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1. Introduction

For n ≥ 2, let Rn denote the n-dimensional real vector space. For two column vectors x, y ∈ Rn, we
use ⟨x, y⟩ to denote the inner product of x and y. The ball in Rn with center a and radius r is denoted
by B(a, r). In particular, we write B = B(0, 1) and Br = B(0, r). Let dv be the volume measure on Rn

and dσ the normalized surface measure on the unit sphere S = ∂B.

Given α > 0,m ∈ N and t ∈ R, the t-weighted (α,m)-Gaussian measure dGα,m,t on Rn is given by

dGα,m,t(x) = Cα,m,te−α|x|
m dv(x)

(1 + |x|)t ,

where Cα,m,t is the positive constant to be the normalized volume measure. In particular, if m = 2, t = 0,
dGα,2,0 is the classical Gaussian measure on Rn (cf. [1]).

For λ ≥ 0, we denote by Hλ(Rn) the set of all eigenfunctions of the Laplacian with eigenvalue λ on
Rn, i.e.,

Hλ(Rn) = { f ∈ C2 : ∆ f = λ f },

where ∆ is the ordinary Laplace operator on Rn. Obviously, if λ = 0, H0(Rn) is the set of all harmonic
functions on Rn.
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Let 0 < p < ∞, s > −1 and f be a holomorphic function on the unit disc D of the complex plane C.
The famous Hardy-Littlewood theorem asserts that∫

D

| f (z)|p(1 − |z|2)sdA(z) ≈ | f (0)|p +
∫
D

| f ′(z)|p(1 − |z|2)p+sdA(z), (1.1)

where dA is the normalized area measure on C so that A(D) = 1 (cf. [2]).
It is known that the integral estimate (1.1) plays an important role in the theory of holomorphic

functions. For the generalizations and applications of (1.1) to the spaces of holomorphic functions,
harmonic functions, and solutions to certain PDEs, see [3–10] and the references therein.

Let Cn be the n-dimensional complex vector space. In recent years a special class of holomorphic
function spaces, the so-called holomorphic Fock space F(Cn), has attracted much attention. See [10–16]
for a summary of recent research on F(Cn). For 0 < p < ∞ and α > 0, recall that an entire function f
on Cn is said to belong to the Fock space F(Cn) if

∥ f ∥pp,α =
∫
Cn

∣∣∣ f (z)e−α|z|
2 ∣∣∣pdv(z) < ∞.

In [12], Hu considered an analog of (1.1) in the setting of F(Cn) and proved that

∥ f ∥pp,α ≈ | f (0)|p +
∫
Cn

∣∣∣∇ f (z)(1 + |z|)−1e−α|z|
2 ∣∣∣pdv(z). (1.2)

As a consequence of (1.2), he obtained the boundedness and compactness of Cesàro operators from
one Fock space to another. For the further generalizations of (1.2) to holomorphic Fock spaces with
some general differential weights, see [11, 13–15]. By applying these results, Cho et al. characterized
Fock-type spaces in terms of Lipschitz type conditions and double integral conditions (cf. [13, 14]).

Since the eigenfunctions can be viewed as extensions of holomorphic functions on the complex
vector space, it is interesting to establish analogous of the equivalence of norms (1.1) and (1.2) in the
setting of Hλ(Rn). In [8], Stoll extended (1.1) to the setting of Hλ(B) ( [8, Theorem 5.1]). Furthermore,
by using this result, he established some harmonic majorants criteria for eigenfunctions with finite
Dirichlet integrals on a bounded domain Ω of Rn ( [8, Theorem 5.2]). Motivated by the results in [11–
14], we consider a similar norm equivalence (1.2) in the setting of Hλ(Rn) in this note.

For 1 < p < ∞ and α > 0, the Fock-type space F p
α,m,t(Rn) consists of all f ∈ Hλ(Rn) such that

∥ f ∥p
F p
α,m,t
=

∫
Rn

∣∣∣ f (x)e−α|x|
m ∣∣∣p dv(x)

(1 + |x|)t < ∞.

Especially, when m = 2, t = λ = 0, F p
α,2,0(Rn) becomes the harmonic Fock space (cf. [17]).

Theorem 1.1. Let 1 < p < ∞, α > 0,m ∈ N, t ∈ R. Then

∥ f ∥p
F p
α,m,t
≈ | f (0)|p +

∫
Rn

∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p dv(x)
(1 + |x|)t , (1.3)

for all f ∈ Hλ(Rn).

As an application of Theorem 1.1, we obtain a Lipschitz type characterization for the Fock-type
space F p

α,m,t(Rn).
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Theorem 1.2. Let 1 < p < ∞, α > 0,m ∈ N, q ≥ 0, t ∈ R and f ∈ Hλ(Rn). Then the following two
statements are equivalent on Rn:
(a) f ∈ F p

α,m,t(Rn);
(b) There exists a positive continuous function g ∈ Lp(dGαp,m,t−pq(m−1)) such that

| f (x) − f (y)|
|x − y|

≤ (1 + |x|m−1 + |y|m−1)1+q(g(x) + g(y)
)

for all x, y ∈ Rn with x , y.

For m ∈ N, s ∈ R, r > 0 and f ∈ H0(Rn) (i.e. f is harmonic ), we define

L f (x, y) = f (x) − f (y)

and
Ls

r f (x, y) = [L f (x, y)]es|x|mχEr(x)(y),

where χEr(x) denotes the characteristic function of Euclidean ball Er(x) (see its definition in Section 2).
In our final result, we discuss the double integral characterization for harmonic Fock-type spaces.

Theorem 1.3. Let 1 < p < ∞, α > 0,m ∈ N, t, s ∈ R, q ≥ 0 and f ∈ H0(Rn). Then the following
statements are equivalent on Rn:
(a) f ∈ F p

α,m,t(Rn);
(b) L f ∈ Lp(dGαp,m,t × dGαp,m,t);
(c) Ls

r f ∈ Lp(dGβp,m,γ × dGβp,m,γ), where β = s+α
2 , γ =

t−n(m−1)
2 .

Lipschitz type characterization for Bergman spaces with standard weights on the unit disc D in the
complex plane C in terms of the Euclidean, hyperbolic, and pseudo-hyperbolic metrics was original
established by Wulan and Zhu ( [9, Theorem 1.1]). As an application, double integral
characterizations for weighted Bergman spaces in the unit ball in Cn were proved in [18, 19]. For the
further generalizations of these results to harmonic Bergman space and holomorphic Fock space, we
refer to [3, 4, 6, 13, 14].

The rest of this paper is organized as follows. In Section 2, some necessary terminology and
notation will be introduced. In Section 3, we shall prove Theorem 1.1. The proof of Theorem 1.2 will
be presented in Section 4 by applying Theorem 1.1. The final Section 5 is devoted to the proof of
Theorems 1.3. Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. For nonnegative quantities X and Y , X ≲ Y means that X is
dominated by Y times some inessential positive constant. We write X ≈ Y if Y ≲ X ≲ Y .

2. Preliminaries

In this section, we introduce notations and collect some preliminaries results that involve
eigenfunctions on Rn.

For 0 < p < ∞, λ ≥ 0 and f ∈ Hλ(Rn), the p-th integral mean of f on rS is defined as

Mp( f , r) =
( ∫
S

| f (rξ)|pdσ(ξ)
) 1

p
, 0 < r < ∞.
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Lemma 2.1. Let 1 ≤ p < ∞, λ ≥ 0 and f ∈ Hλ(B). Then both Mp
p( f , r) and Mp

p(∇ f , r) are increasing
with 0 < r < 1.

Proof. We first prove the monotonicity of Mp
p( f , r). Let f ∈ Hλ(B) and Z f be the zero set of f on B.

