constants. Moreover,
special cases of (1.12), studied extensively in the literature, occur when infgu > 0 (the weighted
(g(x), p(x))-Laplacian) or when u = 0 (the p(x)-Laplacian).

The energy functional related to the double-phase operator (1.12) is given by

f [VuP"™ + p(x)| V| "dx, (1.13)
Q

whose integrand switches two different elliptic behaviors. The integral functional (1.13) was first
introduced by Zhikov [2-5], who obtained that the energy density changed its ellipticity and growth
properties according to the point in order to provide models for strongly anisotropic materials.
Moreover, double phase differential operators (1.12) and corresponding energy functionals (1.13)
have several physical applications. We refer to the works of [6] on transonic flows, [7] on quantum
physics and [8] on reaction diffusion systems. Finally, we mention a recent paper that is very close
to our topic. For related works dealing with the double phase eigenvalue problems, we refer to the
works of Colasuonno-Squassina [9], who proved the existence and properties of related variational
eigenvalues. By using the Rayleigh quotient of two norms of Musielak-Orlicz space, the author of this
paper has defined the eigenvalue, which has the same properties as the p-Laplace operator. Recently,
Liu-Papageorgiou has considered an eigenvalue problem for the Dirichlet (p, g(-))—Laplacian by using
the Nehari method (see [10]), a nonlinear eigenvalue problem for the Dirichlet (p, g)—Laplacian with
a sign-changing Carathéodory reaction (see [11]) and a nonlinear eigenvalue problem driven by the
anisotropic (p(-), q(-))—Laplacian (see [12]). Motivated by [9], Yu [13] discuss the asymptotic behavior
of an eigenvalue for the double phase operator. However, to the author’s knowledge, the eigenvalue
problem for variable exponents double phase operator has remained open. Our article fits into this
general field of investigation.
Assume that ¢ : Q — [0, 00) is the distance function, which is given by

0(x) := dist(x, 0Q) = inf |x —y|.
yeoQ

This function is a Lipschitz continuous function. For all x € QQ, we get |[V5| = 1. Define

V 00
A = inf | S0||L Q)

. (1.14)
gewt=@\ o) l@lle@)
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It is known from the paper [1] that

Vol 1
o = NVl : . (1.15)
Iollz=)  max,eq{dist(x, )}
Define
N
Acoleo 1= Z(uoo)x,-(uoo)xj(uoo)xixj-,
ij=1
keo(ut) := ||ullr=) = esssup |ul, (1.16)
xeQ)
Koo(u) = ||Vul|~q) = esssup [Vul, (1.17)
xeQ)
and
koo(tteo) = ||uc>0||L°°(Q) = eSS Sup it
xeQ)

The following are the main results of this paper.

Theorem 1.1. Let u € C(QQ) be a weak solution of problem (1.5), then it is also a viscosity solution of
the problem (3.2).

Theorem 1.2. Let hypotheses (HI)—(H3) be satisfied, ﬂ(lpn(.)’qn(,)) and A, be defined by (1.4) and (1.14),

respectively. In addition, assume that u, normalized by ||u,|l¢;, = 1 is the positive first eigenfunction,
then,

(1)

lim A!

n—oo (Pn

Oan(y = Do (1.18)

(2) there exists a nonnegative function us such that u, € C*(Q) \ {0} and |[uco||r~) = 1;
(3) we can extract a subsequence, which is still denoted by u,, such that

Uy — Uoo, (1.19)

in the space C*(Q), where a (0 < a < 1) is a constant;
(4) we can obtain that the function u.,(x) is a nontrivial viscosity solution of the problem

mln{ — Aool/too + |Vl/too|, _Aoo(uoo)e(m) + |Vl/l00|,

~Aeotten — [IN(V(x0)]) = In(Koo (110 )]V (x0) PV (x0) - fz(xo)} =0, xeQ (1.20)
U = 0, X € (9Q

To the best of our knowledge, this is the first work dealing with the double phase eigenvalue
problem (1.5). The rest of this paper is organized as follows. In section two, we collect some notations
and facts about the Musielak-Orlicz space L (Q) and Wé’W(Q), which will be used in this paper.
Section three and section four are devoted to prove Theorems 1.1 and 1.2, respectively.
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2. Preliminaries

In this section, we recall some known results about the Musielak-Orlicz spaces L (Q) and Wé ’H(Q).
For more detail, please see references [9, 14—17].

