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1. Introduction

Before [9] the study of Besov—Lipschitz and Triebel-Lizorkin Gaussian spaces had not been
extended to the context of variable exponents since there was no condition on the exponent functions
p(-) and ¢g(-) that allowed proving the independence with respect to the integer k > « in the definition
of these spaces.

By considering the condition on p(:) introduced in [3] and the condition on ¢(-) presented in [4] to
obtain the variable Hardy’s inequalities, it was possible to prove in [9] that the definition of the spaces
is independent of k and in this way extend the results in [8] to the variable context.

This condition on p(-) is closely related to the Gaussian measure. Examples of a large family of
exponent (non-constant) functions that satisfy this condition are shown in [3].

Once we have the Gaussian Besov—Lipschitz spaces with these conditions, we were able to obtain
the boundedness of Gaussian Bessel potentials and fractional derivatives and thus extend the results
in [6] to the variable context.
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By changing the conditions on the exponents p(-) and ¢(-), we would first have to prove that the
spaces corresponding to these new conditions are well defined, obtaining properties analogous to those
of [9], and then study the boundedness of the operators.

When trying to extend these results to other function spaces, for example, for Laguerre or Jacobi
measures, we would need conditions on the exponent p(-) that are associated with those measures, then
study the properties of the new spaces and finally obtain the boundedness of the operators.

In a future work we will study the boundedness of these operators on Gaussian Triebel-Lizorkin
spaces with variable exponents and thus extend the respective results obtained in [6] for
Triebel-Lizorkin.

Our work provides new function spaces that can be the habitat for solutions of partial differential
equations or differential integral equations. We still need to study the boundedness of the Gaussian
Riesz potentials and their fractional derivative in these spaces as well as the Littlewood—Paley Gaussian
function g.

For a deeper dive into these and other related topics, see [1,5, 12].

In classical harmonic analysis we study the notions of semigroups, covering lemmas, maximal
functions, Littlewood—Paley functions, spectral multipliers, fractional integrals and derivatives,
singular integrals, etc., in the Lebesgue measure space (RY, B(RY), dx), where B(R?) is the Borel o--
d a2
algebra on R and consider the Laplacian operator, A, = Z %

k

k=1
The Bessel potential of order B > 0, 3, is defined as

Js =T -A)P?, with Iy = L. (1.1)
For f € LP(R?), J5(f) = Gp = f, where the kernel Gy is given by,

1 1 © 2 dt
—nllxll*/t ~t/4n (~d+B)/2 d
t ,X€ER
(4m)pl? F(E/Z)fo ¢ ¢ .

where for x = (x1,---,x2) € R%, |Ixll = /2 +--- + x2 is the Euclidean norm on R?. The Potential

spaces L} (R9) are defined by L R = Jp(LP(R?)), for
B>0and 1 < p < co.
It is easy to see that G5 € L'(R?), which implies that | Ts(Oll, < [Ifll,, 1 < p < co.

Therefore, £g (RY) is continuously embedded in LP(RY).

These spaces generalize the Sobolev space L} (R?), in the sense that, for 1 < p < co and k € N, the
potential space Li (RY) is equivalent to the Sobolev space Li (RY).

In Gaussian harmonic analysis, we consider the Ornstein—Uhlenbeck second-order differential
operator,

L= %Ax —(x, V), where V., = (&, 22, %),

In the Gaussian context, the Hermite polynomials are orthogonal with respect to the Gaussian
measure and also are eigenfunctions of the Ornstein-Uhlenbeck operator L.

The Gaussian Bessel potential (or fractional integral) of order B > 0, which we also denote 7, is

defined formally as

Gp(x) =

Tp=(1+V-1)", (1.2)
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and Gaussian Bessel fractional derivative DP of order > 0, is defined by
DF = (I+ \/—L)ﬁ :

which means that for the Hermite polynomials, we have

1
Tphy(x) = ———h(x) (1.3)
(1 + \/M)
and
B
DPhy(x) = (1 + VVI) (). (1.4)
Meyer’s theorem allows us to extend Gaussian Bessel potentials to a bounded operator on L”(y;),
1 <p<oo.

Also, from (1.4), we conclude that, 2 (as a good derivative), is not a bounded operator on L”(y,),
1 <p<oo.
Gaussian Bessel potentials have the integral representation

1 +oo d
Tef )= 55 fo tﬁe‘tPtf(x)f, (1.5)

where {P,},»¢ is the Poisson—Hermite semigroup.
On the other hand, let k be the smallest integer greater than 3; then the fractional derivative * has
the integral representation

1
Dgf(x):?

f ) P e P, — DX f(x)dt, (1.6)
B

0

B

There are significant differences between classical and Gaussian harmonic analysis, namely:
Lebesgue measure is a doubling, translation-invariant measure. Semigroups associated with Lebesgue
measure are convolution semigroups. Gaussian measure does not satisfy any of these properties. For
details, see [11].