Then
∆| f |p = p(p − 1)| f |p−2|∇ f |2 + pλ| f |p ≥ 0,

which implies that | f |p is subharmonic on B \ Z f . Note that at each point of Z f the mean value
inequality trivially holds, and thus | f |p is subharmonic on B. It follows from Green’s theorem, we
know that Mp

p( f , r) is increasing with 0 < r < 1.
Now we come to prove the monotonicity of Mp

p(∇ f , r). In view of the definition of Hλ(B), it is easy
to see that if f ∈ Hλ(B), then f ∈ C∞. This gives

∆∂i f = ∂i∆ f = λ∂i f , i ∈ {1, 2, ..., n},

which implies that the partial derivative ∂i f also belongs to Hλ(B). By a discussion similar to the
above, the monotonicity of Mp

p(∇ f , r) follows.

For m ∈ N, r > 0 and a ∈ Rn, the Euclidean ball Er(a) in Rn is defined as

Er(a) =
{
x ∈ Rn : |x − a| <

r
1 + |a|m−1

}
.

Lemma 2.2. Let m ∈ N, a ∈ Rn and r > 0. Then for any x ∈ Er(a),

e|x|
m
≈ e|a|

m
and 1 + |x|m−1 ≈ 1 + |a|m−1.

Lemma 2.3. Let 1 < p < ∞, 0 < α < ∞, k ∈ R,m ∈ N and f be a locally integrable function on
[0,∞). Then there exists a constant C such that∫ ∞

0

∣∣∣∣ ∫ r

0
f (t)dt

∣∣∣∣p(1 + r)ke−αrm
dr ≤ C

∫ ∞

0
| f (r)|p(1 + r)k−(m−1)pe−αrm

dr.

Proof. Let ϕ(r) = (1+ r)ke−αrm
, φ(r) = (1+ r)k−(m−1)pe−αrm

and p′ be the conjugate of p, i.e., 1
p +

1
p′ = 1.

By simple computations, we have

lim
r→∞

∫ ∞
r
ϕ(t)dt

rk−m+1e−αrm =
1
αm

and

lim
r→∞

∫ r

0
φ(t)1−p′dt

r−
k−(m−1)p

p−1 −m+1e
α

p−1 rm
=

p − 1
αm
.

This gives that

lim
r→∞

( ∫ ∞

r
ϕ(r)dr

) 1
p
( ∫ r

0
φ(r)1−p′dr

) 1
p′

=
( 1
αm

) 1
p
( p − 1
αm

) 1
p′ lim

r→∞

(
rk−m+1e−αrm) 1

p
(
r−

k−(m−1)p
p−1 −m+1e

α
p−1 rm) 1

p′

= (
1
αm

)
1
p (

p − 1
αm

)
1
p′ ∈ (0,∞).
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Since
∫ ∞

0
ϕ(r)dr < ∞ and φ(r)1−p′ ∈ C[0,R] for R > 0, it concludes that

sup
r∈[0,∞)

( ∫ ∞

r
ϕ(r)dr

) 1
p
( ∫ r

0
φ(r)1−p′dr

) 1
p′
< ∞.

Applying Riemann-Liouville integral theorem in [20], the assertion of this lemma follows.
We end this section with some inequalities concerning eigenfunctions in Hλ(Rn) which are useful

for our investigations (cf. [8]).

Lemma 2.4. Let 1 ≤ p < ∞, r > 0 and f ∈ Hλ(Rn). Then there exists some positive constant C such
that

(i) | f (x)|p ≤
C
rn

∫
B(x,r)
| f (y)|pdv(y);

(ii) |∇ f (x)|p ≤
C
rn

∫
B(x,r)
|∇ f (y)|pdv(y);

(iii) |∇ f (x)|p ≤
C

rn+p

∫
B(x,r)
| f (y)|pdv(y).

3. Proof of Theorem 1.1

In this section, we divide the proof of Theorem 1.1 into the following two parts.

Proposition 3.1. Let 1 < p < ∞, α > 0,m ∈ N, t ∈ R. Then∫
Rn

∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p dv(x)
(1 + |x|)t ≲

∫
Rn
| f (x)|pe−αp|x|m dv(x)

(1 + |x|)t (3.1)

for all f ∈ Hλ(Rn).

