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astrophysics and engineering. In this line of research, we introduce generalized fractional kinetic
equations including extended k-Hurwitz-Lerch zeta-matrix functions. By applying the Hadamard
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1. Introduction

In mathematical analysis, mathematical physics, mathematical modelings and engineering
processes, fractional calculus is able to work requisitely in solving certain boundary value problems
or certain integral equations. Although there exist in the literature many definitions for fractional
integral operators, the Riemann-Liouville and Caputo are the most common for fractional integrals.
Among the many fractional integrals operators is the Hadamard fractional integral, the definition of
which goes back to the works of Hadamard in 1892 [1]. Recently, many studies on the Hadamard
fractional integral and its applications in various fields have been achieved, including those by Butzer
et al. [2, 3], Pooseh et al. [4], Farid and Habibullah [5], Azam et al. [6], Abbas et al. [7], Boutiara et
al. [8] and Ahmed et al. [9].

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022850


15521

On the contrary, the mainstream and, perhaps, the most effective approach to the field of
differential equations is fractional calculus approach, which has been recently discussed in
fundamental works (for instance, see [10–12]). It is known that fractional differential equations are
generalizations of differential equations in an arbitrary non-integer-order setting. Among the many
fractional differential equations are the fractional kinetic equations (FKEs). The kinetic
(reaction-type) equations have prime importance as a mathematical tool widely used to describe
several astrophysical and physical phenomena [13]. In [14], the authors considered the FKE involving
the Riemann-Liouville fractional integral. Recently, using various integral transforms, FKEs
comprising a large array of special functions have been extensively applied to elucidate and solve
many significant problems of physical phenomenons (see, e.g., [15–20]).

Nowadays, owing to the significance of the earlier work on FKEs and other important fractional
differential equations, one should note that many researchers became interested in analyzing the scalar
classic cases of the differential equations in a matrix setting. The use of matrix fractional differential
equations (MFDEs) has been applied in several fields such as those related to statistics, physical
phenomena, simulating reduction problems, communication systems and allied sciences; for instance,
see [21–26] and the references cited therein.

In consideration of the aforementioned works, the current study was designed to highlight
establishing an extensive form of the fractional kinetic matrix equation (FKME) involving families of
the Hurwitz-Lerch zeta matrix functions by using the technique of the Hadamard fractional integral
operator via the Mellin integral transform. In addition to these, solutions of the FKMEs under special
conditions of the families of the Hurwitz-Lerch zeta matrix functions have been reported. It is also
worth noting that this work is primarily analytical and designed to develop new properties using the
proposed algorithm, which are needed for future applications.

2. Preliminaries

In this section, we recall some definitions and terminologies that will be used to prove the main
results. Throughout our present work, let N, R+, Z−0 , and C be the sets of positive integers, positive
real numbers, non-positive integers, and complex numbers, respectively, and let N0 := N ∪ {0} and
R+

0 := R+ ∪ {0}. In addition, let Cm×m be the vector space of all of the square matrices of order m ∈ N
with entries contained in C. Further, let I and 0 denote the identity and zero matrices corresponding to
a square matrix of any order, respectively.

If T ∈ Cm×m, the spectrum σ(T) is the set of all eigenvalues of T for which we denote

µ(T) = max{Re(ξ) : ξ ∈ σ(T)} and µ̃(T) = min{Re(ξ) : ξ ∈ σ(T)}, (2.1)

where µ(T) refers to the spectral abscissa of T and for which µ̃(T) = −µ(−T). A matrix T is said to be
a positive stable if and only if µ̃(T) > 0.

