Research article Special Issues

Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure

  • Received: 28 April 2023 Revised: 29 August 2023 Accepted: 07 September 2023 Published: 25 September 2023
  • MSC : Primary 42B25, 42B35; Secondary 46E30, 47G10

  • In this paper, we introduce variable Gaussian Besov-Lipschitz $ B_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}), $ i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents $ p(\cdot) $ and $ q(\cdot) $, under certain regularity conditions on the functions $ p(\cdot) $ and $ q(\cdot) $. The condition on $ p(\cdot) $ is associated with the Gaussian measure and was introduced in [3]. Trivially, they include the Gaussian Besov-Lipschitz $ B_{p, q}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p, q}^{\alpha}(\gamma_{d}) $ for $ p, q $ constants, which were introduced and studied in [10]. We consider some inclusion relations of those spaces and finally prove some interpolation results for them.

    Citation: Ebner Pineda, Luz Rodriguez, Wilfredo Urbina. Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure[J]. AIMS Mathematics, 2023, 8(11): 27128-27150. doi: 10.3934/math.20231388

    Related Papers:

  • In this paper, we introduce variable Gaussian Besov-Lipschitz $ B_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}), $ i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents $ p(\cdot) $ and $ q(\cdot) $, under certain regularity conditions on the functions $ p(\cdot) $ and $ q(\cdot) $. The condition on $ p(\cdot) $ is associated with the Gaussian measure and was introduced in [3]. Trivially, they include the Gaussian Besov-Lipschitz $ B_{p, q}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p, q}^{\alpha}(\gamma_{d}) $ for $ p, q $ constants, which were introduced and studied in [10]. We consider some inclusion relations of those spaces and finally prove some interpolation results for them.



    加载中


    [1] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017
    [2] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, Basel, 2013.
    [3] E. Dalmasso, R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integr. Transf. Spec. F., 28 (2017), 403–420. https://doi.org/10.1080/10652469.2017.1296835 doi: 10.1080/10652469.2017.1296835
    [4] L. Diening, P. Harjulehto, P. Hästö, M. R${\rm{\dot u}}$žička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2017 (2011).
    [5] L. Diening, S. Samko, Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 10 (2007).
    [6] D. Drihem, Variable Triebel-Lizorkin-type spaces, B. Malays. Math. Sci. Soc. 43 (2020), 1817–1856. https://doi.org/10.1007/s40840-019-00776-y
    [7] A. E. Gatto, E. Pineda, W. Urbina, Riesz potentials, Bessel potentials and fractional derivatives on Besov-Lipschitz spaces for the Gaussian measure, Recent Advances and Harmonic Analysis and Applications, Springer Proceedings in Mathematics and Statistics, Springer, New York, 25 (2013), 105–130.
    [8] J. Moreno, E. Pineda, W. Urbina, Boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup on variable Lebesgue spaces with respect to the Gaussian measure and consequences, Rev. Colomb. Mat., 55 (2021), 21–41. https://doi.org/10.15446/recolma.v55n1.99097 doi: 10.15446/recolma.v55n1.99097
    [9] E. Pineda, L. Rodriguez, W. Urbina, Boundedness of Gaussian Bessel potentials and Bessel fractional derivatives on variable Gaussian Besov-Lipschitz spaces, arXiv: 2205.11752, 2022. https://doi.org/10.48550/arXiv.2205.11752
    [10] E. Pineda, W. Urbina, Some results on Gaussian Besov-Lipschitz and Gaussian Triebel-Lizorkin spaces, J. Approx. Theor., 161 (2009), 529–564. https://doi.org/10.1016/j.jat.2008.11.010 doi: 10.1016/j.jat.2008.11.010
    [11] M. R${\rm{\dot u}}$žička, Electrorheological fluids: Motheling and mathematical theory, Lecture Notes in Mathematics, Springer, Verlag, Berlin, 1748 (2011).
    [12] E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press. Princeton, New Jersey, 1970.
    [13] Q. Sun, C. Zhuo, Extension of variable Triebel-Lizorkin-type space on domains, B. Malay. Math. Sci. Soc., 45 (2022), 201–216. https://doi.org/10.1007/s40840-021-01177-w doi: 10.1007/s40840-021-01177-w
    [14] H. Triebel, Theory of function spaces, Birkhäuser Verlag, Basel, 1983.
    [15] H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel, 1992.
    [16] W. Urbina, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer Verlag, Switzerland AG, 2019.
    [17] J. Xu, The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 19 (2008), 599–605. https://doi.org/10.1080/10652460802030631 doi: 10.1080/10652460802030631
    [18] J. Xu, Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 511–522.
    [19] J. Xu, X. Yang, The $B^u_\omega$ type Morrey-Triebel-Lizorkin spaces with variable smoothness and integrability, Nonlinear Anal., 202 (2021), 112098.
    [20] J. Xu, X. Yang, Variable exponent Herz type Besov and Triebel-Lizorkin spaces, Georgian Math. J., 25 (2018), 135–148. https://doi.org/10.1515/gmj-2016-0087 doi: 10.1515/gmj-2016-0087
    [21] D. Yang, C. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840–1898. https://doi.org/10.1016/j.jfa.2015.05.016 doi: 10.1016/j.jfa.2015.05.016
    [22] D. Yang, C. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146–202. https://doi.org/10.15352/bjma/09-4-9 doi: 10.15352/bjma/09-4-9
    [23] V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987). https://doi.org/10.1070/IM1987v029n01ABEH000958
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(912) PDF downloads(55) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog