In this paper, we introduce variable Gaussian Besov-Lipschitz $ B_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}), $ i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents $ p(\cdot) $ and $ q(\cdot) $, under certain regularity conditions on the functions $ p(\cdot) $ and $ q(\cdot) $. The condition on $ p(\cdot) $ is associated with the Gaussian measure and was introduced in [
Citation: Ebner Pineda, Luz Rodriguez, Wilfredo Urbina. Variable exponent Besov-Lipschitz and Triebel-Lizorkin spaces for the Gaussian measure[J]. AIMS Mathematics, 2023, 8(11): 27128-27150. doi: 10.3934/math.20231388
In this paper, we introduce variable Gaussian Besov-Lipschitz $ B_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}) $ and Triebel-Lizorkin spaces $ F_{p(\cdot), q(\cdot)}^{\alpha}(\gamma_{d}), $ i.e., Gaussian Besov-Lipschitz and Triebel-Lizorkin spaces with variable exponents $ p(\cdot) $ and $ q(\cdot) $, under certain regularity conditions on the functions $ p(\cdot) $ and $ q(\cdot) $. The condition on $ p(\cdot) $ is associated with the Gaussian measure and was introduced in [
[1] | R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl., 56 (2008), 874–882. https://doi.org/10.1016/j.camwa.2008.01.017 doi: 10.1016/j.camwa.2008.01.017 |
[2] | D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces foundations and harmonic analysis, Applied and Numerical Harmonic Analysis, Birkhäuser-Springer, Basel, 2013. |
[3] | E. Dalmasso, R. Scotto, Riesz transforms on variable Lebesgue spaces with Gaussian measure, Integr. Transf. Spec. F., 28 (2017), 403–420. https://doi.org/10.1080/10652469.2017.1296835 doi: 10.1080/10652469.2017.1296835 |
[4] | L. Diening, P. Harjulehto, P. Hästö, M. R${\rm{\dot u}}$žička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2017 (2011). |
[5] | L. Diening, S. Samko, Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal., 10 (2007). |
[6] | D. Drihem, Variable Triebel-Lizorkin-type spaces, B. Malays. Math. Sci. Soc. 43 (2020), 1817–1856. https://doi.org/10.1007/s40840-019-00776-y |
[7] | A. E. Gatto, E. Pineda, W. Urbina, Riesz potentials, Bessel potentials and fractional derivatives on Besov-Lipschitz spaces for the Gaussian measure, Recent Advances and Harmonic Analysis and Applications, Springer Proceedings in Mathematics and Statistics, Springer, New York, 25 (2013), 105–130. |
[8] | J. Moreno, E. Pineda, W. Urbina, Boundedness of the maximal function of the Ornstein-Uhlenbeck semigroup on variable Lebesgue spaces with respect to the Gaussian measure and consequences, Rev. Colomb. Mat., 55 (2021), 21–41. https://doi.org/10.15446/recolma.v55n1.99097 doi: 10.15446/recolma.v55n1.99097 |
[9] | E. Pineda, L. Rodriguez, W. Urbina, Boundedness of Gaussian Bessel potentials and Bessel fractional derivatives on variable Gaussian Besov-Lipschitz spaces, arXiv: 2205.11752, 2022. https://doi.org/10.48550/arXiv.2205.11752 |
[10] | E. Pineda, W. Urbina, Some results on Gaussian Besov-Lipschitz and Gaussian Triebel-Lizorkin spaces, J. Approx. Theor., 161 (2009), 529–564. https://doi.org/10.1016/j.jat.2008.11.010 doi: 10.1016/j.jat.2008.11.010 |
[11] | M. R${\rm{\dot u}}$žička, Electrorheological fluids: Motheling and mathematical theory, Lecture Notes in Mathematics, Springer, Verlag, Berlin, 1748 (2011). |
[12] | E. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press. Princeton, New Jersey, 1970. |
[13] | Q. Sun, C. Zhuo, Extension of variable Triebel-Lizorkin-type space on domains, B. Malay. Math. Sci. Soc., 45 (2022), 201–216. https://doi.org/10.1007/s40840-021-01177-w doi: 10.1007/s40840-021-01177-w |
[14] | H. Triebel, Theory of function spaces, Birkhäuser Verlag, Basel, 1983. |
[15] | H. Triebel, Theory of function spaces II, Birkhäuser Verlag, Basel, 1992. |
[16] | W. Urbina, Gaussian harmonic analysis, Springer Monographs in Mathematics, Springer Verlag, Switzerland AG, 2019. |
[17] | J. Xu, The relation between variable Bessel potential spaces and Triebel-Lizorkin spaces, Integr. Transf. Spec. F., 19 (2008), 599–605. https://doi.org/10.1080/10652460802030631 doi: 10.1080/10652460802030631 |
[18] | J. Xu, Variable Besov and Triebel-Lizorkin spaces, Ann. Acad. Sci. Fenn. Math., 33 (2008), 511–522. |
[19] | J. Xu, X. Yang, The $B^u_\omega$ type Morrey-Triebel-Lizorkin spaces with variable smoothness and integrability, Nonlinear Anal., 202 (2021), 112098. |
[20] | J. Xu, X. Yang, Variable exponent Herz type Besov and Triebel-Lizorkin spaces, Georgian Math. J., 25 (2018), 135–148. https://doi.org/10.1515/gmj-2016-0087 doi: 10.1515/gmj-2016-0087 |
[21] | D. Yang, C. Zhuo, W. Yuan, Besov-type spaces with variable smoothness and integrability, J. Funct. Anal., 269 (2015), 1840–1898. https://doi.org/10.1016/j.jfa.2015.05.016 doi: 10.1016/j.jfa.2015.05.016 |
[22] | D. Yang, C. Zhuo, W. Yuan, Triebel-Lizorkin type spaces with variable exponents, Banach J. Math. Anal., 9 (2015), 146–202. https://doi.org/10.15352/bjma/09-4-9 doi: 10.15352/bjma/09-4-9 |
[23] | V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR-Izvestiya, 29 (1987). https://doi.org/10.1070/IM1987v029n01ABEH000958 |