Proof. By the subharmonicity of | f (x)|p and Lemma 2.4, we have

|∇ f (x)|p ≲
(1 + |x|m−1)n+p

ωnrn+p

∫
Er(x)
| f (y)|pdv(y), (3.2)

where ωn is the volume of the unit ball in Rn. It follows Lemma 2.2, (3.2) can be rewritten as∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p ≲ (1 + |x|m−1)n

ωnrn+p

∫
Er(x)
| f (y)|pe−αp|y|mdv(y).

Combing this with Fubini’s theorem, we obtain that∫
Rn

∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p dv(x)
(1 + |x|)t

≲

∫
Rn

(1 + |x|m−1)n

(1 + |x|)t

∫
Er(x)
| f (y)|pe−αp|y|mdv(y)dv(x)
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≲

∫
Rn
| f (y)|pe−αp|y|mdv(y)

∫
Er(y)

(1 + |x|m−1)n

(1 + |x|)t dv(x)

≲

∫
Rn
| f (y)|pe−αp|y|m dv(y)

(1 + |y|)t .

This proves the result.

Proposition 3.2. Let 1 < p < ∞, α > 0,m ∈ N, t ∈ R. Then∫
Rn
| f (x) − f (0)|pe−αp|x|m dv(x)

(1 + |x|)t ≲

∫
Rn

∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p dv(x)
(1 + |x|)t (3.3)

for all f ∈ Hλ(Rn).

Proof. To simplify our notation, set ∂ρ f (ρζ) = ∂ f (ρζ)
∂ρ

, where ρ > 0 and ζ ∈ S. By the fundamental
theorem of calculus, ∫

Rn
| f (x) − f (0)|pe−αp|x|m dv(x)

(1 + |x|)t

≲

∫ ∞

0

∫
S

nrn−1| f (rζ) − f (0)|pe−αprm dσ(ζ)dr
(1 + r)t

≲

∫ ∞

0

∫
S

nrn−1
∣∣∣∣( ∫ r

0
∂ρ f (ρζ)dρ

)
e−αrm
∣∣∣∣p dσ(ζ)dr

(1 + r)t

≲

∫ ∞

0

∫
S

nrn−1
∣∣∣∣( ∫ r

0
|∇ f (ρζ)|dρ

)∣∣∣∣pe−αprm dσ(ζ)dr
(1 + r)t

≲

∫
S

∫ ∞

0
rn−1
∣∣∣∣∇ f (rζ)

∣∣∣∣pe−αprm drdσ(ζ)
(1 + r)t+p(m−1) ,

where the last inequality follows from Lemma 2.3.
Hence, by the monotonicity of Mp

p(∇ f , r), we have∫
Rn
| f (x) − f (0)|pe−αp|x|m dv(x)

(1 + |x|)t

≲

∫ ∞

0
Mp

p(∇ f , r)e−αprm (( 2
3 )n−1 + rn−1)dr

(1 + r)t+p(m−1)

≲
{ ∫ 2

3

0
+

∫ ∞

2
3

}
Mp

p(∇ f , r)e−αprm (( 2
3 )n−1 + rn−1)dr

(1 + r)t+p(m−1)

≲
{
Mp

p(∇ f ,
2
3

) +
∫ ∞

2
3

rn−1Mp
p(∇ f , r)e−αprm dr

(1 + r)t+p(m−1)

}
≲
{ ∫ 1

2
3

+

∫ ∞

2
3

}
rn−1Mp

p(∇ f , r)e−αprm dr
(1 + r)t+p(m−1)

≲

∫
Rn

∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p dv(x)
(1 + |x|)t ,

as required. The proof of this proposition is finished.

Proof of Theorem 1.1. Gathering Propositions 3.1 and 3.2, (1.3) follows.
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4. Lipschitz type characterization

In this section, we discuss the Lipschitz type characterization for the space F p
α,m,t(Rn) by applying

Theorem 1.1.
For x ∈ Rn, r > 0 and m ∈ N, set

Ωr(x) = {y ∈ Rn : |x − y|(1 + |x|m−1 + |y|m−1) < r}.