Definition 2.1. If T is a positive stable matrix in Cm×m and k ∈ R+, then the k- gamma matrix function
Γk(T) is well-defined as follows (cf. [27]):

Γk(T) =

∫ ∞

0
vT−I e−

vk
k dv, vT−I := exp

(
(T − I) ln v

)
. (2.2)
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If T is a matrix in Cm×m such that T + `kI is an invertible matrix for every ` ∈ N0 and k ∈ R+, then
Γk(T) is invertible, its inverse is Γ−1

k (T), and the k-Pochhammer matrix symbol is defined by

(T)`,k = T(T + kI) · · · (T + (` − 1)kI) = Γk(T + `kI) Γ−1
k (T) (` ∈ N0, k ∈ R+). (2.3)

Definition 2.2. [24, 28] (Fractional matrix power)
For a nonsingular matrix T in Cm×m we define Tν a for an arbitrary real number ν by

Tν = exp(ν log T), where the logarithm is the principal matrix logarithm.
In general, it is not true that (Tν)µ = (Tµ)ν for real ν and µ, although for symmetric positive definite

matrices this identity does hold because the eigenvalues are real and positive.
If X = Tν, does it follow that T = X

1
ν ? Clearly, the answer is no in general because, for example

X = T2, does not imply T = X1/2. Using the matrix unwinding function it can be shown that (Tν)
1
ν = T

for ν ∈ [−1, 1]. Hence the function G(T) = T
1
ν is the inverse function of F(T) = Tν for ν ∈ [−1, 1].

Definition 2.3. Let T be a positive stable matrix in Cm×m. The generalized Riemann ζ matrix function
[29] is defined by

ζ(T, β) =

∞∑
n=0

(β + n)−T , β ∈ C. (2.4)

In particular, by setting β = 1, (2.4) turns into a matrix analogue of the Riemann ζ function.

Definition 2.4. Let T be a positive stable matrix in Cm×m. Then, an extension of the k-gamma function
of a matrix argument (2.2) is defined in [27] as follows:

Γϑk (T ) =

∫ ∞

0
vT−I e

(
− vk

k −
ϑk

kvk

)
dv (ϑ ∈ R+

0 , k ∈ R+). (2.5)

Definition 2.5. [30] Let T, D, E and F be positive stable matrices in Cm×m, such that T +`I and F +`I
are invertible for all ` ∈ N0, σ ∈ R+

0 , k ∈ R+, and α ∈ C \ Z−0 . Then, for |w| < 1, the generalized
extended k-Hurwitz-Lerch ζ− matrix function is defined by:

2Θ
T ;k,α;σ
1

[
D, E

F
; w

]
=

∞∑
n=0

(n + α)−T (D;σ)n,k (E)n,k [(F)n,k]−1 wn

n!
, (2.6)

where (D;σ)n,k is the generalized k-Pochhammer matrix symbols, which are defined as

(D;σ)n,k =



Γσk (D + nI) Γ−1
k (D), (̃µ(D) > 0, σ, k ∈ R+, n ∈ N)

(D)n,k, (σ = 0, k ∈ R+, n ∈ N)

I, (n = 0, σ = 0, k = 1)

(2.7)

Remark 2.1. Some particular cases of (2.6) are in the following representations:
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i- For k = 1 in (2.6), we get the matrix version of the result in [31] as follows

2Θ
T ;α;σ
1

[
D, E

F
; w

]
=

∞∑
n=0

(n + α)−T (D;σ)n (E)n [(F)n)]−1 wn

n!
, (2.8)

where T,D, E, F ∈ Cm×m, α ∈ C \ Z−0 and σ ∈ R+
0 when |w| < 1 and µ̃(T + F − D − E) >

1 when |w| = 1.

ii- If we set σ = 0 in (2.6), it reduces to the following k-analogue of the generalized Hurwitz-Lerch ζ−
matrix function:

2Θ
T ;k,α
1

[
D, E

F
; w

]
=

∞∑
n=0

(n + α)−T (D)n,k (E)n,k [(F)n,k)]−1 wn

n!
, (2.9)

where T,D, E, F ∈ Cm×m, α ∈ C \ Z−0 and k ∈ R+ when |w| < 1 and µ̃(T + F − D − E) >
1 when |w| = 1.