We follow the notation of [9]. Let N(£) denote the set of all generalized N-functions. Let us
introduce the nonlinear function H : Q X [0, +c0) — [0, +00) defined as

H(x, 1) := " + a(x)t?™, for all (x,1) € Q x [0, +00),
with 1 < p(x) < g(x) and 0 < a(-) € LY(Q). It is clear that H € N(Q) is a locally integrable and
generalized N-function. In addition, it fulfills the A, condition, namely,
H(x,2t) < 27 H(x, ).
Therefore, in correspondence to H, we define the Musielak-Orlicz space LT(Q) as
Lﬂ(Q) = {u : Q — R measurable : pg(u) < 400},

which can be equipped with the norm

lleellye := inf{y >0 : pg(u/y) < 1},
where

pr(u) := L H(x, lul)dx,

which is called H-modular.
Similarly, we can define the Musielak-Orlicz Sobolev spaces. The space W' (Q) is given by
W'(Q) = {u € L"(Q) such that [Vu| € L"(Q)} ,
with the norm
utll 1.4 = llullge + [[Vadllg.
We denote by Wé’ﬂ(Q) the completion of CF(Q) in WIH(Q). With these norms, the spaces
LH(Q),W'H(Q) and Wé’(H(Q) are separable, reflexive and uniformly convex Banach spaces.
From Proposition 2.16 (ii) in [18], if
+
9 <14 l
p- N

then the following Poincaré-type inequality
lluellge < ClIVullg

holds for all u € Wé’W(Q), where C is a positive constant independent of u. Therefore, in this paper,
we equip W(; ’(H(Q) with the equivalent norm ||Vu||4 for all u € Wg ’(H(Q).

Proposition 2.1. [18] If u € L™(Q) and ps(u) is the H-modular, then the following properties hold.
(1) If u # 0, then ||lullyy = A if, and only if, on(5) = 1;

(2) llullze <1 (= 1;> 1) if, and only if, 03(w) <1 (= 15> 1);

(3) If lullg < 1, then |ully, < pgc(u) < llulll,;

(4) If llully¢ > 1, then lull?, < pru) < Ilull?;

(5) llullee — O if, and only if, py(u) — 0;

(6) llullzr — O if, and only if, py(u) — 0.
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3. The proof of Theorem 1.1
Given u € C(Q) N\ W, ""(Q) and ¢ € C2(Q). Define
Apyo® = div([Ve[" D72V )

= [V OV A + (pa(x) = 2)800¢ + VS In(VP) VS - Vp, ),

Agyn® = div(|Ve|*" V2V g)
= [V D" HIVB A + (gu(x) — 2)Acd + [V In([VP)V - Vg1,

and

op 0p 0*¢
Bl = Zax,axjaxlax,

where A ¢ is the co-Laplacian.
Here, we are now in a position to give the following definition of weak solutions to problem (1.5).

Definition 3.1. We call u € Wé’w” (Q)\{0} a weak solution of problem (1.5) if

Vu P72 Vu |52\ vy . Vy
jg; (Pn(x) ) + gu(a(x) |—— K ) Kan)
Pn(x)=2 Gn(x)=2 uv
—ﬂ(pmq,,())S(u)f(Pn( )‘k( ) + gu(X)alx) |—— " )k( dx (3.1)

is satisfied for all test functions v € Wé’ﬂ” (Q). If u # 0, we say that A(,,)q.c) is an eigenvalue of (1.5)
and that u is an eigenfunction corresponding 10 Ap,).q.)-

In (1.5), we replace u by ¢ and keep S ,,, K, and k, unchanged, then

_pn(x)(K(u))1_pn(X)Ap,,(x)¢ - QH(x)a(x)(K(u))1_qn(X)Aq,,(x)¢

~qn(X)(K ()" ="V ()02 Vp(x) - Va(x)

~(K(u)' """Vl O72V(x) - Vp,(x)

—a()(K ()"~ |Ve(x)| 072V (x) - Vgu(x)

+Pa()(K (@)~ In(K ) V()" O 2V B(x) - V p,(x)

+¢n(X)a(X)(K ()"~ n(K ()| V()| * D 2Vh(x) - Vg (x)

~Ap,annS W (P () k(@) =P p|Pr=2¢5

+qn()a(x) (k)= Op(x)| "2 (x)) = 0, x € Q,
¢ =0, x € 0Q.