Obviously, we have Ωr(x) ⊂ Er(x).
Proof of Theorem 1.2. We first prove (b) ⇒ (a). Assume that (b) holds. Fixing x and letting y
approach x in the direction of each real coordinate axis, we get

|∂i f (x)| ≲ (1 + |x|m−1)1+qg(x)

for each i ∈ {1, 2, ..., n}. Thus, we have

|∇ f (x)|
1 + |x|m−1 ≲ (1 + |x|m−1)qg(x), x ∈ B

and ∫
Rn

|∇ f (x)|pe−αp|x|m

(1 + |x|m−1)p

dv(x)
(1 + |x|)t ≲

∫
Rn

(1 + |x|m−1)pq|g(x)|pe−αp|x|m dv(x)
(1 + |x|)t

≲

∫
Rn
|g(x)|pe−αp|x|m dv(x)

(1 + |x|)t−pq(m−1) .

It follows from the assumption g ∈ Lp(dGαp,m,t−pq(m−1)) that∫
Rn

|∇ f (x)|pe−αp|x|m

(1 + |x|m−1)p

dv(x)
(1 + |x|)t < ∞.

Hence f ∈ F p
α,m,t(Rn) by Theorem 1.1.

For the converse, we assume f ∈ F p
α,m,t(Rn). Fix r > 0 and consider any two points x, y ∈ Rn with

y ∈ Ωr(x). Since sy + (1 − s)x ∈ Er(x) for 0 ≤ s ≤ 1, it is given that

| f (x) − f (y)| =
∣∣∣ ∫ 1

0

d f
ds

(sy + (1 − s)x)ds
∣∣∣

≤
√

n|x − y|
∫ 1

0
|∇ f (sy + (1 − s)x)|ds

≲ |x − y| sup{|∇ f (ξ)| : ξ ∈ Er(x)}.

Note that for each ξ ∈ Er(x),

1 + |ξ|m−1 ≈ 1 + |x|m−1 ≈ 1 + |x|m−1 + |y|m−1,

and thus

| f (x) − f (y)| ≤ |x − y|(1 + |x|m−1 + |y|m−1)1+qh(x),
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where

h(x) = C(r) sup
ξ∈Er(x)

|∇ f (ξ)|
(1 + |ξ|m−1)1+q .

If y < Ωr(x), that is,
|x − y|(1 + |x|m−1 + |y|m−1) ≥ r,

then the triangle inequality implies

| f (x) − f (y)|

≤
|x − y|(1 + |x|m−1 + |y|m−1)

r
(| f (x)| + | f (y)|)

≲
|x − y|(1 + |x|m−1 + |y|m−1)1+q

r

( | f (x)|
(1 + |x|m−1)q +

| f (y)|
(1 + |y|m−1)q

)
.

By letting g(x) = h(x) + | f (x)|
r(1+|x|m−1)q , we obtain

| f (x) − f (y)| ≤ |x − y|(1 + |x|m−1 + |y|m−1)q(g(x) + g(y)
)

for all x, y ∈ Rn. It is clear that | f (x)|
r(1+|x|m−1)q ∈ Lp(dGαp,m,t−pq(m−1)) from the assumption f ∈ F p

α,m,t(Rn) and
thus g is the desired function provided that h ∈ Lp(dGαp,m,t−pq(m−1)).

Now, we claim that h ∈ Lp(dGαp,m,t−pq(m−1)). From the definition of Er(x), it is easy for us to find
r1 > r such that Er(ξ) ⊂ Er1(x) for each ξ ∈ Er(x). By Lemmas 2.2 and 2.4, we deduces that

|∇ f (ξ)|p

(1 + |ξ|m−1)p(1+q) ≤ (1 + |ξ|m−1)n−pq
∫

Er(ξ)
| f (y)|pdv(y)

≲ (1 + |x|m−1)n−pq
∫

Er1 (x)
| f (y)|pdv(y).

Taking the supremum over all ξ ∈ Er(x) leads to

|h(x)|p ≲ (1 + |x|m−1)n−pq
∫

Er1 (x)
| f (y)|pdv(y).

Integrating both sides of the above inequality against the measure dGαp,m,t−pq(m−1) and applying Fubini’s
theorem, we have ∫

Rn
|h(x)|pdGαp,m,t−pq(m−1)

=

∫
Rn

∣∣∣∣h(x)e−α|x|
m
∣∣∣∣p dv(x)

(1 + |x|)t−pq(m−1)

≲

∫
Rn

(1 + |x|m−1)n−pqe−αp|x|m

(1 + |x|)t−pq(m−1)

∫
Er1 (x)
| f (y)|pdv(y)dv(x)

≲

∫
Rn
| f (y)|pdv(y)

∫
Er1 (y)

(1 + |x|m−1)n−pqe−αp|x|m

(1 + |x|)t−pq(m−1) dv(x).
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It follows from Lemma 2.2 again that∫
Rn
|h(x)|pdGαp,m,t−pq(m−1) ≲

∫
Rn
| f (y)|pe−αp|y|m dv(y)

(1 + |y|)t ,

which is what we need.
The proof of Theorem 1.2 is complete.

From the proof of Theorem 1.2, the following local version of Theorem 1.2 can be easily derived
for arbitrary q ∈ R.

Theorem 4.1. Let 1 < p < ∞, α > 0,m ∈ N, t, q ∈ R and f ∈ Hλ(Rn). Then the following two
statements are equivalent on Rn:
(a) f ∈ F p

α,m,t(Rn);
(b) There exists a positive continuous function g ∈ Lp(dGαp,m,t−pq(m−1)) such that

| f (x) − f (y)|
|x − y|

≤ (1 + |x|m−1 + |y|m−1)1+q(g(x) + g(y)
)

for all x, y ∈ Rn with y ∈ Ωr(x) and x , y.

5. Double integral characterization

In this section, we shall prove Theorem 1.3.

Theorem 5.1. Let 1 < p < ∞, α > 0,m ∈ N, t ∈ R and f ∈ H0(Rn). Then the following two statements
are equivalent on Rn:
(a) f ∈ F p

α,m,t(Rn);
(b) L f ∈ Lp(dGαp,m,t × dGαp,m,t).

Proof. Let f ∈ H0(Rn). We first assume that (a) holds. Then

∥L f ∥pLp(dGαp,m,t×dGαp,m,t)

=

∫
Rn

∫
Rn
| f (x) − f (y)|pdGαp,m,t(x)dGαp,m,t(y)

≲

∫
Rn

∫
Rn

(| f (x)|p + | f (y)|p)dGαp,m,t(x)dGαp,m,t(y)

≲

∫
Rn
| f (x)|pdGαp,m,t(x)

and thus (b) holds.
Conversely, assume (b) holds. Fixing x ∈ B and replacing f by f − f (x), it follows from Lemma 2.4,

we have

| f (x) − f (0)|p ≲
∫

Er(0)
| f (x) − f (y)|pdv(y)

≲

∫
Er(0)
| f (x) − f (y)|pdGαp,m,t(y)

AIMS Mathematics Volume 7, Issue 8, 15550–15562.



15559

≲

∫
Rn
| f (x) − f (y)|pdGαp,m,t(y).

Integrating both sides of the above against the measure dGαp,m,t(x) gives∫
Rn
| f (x) − f (0)|pdGαp,m,t(x) =

∫
Rn

∫
Rn
| f (x) − f (y)|pdGαp,m,t(y)dGαp,m,t(x),

from which we see that f ∈ F p
α,m,t(Rn). The proof of this theorem is finished.

Now, we come to characterize F p
α,m,t(Rn) in terms of double integral of Ls

r f as follows.