iii- When k = 1 and σ = 0 we obtain the matrix version of the definition in [32] as follows

2Θ
T ;α
1

[
D, E

F
; w

]
=

∞∑
n=0

(n + α)−T (D)n (E)n [(F)n)]−1 wn

n!
, (2.10)

where T,D, E, F ∈ Cm×mand α ∈ C \ Z−0 when |w| < 1 and µ̃(T + F − D − E) > 1 when |w| = 1.

iv- Further, when k = 1 and E = F of (2.6) can be easily seen to yield the following matrix version of
the result in [33]

1Θ
T ;α;σ
0 (D; w) =

∞∑
n=0

(n + α)−T (D;σ)n
wn

n!
, (2.11)

where T, D ∈ Cm×m, σ, α ∈ C \ Z−0 , when |w| < 1 and µ̃(T − D) > 1 when |w| = 1.

v- Further, when σ = 0 in (2.11), it is easily seen to yield the following k- Hurwitz-Lerch ζ− matrix
function which is a generalization of the result in [34]

1Θ
T ;k;α
0 (D; w) =

∞∑
n=0

(n + α)−T (D)n,k
wn

n!
, (2.12)

where T, D ∈ Cm×mand α ∈ C \ Z−0 , when |w| < 1 and µ̃(T − D) > 1 when |w| = 1.

vi- We can easily retrieve the classical Hurwitz-Lerch ζ− function defined in [31] from (2.12), when
T = µ ∈ C1×1 and D = 1 ∈ C1×1.

Definition 2.6. The Mellin transform of a suitable integrable function G(t) is defined [35], as usual,
by

G(δ) =M
{
G(t) : t → δ

}
=

∫ ∞

0
tδ−1
G(t) dt (δ ∈ C), (2.13)
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provided that the improper integral in (2.13) exists. And the inverse Mellin transform is

G(t) =M−1
{
G(δ) : δ→ t

}
=

1
2πi

∫ c+i∞

c−i∞
t−δ G(δ) dδ (c = Re δ). (2.14)

Further, the Mellin convolution of two functions θ(t) and φ(t) is defined as

(θ ∗ φ)(t) =

∫ t

0
θ
( t

x

)
φ(x)

dx
x
. (2.15)

Lemma 2.1. [30] For a matrix R ∈ Cm×m, σ ∈ R+
0 , and k, δ ∈ R+; then, we have

M
{
Γσk (R) : δ

}
= Γk(δI) Γk(R + δI) (̃µ(R + δI) > 0 when k = 1), (2.16)

where Γσk (R) is the extended k-gamma of the matrix argument defined in (2.5).

Theorem 2.1. [30] Under the conditions of the hypothesis in Definition 2.5, the Mellin transform of
the extended k-Hurwitz-Lerch ζ− matrix function is given by

M

{
2Θ

T ;k,α;σ
1

[
D, E

F
; w

]
: σ→ δ

}
= Γk(δ) (D)δ,k 2Θ

T ;k,α;σ
1

[
D + δI, E

F
; w

]
,

(2.17)

where<(δ) > 0 and µ̃(D + δI) > 0 when σ = 0 and k = 1.

Definition 2.7. [35] Let Re(γ) > 0. The left-sided and the right-sided Hadamard fractional integrals
of order γ ∈ C are defined, respectively as(

HIγ+ f
)

(t) =
1

Γ(γ)

∫ t

0

(
log

t
τ

)γ−1 f (τ)
τ

dτ, t > 0,

and (
HIγ− f

)
(t) =

1
Γ(γ)

∫ ∞

t

(
log

τ

t

)γ−1 f (τ)
τ

dτ, t > 0.