We first recall the definition of viscosity solutions. Assume we are given a continuous function
F:RVXxRxRYxS(N) - R,

where S(NV) denotes the set of N X N symmetric matrices.
Consider the problem
F(x,u, Vu, D*u) = 0, (3.2)
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where

F(x,u, Vu, D*u) = — p,(x)(K @) 7P| VPO 4[|V ul* Au
+ (Pa(x%) = 2) Aot + [VulPIn(IVul) Vit - Vp,(x)]}
= gu()a(x)(K W) =" | VD[V ul* Au
+ (gn(%) = 2) Aot + [VulPIn(IVu) Vi - Vg,,(x)]}
= @)K @)~V V- Va(x) = (K@) "2 |Vul" OV - Vp,(x)
— a(x)(K ()"~ \Vu| "2V u - Vg, (x)
+ pa(0)(K (@) " 1n(K )|Vl O~V - Vp,(x)
+ gu(X)a(x)(K ()" " n(K ()| Vul ™V - Vg, (x)
= AprrannS (Pa(x) k() PO uafPr~2y
+ gu(X)a(x) (k)" O 2y), (3.3)

Definition 3.2. Assume that xo € Q, u € C(Q), ¢ € C*(Q) and ¢ € C*(Q).
(1) Let u(xy) = ¥(xo) and suppose that u —  attains its strict maximum value at xy. If

F(x0, y(x0), Vip(x0), D*r(x)) < 0

for all of such xy, then the function u is said to be a viscosity subsolution of Eq (3.2).
(2) Let u(xy) = ¢(xo) and suppose that u — ¢ attains its strict minimum value at x,. If

F(x0, p(x0), Ve (x0), D?*¢(x0)) = 0

for all of such x, then the function u is said to be a viscosity supersolution of Eq (3.2).

(3) If u is both a subsolution and a supersolution of the problem (3.2), then u is a viscosity solution
of the problem (3.2).

Proof of Theorem 1.1. Claim: u is a viscosity supersolution of (3.2).
Let xo € Q and ¢ € C*(). Assume that u(xy) = ¢(xy) and the function u — ¢ obtains its strict
minimum value at the point xy. Our goal is to show that

F(x0, u(xo), Vep(x0), D*¢(x0)) = 0. (3.4)
If
F(xo, u(x0), Vep(x0), D*¢(x0)) < 0,

then by continuity there exists a positive constant r such that B(xy, 2r) C Q, u > ¢ in this ball, except
for the point x, and
F(x,u(x), Vo(x), D*¢p(x)) < 0,

for all x € B(xy,2r). Thus, if x € B(xy, r), we have

1 V(x) Pn(x)=2 oo n(0)-2 -
—le[(pn(x)‘Kf(;‘) + 4n(0a(0) | o
w02 qn(x)-2
u() [P u() .
o0 anS ) (p () |5 + gn(0)a(x) | )kn(u) <0
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If x € dB(xo, r), the minimum value of the function u — ¢ is defined as m. Let ®(x) := ¢(x) + 7.
Note that m > 0 and the above inequality still holds if the function ¢(x) is replaced by ®(x), namely,

pn(x)=2

n(X)=2
. VO (x) va(x) |7 Vd(x)
—le[(pn(x) ' K (u) + qn(‘x)a(x) ' K, (u) ) Kn(”)J
M()C) pn(X)_z M(X) qn x)_z M(X) (3.5)
= Apu). gy 1) (Pn(x) Fott) + gn(0alx) |55 ) tw < O-

Define n(x) := (® — u)* > 0, then if x € dB(xo, r), we have n(x) = 0.
Let

Q; = {x|x € B(xy, r) and ®(x) > u(x)}.

We multiply (3.5) by the function n(x) and integrate over B(xy, r), then the inequality

VO Pn(x)=2 AV gn(x)—2 A0
n + qn -V(® —u)d

fg | (P (x) K. gn(x)a(x) K. ) K. (® —w)dx

f ()2 Gn(x)-2 u
- Apa).annS n u)( (X)) |[—— + g,(x)a(x) ) (®—-udx<0 3.6
o a0, S (W) | P(X) o q o %t )

is true.
If we define

[ (@-w", xe€Bx,n),
mx) = 0, x € Q\ B(xo, 1),

and use 7;(x) as a test function in (3.1), then we get
Vu

fQ 1 (pn(x) K.

- f ﬂ(pno),qn(-))Sn(M)(Pn(X)
Q

Pn(X)=2

+ gu(Dax) |2

K, (u)

pn(x)_Z
+ gu(x)a(x)

w02\ g
) “ - V(D — u)dx

K, (u)

k(1)

qn(x)-2 u
kD) ) kD) (® —u)dx =0. 3.7

Subtracting (3.7) from (3.6), we arrive at
VO

L | pn(x)( )
+ f qn(X)a(X)(
Q)

The first integral is nonnegative due to the elementary inequality

Ppn(X)=2 Vl/l
K, (u)

w2y,

K, (u)

pn(X)-2 A0} Vu

K,(u) 1K,(u)

qn(x)—2 Av/i))
K.u)

) - V(D — u)dx

\
K, (u)

Vu
K, (u)

)V((D —u)dx < 0. (3.8)

{lal’"*a - |bl""*b,a — b) > 0, (3.9)

which holds for all p > 1. Here, we take p = p,(x). We get a contradiction. Hence, (3.4) holds.
Similarly, we conclude that u is a viscosity subsolution of (3.2) and we omit the details. O
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4. The proof of Theorem 1.2

Let n € N be large enough such that p, > r > N, which results in Wé’(H"(Q) — WS”(Q)
(see Proposition 2.16 (1) of Blanco, Gasinski, Harjulehto and Winkert [18]). It follows that u, are
continuous functions. The reason is that the space Wé”(Q) —— C*(Q), 0 < a < 1. Moreover, it is

known (see [9]) that for each n € N fixed, we have u, > 0.
In order to prove Theorem 1.2, we only need to prove the following conclusions.

Lemmad.l. Leth: Q — (1, 00) be a given continuous function, then

19V ) S Vvl

2w

forallve Wy”(Q) and s € (1, p7).

Proof. Since = 1, it follows from Proposition 2.1 that

|VV| )P(x) ( |VV| )Q(ﬁ‘|
+ a(x dx=1.
fgl(llVVIlw 0 IVVllgs
px)
Ll | &<
a [\ IVVlle plo =

Invoking Proposition 2.1 again, we conclude that

e
IVVll#

Thus,

o s
which implies (4.1).
Lemma 4.2. Ifu € L™ (Q), then we have

lim k, (1) = ko (1).
Proof. Step1: To show that the following inequality holds,

lim sup k(1) < koo(ut).

n—oo

4.1)

4.2)

4.3)

4.4)

4.5)

If k,(u) < ko(u), the above inequality is true. Thus, we can assume that k,(u) > k.,(u), and since

gn(x) > pp(x) > 1, we have

u DPn ()C)

! kn(u)

+a(x)

w® N\
dx

€L

)qn ()C) l Pn

il k
) e

(
koo

IA
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L

Pn Pu P
Aty -ty

L

k " (lQl + a(x)dx)

which implies (4.5) holds.
Step2: To show that the following inequality holds,

liminf k,(u) > koo(u). (4.6)

Casel: k. (u) = 0. Itis easy to find that (4.6) holds.
Case2: k. (u) > 0. Given ¢ > 0, there exists a nonempty set 0, C Q such that, for all x € Q,,
|u| > ko(u) — €. Ignoring those indices n that k,, (1) > k..(u) — €, we have

= Q knlzu) " + a(x) knl:l/t) " dX)pln
> fQ knb(tu) Pu(x) v ‘ % 4n(®) dx)pl"
I dx)”l"
= \fg ]%)M;g 5 + a(x) % " dx)p;

_ keo(u) — € ﬁ
= (|Q£| " fg 8 a(x)dx) ,

liminf k(1) > koo (1) — €.

which gives

The arbitrariness of € implies that (4.6) is true. Consequently, (4.4) holds. O

Remark 4.1. If |Vu| € L*(Q), we can argue as Lemma 4.2 to obtain that

lim K,(1) = Ko (u0). 4.7)

Lemma 4.3. If the assumptions of Theorem 1.2 hold, then
(1)(1.18) holds;
(2) there exists a nonnegative function us such that u., € C*(Q) \ {0} and |[ucol|r~) = 1;
(3) we can extract a subsequence, which is still denoted by u,,, such that

Uy = Uoo
in the space C*(Q), where a (0 < a < 1) is a constant.

AIMS Mathematics Volume 9, Issue 1, 1664—-1682.



1674

Proof. Assume for simplicity that the following inequality holds

fdle.
0

Step 1: To show that,
Hmsup A(, ) 0 () < Aco (4.8)
Inserting u(x) = o(x) into (1.4) gives
) IV6llg,
(Pn(), qn()) = 116114 :
Note that by Lemma 4.2 and Remark 4.1, we have
. IV6llz=
limsup A/, . ) < ——— = Aq,.
oo (Pn()s qn(-) ||6||L°°(Q)
Step 2: We now claim that u,, € WS’N(Q).
! < Aw + 1. Thus, we

Since (4.8) holds, for all n € N sufficiently large, we can assume that A oa(r () S

have
1 ”Vun”‘H,,

Ao + 12 A0,0).4,0) = Tl IVttnllr,

Note that the sequence {||Vu, ||} is bounded.
Let r € [1, c0) be arbitrary. We can find an integer n,, for all n > n,, such that p,(-) > r and

1,H, 1,r r
WAT(Q) < WL (Q) e LI(Q).

Hence, the sequence {u,} is bounded in the reflexive Banach space Wé’r(Q). We can find a subsequence,
still defined by {u,}, and a function u., € W,"(Q), such that Vu, — Vue, in W,"(Q) and u, — u, in

L'(Q).
Define
Pn(X)

Sp(x) ;= ————,x € Q,
pn(x) -r
and it follows that ~ .
+_ P - DPn
Sp = T 8, =
Pp—T p:t— —-r
and 1 ]
|15, < max{€Qf s, € }. (4.9)
Using Holder’s inequality and the above inequality, we have
r % 1 r 1 r 1
f Vu,ldx| <[ =+ —]I11] Vel
Q Sn Pn r
1
— (4.10)

r

r 1 L 1
: ( — + __)max{w QT IV
Sn pl’l
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Thus, (4.1) and (4.10) ensure that
IViller@) < 2(1 + QDI Vutnllgr, < 2(1 + [QDA + 1. (4.11)

We choose an arbitrary positive real number r; such that B(x,r;) C €, where the point x € Q is a
Lebesgue point such that |Vu.| € L'(Q), then we find that
1
|B(x, rp)|

f Vit ()ldy < lim inf Vit )y
B(x,r1) n—eo

|B(x, 1)l B(x,r1)
< lig inf |B(x, rl)l‘%lqunlle)
< |B(x, r)|_%2(1 + | QDA + 1). 4.12)

Passing to the limit as  — +oo in the above inequality, gives
1
|B(x, 1) B(x,r1)

Vi, (3)ldy < 2(1 + |Q)(Aw + 1).

Letting r; — 0" in the above inequality, gives
Vit ()] < 2(1 + [Q))(A + 1),

for a.e. x € Q, which implies that Vu,, € L*(Q), as claimed.

Step 3: We want to prove that u, — u. in C*(Q2) (0 < @ < 1) and |[uco||z=) = 1.

Keeping in mind that r € [1, o0) is an arbitrary constant, we can assume that » > N. Therefore, this
combined with the fact that W&”(Q) —— C'(Q)(0 < a < 1) implies that there exists a nonnegative
function u,, € C*(Q) \ {0}, such that u, — u. in C*(QQ) and u,, converges uniformly to u., in Q. Given
e €(0,1), we can find a constant N, € N such that

lun(X) — ue(x)| < &, (4.13)

for all x € Q,n > N,. It follows that

€L

1 o
[p(Hn(un —Ux)] = [f |u, — Moolpn(x) + a(x)|u, — uoolfIn(X)dx]
Q

1
P
< e 4 a(x)sq"(x)dx
Q

1

=@ f (1+ a(x))dx]”"
) 1
- fgu +a(x))dx]p; »
and
oy = o)) < [ fQ (1+ a(x))dx]q%
S U"(l ’ a(x))dx]q% ’ (4.15)
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for all n > N,. Letting n — oo in (4.14) and (4.15) yields