Theorem 5.2. Let 1 < p < ∞, α > 0,m ∈ N, t, s ∈ R and f ∈ H0(Rn). Then the following two
statements are equivalent on Rn:

(a) f ∈ F p
α,m,t(Rn);

(b) Ls
r f ∈ Lp(dGβp,m,γ × dGβp,m,γ), where β = s+α

2 , γ =
t−n(m−1)

2 .

Proof. Let us first assume that (a) holds. Then

∥Ls
r f ∥pLp(dGβp,m,γ×dGβp,m,γ)

=

∫
Rn

∫
Rn
| f (x) − f (y)|pesp|x|mχEr(x)(y)dGβp,m,γ(x)dGβp,m,γ(y)

≲

∫
Rn

∫
Er(x)

(| f (x)|p + | f (y)|p)esp|x|mdGβp,m,γ(y)dGβp,m,γ(x)

≲

∫
Rn

∫
Er(x)
| f (x)|pesp|x|mdGβp,m,γ(y)dGβp,m,γ(x)

+

∫
Rn

∫
Er(x)
| f (y)|pesp|y|mdGβp,m,γ(y)dGβp,m,γ(x).

By applying Lemma 2.2 and Fubini’s theorem, we conclude that∫
Rn

∫
Er(x)
| f (x)|pesp|x|mdGβp,m,γ(y)dGβp,m,γ(x)

≲

∫
Rn
| f (x)|pesp|x|mdGβp,m,γ(x)

∫
Er(x)

e−βp|y|m dv(y)
(1 + |y|)γ

≲

∫
Rn
| f (x)|pdGαp,m,t(x)

and ∫
Rn

∫
Er(x)
| f (y)|pesp|y|mdGβp,m,γ(y)dGβp,m,γ(x)

≲

∫
Rn
| f (y)|pesp|y|mdGβp,m,γ(y)

∫
Er(y)

dGβp,m,γ(x)

≲

∫
Rn
| f (y)|pdGαp,m,t(y).
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Therefore

∥Ls
r∥

p
Lp(Gαp,m,t×Gαp,m,t)

≲

∫
Rn
| f (x)|pdGαp,m,t(x).

Conversely, we assume (b) holds. Fixing x ∈ B and f ∈ H0(Rn), let

gx(y) = [ f (y) − f (x)]es|x|m .

Then it is easy to check that gx(y) ∈ H0(Rn) and ∇gx(x) = ∇ f (x)es|x|m . Applying Lemmas 2.2 and 2.4,
we obtain ( |∇ f (x)|es|x|m

1 + |x|m−1

)p
≤ (1 + |x|m−1)n

∫
Er(x)
| f (y) − f (x)|pesp|x|mdv(y).

By integrating both sides of the above against the measure dG(s+α)p,m,t(x) and Lemma 2.2 again, we see
that ∫

Rn

∣∣∣∣∇ f (x)e−α|x|
m

1 + |x|m−1

∣∣∣∣p dv(x)
(1 + |x|)t

≤

∫
Rn

(1 + |x|m−1)n
∫

Er(x)
| f (y) − f (x)|pesp|x|mdv(y)dG(s+α)p,m,t(x)

≤

∫
Rn

∫
Er(x)
| f (y) − f (x)|pesp|x|mdv(y)dG(s+α)p,m,t−n(m−1)(x)

≤

∫
Rn

∫
Rn
| f (x) − f (y)|pesp|x|mχEr(x)(y)dGβp,m,γ(x)dGβp,m,γ(y).

Hence, by Theorem 1.1, we obtain∫
Rn
| f (x)|pdGαp,m,t(x) ≲ ∥Ls

r f ∥pLp(dGβp,m,γ×dGβp,m,γ)
.

The proof of this theorem is complete.

6. Conclusions

We obtain a norm equivalence for an exponential type weighted integral of an eigenfunction and
its derivative on Rn. By using this result, we characterize Fock-type spaces of eigenfunctions on Rn in
terms of Lipschitz type conditions and double integral conditions. All of these results are extensions
of the corresponding ones in classcial Fock space.
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