Lemma 2.2. [35] If Re(γ) > 0, τ ∈ C, and the Mellin transformM( f )(τ) exists for a function f , then
the following holds true:

M
(

HIγ+ f
)

(τ) = (−τ)−γ (M f ) (τ), Re(τ) < 0,

and
M

(
HIγ− f

)
(τ) = (τ)−γ (M f ) (τ), Re(τ) > 0.

Theorem 2.2. [36] For t ∈ [0, ξ]

M[ f (t)](τ) = F (τ) =

∫ ξ

0
ξ−τtτ−1 f (t)dt

and

f (t) =M−1[F (τ)](t) =
1

2πi

∫ c+i∞

c−i∞

t−τ

τ
F (τ)dτ.
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3. Main results

In this section we are going to study FKEs involving Hadamard fractional integrals associated with
a generalized extended k-Hurwitz-Lerch ζ− matrix functions.

Theorem 3.1. Let Tµ, Dµ, Eµ, Fµ and C be positive stable matrices in Cm×m such that Tµ + `I and
Fµ + `I are invertible for all µ ∈ N, ` ∈ N0 δ, σ ∈ R

+
0 , d, k, ξ ∈ R+ and αµ ∈ C \ Z

−
0 . Then, for

γ ∈ C \ Z−0 , t ∈ [0, ξ] and 2Θ
Tµ;kµ,αµ;σ
1 is generalized from (2.6); the generalized FKME

N(t)I − N0tδ−1
n∏
µ=1

2Θ
Tµ;kµ,αµ;σ
1

[
Dµ, Eµ

Fµ
; dγtγ

]
= −Cγ

HIγt N(t) (3.1)

is solvable. The solution to (3.1) is given by

N(t)I =N0 ξ
δ−1 log(t)

n∏
µ=1

∞∑
s=0

(s + αµ)−Tµ(Dµ;σ)n,kµ(Eµ)n,kµ[(Fµ)n,kµ]
−1

×

(
dγsξγs

s!

)µ ∞∑
r=0

∞∑
`=0

[
−

(
log tC

)γ]r [
log t−(γµs+δ−1)

]`
Γ[1 − (γr + ` + 2)].

(3.2)

Proof. According to Lemma 2.2, if N(z) is the Mellin transform of N(t) we have

M
[

HIγt N(t)
]
(z) = z−γN(z).

Applying the Mellin transform to (3.1), gives

N(z)[I + z−γCγ] =N0

n∏
µ=1

∞∑
s=0

(
s + αµ

)−Tµ
(Dµ;σ)s,kµ(Eµ)s,kµ

[
(Fµ)s,kµ

]−1

×

(
dγs

s!

)µ
M

[
tγµs+δ−1

]
(z).

But, for t ∈ [0, ξ]

M
[
tγµs+δ−1

]
(z) =

ξγµs+δ−1

z + γµs + δ − 1
, z ∈ C.

Hence,

N(z)I = N0

n∏
µ=1

∞∑
s=0

(
s + αµ

)−Tµ
(Dµ;σ)s,kµ(Eµ)s,kµ

[
(Fµ)s,kµ

]−1

×

(
dγs

s!

)µ
ξγµs+δ−1

∞∑
r=0

(−1)rCγr z−γr

z + γµs + δ − 1
.

(3.3)

Since

M−1
[

z−γr

z + γµs + δ − 1

]
(t) =

∫ ∞

0

t−z

z
z−γr

z + γµs + δ − 1
dz

=

∞∑
`=0

[−(γµs + δ − 1)]`
∫ ∞

0
t−zz−(γr+`+2)dz

=

∞∑
`=0

[−(γµs + δ − 1)]`[log t]γr+`+1Γ[1 − (γr + ` + 2)],
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taking the inverse Mellin transform on both sides of (3.3), yields

N(z)I = N0

n∏
µ=1

∞∑
s=0

(
s + αµ

)−Tµ
(Dµ;σ)s,kµ(Eµ)s,kµ

[
(Fµ)s,kµ

]−1

×

(
dγs

s!