1

1
lim[pgy, (U, — Uso)]?n = lim[pgy, (1, — uss)]% = 0. (4.16)
n—00 n—o0o
Thus, the inequality
Mlunllr, = ol < MMetnllys, = otoollgs, | + Metoolls, = letoollooe)l
<l = toollgs, + lletoollgs, = letool o)l

L

< {1, = V7 + [ty = w155+ el = sl
1 1
< {[pm(un = Ue)" + (o, (y — Ues)] %7} + lkn(teo) = ||ttcollz2 )|
holds. In view of Lemma 4.2 and (4.16), we can get

lteolloi = Lim lay[lzg, = 1. (4.17)

Step 4: To show that lim inf,_,.. /l(lpn(% i) 2 Ao
Since Vu,, — Vu,, in W(;’r(Q), ll4|lz¢, = 1 and the inequality (4.11) holds, we have

. .. .. 1
Vsl < Tim inf [Vallry < liminf [Vasllg, = liminf 48, ¢, .

Letting r — oo and using Proposition 7 in [19] and equality (4.17), we get

IVuelli=) . . .
Ao s Netoollzy <liminf A, 4,0 (4.18)
Thus, (4.8) and (4.18) imply that (1.18) holds. The proof is complete. .

Remark 4.2. We can again argue with Step 3 to obtain
IVitsslls) = 1im [|Vat,[lge, (4.19)

The function u.,(x) also has the following property.

Lemma 4.4. If the assumptions of Theorem 1.2 hold, we can deduce that u.,(x) is a nontrivial viscosity
solution of the problem (1.20).

Proof. For the first part we only need to show that u,, is a viscosity subsolution of (1.20). Let xy €
Q and y € C*(Q). Assume that u,, — i attains its strict maximum value of zero at xy, namely, uq(xo) —

¥(xo) = 0.

Claim: We want to show that
max {Aool!'(x()) — [V (xo)l, (W(x0)" ™ Koo(tte) — [V¥(x0)l,
Aetl(x0) + [IN(IVY(x0)]) — In(K oo (1t ))IVi (x0)|* Vi () -fz(xO)} <0. (4.20)
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By Lemma 4.3, we know that the convergence of u, to u., in € is uniform. Therefore, there exists a
sequence {x,} C Q such that x, — xy (asn — ), u,(x,) = ¥(x,) and u, — attains its strict maximum
value at x,,.

Employing Theorem 1.1, it turns out that for any n € N large enough, u, are continuous viscosity

. . _ l
solutions of (1.5) with Ay, (), ¢, = A(, (.4, ThUs, we have

= D) (K () P [V )PPV () P A () + (P () = 2) Booth(X,)

+ [In(Vy(x)D) — In(K, DIV ()P Vi (x,) - Vpu(x,))

= @u()a(%,) (Ko (14,))' = [V () "IV () P29 () + (@ () — 2) Booth(X,)

+ [In(IVy(x,)) — In(K, )V (x) PV (x,) - Vg (x,))

= (%) (K1) =V (2,2 (x,,) - Va(x,,)

= (K () 7PV ()PP 2V () -V p(,)

= a(x,) (K1) =V (e 2V () - V()

= Ay anoyS n W) P ) (1) =P7 g (o, ) P2 (o, )

= Ay 0. oS 1 W)@ () () (1))~ ()| 2 (x,) > 0. (4.21)

Case 1: Y(xg) = us(x9) > 0.

Continuing (4.21), for n € N sufficiently large, we have |Vi/(x,)| > 0. Let us assume the assertion is
not true, then by (4.21) and continuity, we have /(xy) < 0. This leads to a contradiction.

Dividing both sides of (4.21) by

pn(xn)(pn(xn) - 2)(Kn(un))lip"(x")|V',[/(xn)|p"(x")74’

we see that the following inequality holds

V n 2 n V n n
- PCLEV) s ) = IV ~ I DT )P T - L2
pn(-xn) -2 pn(xn) -2
qn(xn) Vw(xn) n(n)=pnn) |V¢’(xn)|2Aw(xn) Qn(xn) -2
" G| Ko fot) P -2 “(x")(pnm) = o)
|Vw(xn)|2vw(xn) : Va(xn) |V$(Xn)|2 VQn(xn)
T Palin) — 2 ) G =2 Y )
\Y% n\An \Y% n 2V n -V n\An
Ao, — InCK, (DI )P T (3 - ) eI T ) T )
pn(xn) -2 pn(xn) pn(xn) -2
’ Alp, 3.0, ) [P0 (0, P (1,)
1 (Pn(-):qn () n n
= (ﬂ<pn<->,q,,<-») Sl =Gy o) =2
3 2 (Gn(xn)=4)/(pn(xn)—4) n(Xn)—4
| Gx) WY ) [ W)\ -9 K, () 1P
R R e v rrm) Vo)
> 0. (4.22)

Now, letting n — oo, we deduce that
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2
_VCDPAYOR) e o),
pn(xn) - 2
V n n
— (Ve — K DIVECon PV () - —L20)
pn(xn) - 2

— — [In(|V¢(x0)]) — In(Keo (e NIV (x0)* Vi (x0) - €1 (x0),

qn(xn) IV (x,) P 2 (x,) qn(xn) =2 W ()P Vir(x,) - Va(x,)
- pn(xn) {a(xn) pn(xn) - 2 i a(xn)(pn(xn) - Z)Aww(xn) " pn(xn) - 2
V n n
+ o)AV Ce)) — (Ko ) IV Ce) PV (x,) - —2n)
pn(xn) - 2
IV (x,)? Vg, (x,)
¥ a(x")pn(xn) —5 o) qn(X,) }

— — 8 (xo)a(xo) {Aootﬂ(x()) + [In(| Vg (x0)]) = In(K oo (1)) IV (x0) P Vih(x0) - fz(xO)} ;

_ |Vw(xn)|2 V‘ﬁ(xn) : Vpn(xn)
Pn(xn) Pn(xn) -2

- 0.

Taking the lower limit in inequality (4.22) and employing the limits above, we have

V (x) lim infy;— o0 (g0 (Xn)=pu (X))
K‘/’(MO) ¢ (xo)a(xo)

A8t (x0) + (VYO0 = I(Keo eIV ) I (Xo) - Ex(x0))

— {Aeth0) + (VY (x0)D) — (KD (i) P (R0) - €1 ()
( Vl/l(_xo) lim inf}— 0 (g (%)= Pu(xn))

62 (xo)a(xo) + 1)Amw<xo>

Ko (us)
2 > Vw(xo) liminfnﬁOO(qn(xn)fpn(xn))
= [In([Vir(x0)) — In(K oo (oo D1V (x0)|" Vil (x0) [ €1(x0) + 6" (x0)a(xo) &2(x0)
Ko (o)
Al Y(x) (pal)=4 2
. NOX RO LAl Y (X)W (x,)
>(As)’ liminf S, (u,)| —Le2a O " 77 T P2 2n)
n—oo V'vb(xn) pn(xn) -2
- )P i) [ (W Gl 9= K () ot
+ (Aw)’0(x0)a(xp) liminf S ,(u,,) [( ) ]
P e Pa() =2 1\ k() V(x|
>0. (4.23)
Note that by (4.17), (4.19) and u..(xo) = ¥(x9) > 0, we have
Vw(xo) liminfnﬁm(qn(xn)_pn(xn)) Vw(xo) liminfn—wo(l]n(xn)—pn(xn))
Koo(tte) | Asokeo(tteo)
lim inf, 00 (gn (X)) = pn(xn))
< Vii(xo) ntin) =P
Aooum(XO)
Vl//(xo) 1imy, .00 (gn (X)) = Pu(xn))
= 4.24
At Cx0) (29

and
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Vl//(X()) lim infn—>o<>(qn(xn)_pn (xXn)) Vw(xo) lim inf,l_wo(qn ()Cy,)—pn (X))
Koo(tto) T Ao (oo (100))P0)
Vur(x lim inf,,—e0 (gn (X)) —Pn(x,))
< Y(xo)
Aoo(uoo (XO))Q(XO)
Vl//(xo) lim infnaw(Qn(xn)_pn(xn))
AW o))"

Claim:
Aoolﬁ(XO) - |Vlﬁ()€o)| <0.