)µ
ξγµs+δ−1

∞∑
r=0

(−1)rCγr
∞∑
`=0

[−(γµs + δ − 1)]`

× [log t]γr+`+1Γ[1 − (γr + ` + 2)],

which is the targeted result of (3.2). �

Continuing the same process, we obtain the following corollaries.

Corollary 3.1. Let Tµ, Dµ, Eµ, Fµ and C be positive stable matrices in Cm×m such that Tµ + `I and
Fµ + `I are invertible for all µ ∈ N, ` ∈ N0, σ ∈ R+

0 , d, k, ξ ∈ R+ and αµ ∈ C \ Z−0 . Then, for γ ∈ C \ Z−0
and t ∈ [0, ξ] the generalized FKE

N(t)I − N0

n∏
µ=1

2Θ
Tµ;kµ,αµ;σ
1

[
Dµ, Eµ

Fµ
; dγtγ

]
= −Cγ

HIγt N(t) (3.4)

is solvable. The solution to (3.4) is given by

N(t)I = N0 log(t)
n∏
µ=1

∞∑
s=0

(s + αµ)−Tµ(Dµ;σ)n,kµ(Eµ)n,kµ[(Fµ)n,kµ]
−1

×

(
dγsξγs

s!

)µ ∞∑
r=0

∞∑
`=0

[
−

(
log tC

)γ]r [
log t−(γµs)

]`
Γ[1 − (γr + ` + 2)].

(3.5)

Corollary 3.2. Let T , D, E, F and C be positive stable matrices in Cm×m such that T + `I and F + `I
are invertible for all ` ∈ N0, δ, σ ∈ R+

0 , d, k, ξ ∈ R+ and α ∈ C \ Z−0 . Then, for γ ∈ C \ Z−0 and t ∈ [0, ξ]
the generalized FKE

N(t)I − N0tδ−1
2Θ

T ;k,α;σ
1

[
D, E

F
; dγtγ

]
= −Cγ

HIγt N(t) (3.6)

is solvable, and 2Θ
T ;k,α;σ
1 is as defined in (2.6). The solution to (3.7) is given by

N(t)I =N0ξ
δ−1 log(t)

∞∑
s=0

(s + α)−T (D;σ)n,k(E)n,k[(F)n,k]−1

×

(
dγsξγs

s!

)µ ∞∑
r=0

∞∑
`=0

[
−

(
log tC

)γ]r [
log t−(γµs+δ−1)

]`
Γ[1 − (γr + ` + 2)].

(3.7)

Corollary 3.3. Let T , D, E, F and C be positive stable matrices in Cm×m such that T + `I and F + `I
are invertible for all ` ∈ N0, σ ∈ R+

0 , d, k, ξ ∈ R+, and α ∈ C \ Z−0 . Then, for γ ∈ C \ Z−0 and t ∈ [0, ξ]
the generalized FKE

N(t)I − N0 2Θ
T ;k,α;σ
1

[
D, E

F
; dγtγ

]
= −Cγ

HIγt N(t) (3.8)
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is solvable, and 2Θ
T ;k,α;σ
1 as defined (2.6). The solution to (3.8) is given by

N(t)I = N0 log(t)
∞∑

s=0

(s + α)−T (D;σ)n,k(E)n,k[(F)n,k]−1

×

(
dγsξγs

s!

)µ ∞∑
r=0

∞∑
`=0

[
−

(
log tC

)γ]r [
log t−(γµs)

]`
Γ[1 − (γr + ` + 2)].