Assume that A (x9) > [Vir(xp)|, then (4.24) and (1.11) imply

lim inf,Hoo (qn (X, )_pn (xn))

Vii(xo) _0

Koo(ttoo)

and o
1 Pn(Xp)— Gn(Xp)—

Vg (x,)

Thus, choosing £ > 0 small enough, we have

(-

n—oo

(pn (xn)_4)\(qn (xn)_4)

1
Alpargun ¥ (Xn) S lte

Vip(x,)

for all n € N sufficiently large. By (4.29), we get

1 pn(xn)_4
i inf | 0) o) ()
n—co Vl//(xn) pn(-xn) -2
n\An —4
( A ) <pn(xn)—4>\(qn(xn>—4>)q )
g N Y (e Py ()
=liminf )
n=ee qn(-xn) -4 Pulini— =
qn(xn)_4

(1 + 8)qn(xn)_4

>R 3 i
RO e — 4

= 4+ 00,
From (4.23), (4.27) and (4.30), we see that
- {Awlﬁ(xO) + [In(|V(x0)]) = In(Keo (1)) ]IV (x0) Vi (x0) -§1(xO)} > +00,

which is a contradiction. Hence, (4.26) holds.
Claim:

(w(XO))H(XO)KOO(MOO) - |V¢(X0)| <0.

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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Suppose that the above inequality is not true, then we have
W(x,) (gn(xn)=4)/ (pn(xa)—4) K, (u,) (Pn(xXn)=H)/(gn(xn)—4)
i () |

n—0o0 kn(un) |V¢(-xn)|
' i o K (1) (P-4
_ (@n(x0)=4)/ (pn(xn)—4)
ﬁngw ﬁ%ﬂ
_ 6xg) Koo (Uoo) iy
{mm ﬁ%ﬁ

Thus, choosing &; > 0 small enough, we have
() \ @O/ Pal)=4) K (54 y 1 Pan)= )/ anCen)~4)
[(kn(un)) IVlﬁ(xn)I]
for all n € N sufficiently large. We are led to
(g, )|\ =D PnC) =4 K (aay) 1P~ () P ()
[( kn(uy) ) IVlﬁ(xn)I] Pu(Xn) =2

n(Xn)—4 2
s liming (U207 W)Y ()

—00 — 4 Pn(xn)—2
! Gn(Xn) anCon)—4

(1 + &l )(In(xn)_‘"

Qn(xn) -4
= +o00. (4.34)
In view of (Y(x9))** K (1) — |Vi¥(x0)| > 0 and (4.25),
Vlyb(xo) lim infy,— 00 (@ (Xn)—pu(xn))
= 0.
Koo(too)
Therefore, this fact along with (4.23) shows that (4.31) holds. This is a contradiction. Thus we deduce

that (4.32) holds.
Claim:

>1+eg, (4.33)

lim inf

n—oo

= 6(x0)(xo)* lim

Aot (x0) + [I(|VY(x0)]) — In(K oo (1t DIV (x0) P Vi (x0) - €2(x0) < 0. (4.35)
Taking (4.24) and (4.26) into account, we have

Viy(xo0)
Koo(Uteo)
At the same time, by (4.25) and (4.32), we also deduce that (4.36) holds. If we assume that
inequality (4.35) does not hold, then by (4.23) and (4.36), there is a contradiction. Thus, we deduce
that (4.35) holds.

Case 2: Y(xg) = us(x9) = 0.

Note that if [Vi/(xp)| = O (in this case, we have A,¥(xy)=0), the inequality (4.20) trivially holds.
Hence, let us assume that |[Viy/(xp)| > 0, then |[Vy(x,)| > O for n € N large enough. We can use very
similar arguments as Case 1 to conclude that (4.20) holds. The same argument can be used in order to
show that u., is a viscosity supersolution of (1.20). m|

lim inf, 00 (gn (X))~ pa(xn))

= +oco. (4.36)

By Lemmas 4.3 and 4.4, it follows that Theorem 1.2 holds.

Remark 4.3. In the particular case where p,(x) = np(x) and q,(x) = nq(x), Theorems 1.1 and 1.2 are
also true.
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5. Conclusions

In this paper, we studied a double-phase eigenvalue problem with large variable exponents. As
we know, for p-Laplace operator eigenvalue problems, there is an important feature that if u is an
eigenfunction, so is ku, where k is an arbitrary constant. However, the double-phase operator with
variable exponents looses this property. To overcome the above mentioned shortcoming, we defined
the eigenvalue by using the Rayleigh quotient of two norms of Musielak-Orlicz space. Moreover, in
the particular case where p,(-) = p, and ¢,(-) = g,, Theorems 1.1 and 1.2 are also true (see [13]).
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