(3.9)

Theorem 3.2. Let T , D, E, F and C be positive stable matrices in Cm×m such that T + `I and F + `I
are invertible for all ` ∈ N0, σ ∈ R+

0 , k, ξ ∈ R+ and α ∈ C \ Z−0 . Then, for γ ∈ C \ Z−0 and 2Θ
T ;k,α;σ
1 as

defined in (2.6) the generalized FKE

N(σ)I − N0 2Θ
T ;k,α;σ
1

[
D, E

F
; w

]
= −Cγ

HIγσN(σ) (3.10)

is solvable and its solution is given by

N(z)I = N0

∞∑
n=0

∞∑
r=0

(−1)rCγr(n + α)−T
{
(D;σ)n,k ∗

(
logσ

)γr−1
}

(E)n,k
[
(F)n,k

]−1 wn

n!
, (3.11)

where ∗ refers to (2.15).

Proof. Applying the Mellin transform to (3.10) gives

N(z)
[
I + Cγz−γ

]
= N0

∞∑
n=0

(n + α)−T Γ−1
k (D)M

[
Γσk (D + nI)

]
× (E)n,k

[
(F)n,k

]−1 wn

n!
,

which can be rewritten as

N(z)I = N0

∞∑
n=0

∞∑
r=0

(−1)rCγr(n + α)−T Γ−1
k (D)

{
z−γrM

[
Γσk (D + nI)

]}
×

× (E)n,k
[
(F)n,k

]−1 wn

n!
.

Applying the Mellin convolution theorem (2.15), we get

N(z)I = N0

∞∑
n=0

∞∑
r=0

(−1)rCγr(n + α)−T Γ−1
k (D)

{
Γσk (D + nI) ∗

(
logσ

)γr−1
}

× (E)n,k
[
(F)n,k

]−1 wn

n!
,

which is the targeted result of (3.11). �

Using the same argument, we obtain the following corollaries.
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Corollary 3.4. Let T , D, E, F and C be positive stable matrices in Cm×m such that T + `I and F + `I
are invertible for all ` ∈ N0, σ ∈ R+

0 and α ∈ C \ Z−0 . Then, for γ ∈ C \ Z−0 and 2Θ
T ;α;σ
1 as defined

by (2.8) the generalized FKE

N(σ)I − N0 2Θ
T ;α;σ
1

[
D, E

F
; w

]
= −Cγ

HIγσN(σ) (3.12)

is solvable and its solution is given by

N(z)I = N0

∞∑
n=0

∞∑
r=0

(−1)rCγr(n + α)−T
{
(D;σ)n ∗

(
logσ

)γr−1
}

(E)n [(F)n]−1 wn

n!
, (3.13)

where ∗ refers to (2.15).

Corollary 3.5. Let T , D and C be positive stable matrices in Cm×m such that T + `I is invertible for all
` ∈ N0, σ ∈ R+

0 , ξ ∈ R
+ and α ∈ C \ Z−0 . Then, for γ ∈ C \ Z−0 and 1Θ

T ;α;σ
0 as defined by (2.11) the

generalized FKE
N(σ)I − N0 1Θ

T ;α;σ
0 [D; w] = −Cγ

HIγσN(σ) (3.14)

is solvable and its solution is given by

N(z)I = N0

∞∑
n=0

∞∑
r=0

(−1)rCγr(n + α)−T
{
(D;σ)n ∗

(
logσ

)γr−1
} wn

n!
. (3.15)

where ∗ refers to (2.15).

Remark 3.1. Similarly, and using special cases in Remark 2.1, we can indicate other results similar
to Theorem 3.1 and Theorem 3.2.

4. Conclusions

Considering the efficiency and high significance of FKEs in various fields of applied science and
engineering, and as motivated by recent studies [19, 20, 30], we employed the Hadamard fractional
integral operator via the Mellin integral transform to discuss the generalization of some FKEs including
families of Hurwitz-Lerch zeta matrix functions. Solutions to certain FKMEs involving families of
Hurwitz-Lerch zeta matrix functions have also been established. Further, our main findings under
suitable matrix parametric constraints, yielded numerous known and new results through the use of
zeta matrix functions that may prove to be very useful for applications in various fields of physics,
engineering and technology.
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