In [9], replacing p and g with measurable functions p(-), g(-) taking values in [1, co] and satisfying
suitable regularity conditions, we define and study the structure of Besov—Lipschitz spaces B oY)
with variable exponents with respect to the Gaussian measure, following [8, 11].

In this paper, we generalize some results in [6] for Js and PP on B;f(,)’q(,)(yd). To do this, we present
three sections:

with ¢t = f u P e™ - Ddu.
0

e In Section 2, we give the preliminaries in the Gaussian setting and some background on variable
spaces with respect to a Borel measure p.

e In Section 3, we obtain the boundedness of 7 and DP on BZ(.),q(.)(Yd)-

e In Section 4, we give some conclusions.

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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2. Preliminaries

The Gaussian measure on R is given by

— Il

_ d
’}/d(X) = de, x € R 2.1
d
Forv = (vi,...,vq) € Z? such that v; > 0,i = 1,--- ,d, we consider v! = nvi!,

i=1

V=) vi 0= 2, with 1 <i<dand & = 3.9} Then:

d
i=1

e The normalized Hermite polynomials of order v in d variables are defined by,

R o PEPT A
hv(X) = W 1:[(—1) ‘e ’a_;,l,(e L), (22)

e The Ornstein—Uhlenbeck semigroup {T},s, is defined by

1 _ My -2e )
T.f(x) = m y e 1= FO)ya(dy)
1 el
= TAI2(1 — g=21Ydr2 fw e 1= f(y)dy. (2.3)
e Poisson—Hermite semigroup {P,},5o by

Pf) = = f T f(du = f T AU ds) (2.4)

t \/7—1_ o \/ﬁ t*/4u 0 K t ) .

where for all ¢+ > 0,
_2/4g

12gg = s 2.5)

l’l[ - 2\/5 S3/2 .

is the one-sided stable measure on (0, 0o0) of order 1/2.
As usual, we use the notation

k
u(x,t) = P,f(x) and u®(x,1) = %Pt f(x).

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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Now, let us obtain some background on variable Lebesgue spaces with respect to a Borel measure

u.
Let Q C R?, a yu-measurable function p(-) : Q — [1, co] is an exponent function. The set of exponent
functions is denoted by P(Q, u). For E C Q we set

p-(E) = ess inlg p(x), p+(E) = esssup p(x).
RS

xeE
Also Q. = {x € Q: p(x) = 00}, p, = p.(Q), and p_ = p_(Q).
Definition 2.1. Let E ¢ RY and a(-) : E — R. We say that:
i) a(-) is locally log-Hélder continuous if there exists a constant Cy > 0 such that

C,
la(x) = 2] < log(e + =)

forall x,y € E. Denoted by a(-) € LHy(E).
it) a(-) is log-Hélder continuous at infinity with base point at x, € RY, if there exist constants a., € R
and Cy > 0 such that

C,
log(e + |x — xo|)

la(x) — @l <
for all x € E. Denoted by a(-) € LH(E).
iii) a(-) is log-Holder continuous if both conditions are satisfied. In this case, we say a(-) € LH(E).

Definition 2.2. For a u-measurable function f : R¢ — R (an extended real-valued function), we define
the modular

Pprou(f) = LJ\Q |f PP u(dx) + 11l (@) - (2.6)

The variable exponent Lebesgue space on RY, L'V (u) is the set of u-measurable functions f such
that there exists A > 0 with p,,,, (f/A) < oo, with norm given by

1fllperge = nf {2 > 02 pyr(F/) < 1. 2.7)

Theorem 2.1. (Minkowski’s integral inequality for variable Lebesgue spaces) Given u and v complete
o-finite measures on X and Y respectively, p € P(X, ). Let f : X XY — R be measurable with respect
to the product measure on X X Y, such that for almost everyy € Y, f(-,y) € LPO(X, u). Then

Proof. See [9]. O

j;f(-,y)dV(y) SnyIIf(',y)Ilp(-),udV(y)- (2.8)

dt
In the rest of the paper, u represents the Haar measure u(df) = — on R*.

Now, My denotes the set of measurable functions p(-) : R* — R* that satisfy the following
conditions:

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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) 0<p_<p,<oco
iip) There exists p(0) = lir% p(x) and [p(x) — p(0)| < m(?ﬁ’ O0<x<1/2.

i) There exists p(co) = lim p(x) and |p(x) — p(c0)| < x> 2.

A
In(x)°

Po. 1s the set of functions p(-) € My such that p_ > 1.

Next, we present the Hardy inequalities associated with the exponent g(-) € . and the measure
M.

Theorem 2.2. Let q(-) € Py and r > 0, then

!
rr f gyl < Cro el (2.9)
0 o
and .
r f g0yl < Cror |8l (2.10)
t q().u
Proof. See [9]. O
Also, we need the classical Hardy’s inequalities; see [10]
+00 X p +00
f ( f g(y)dy) x " dx < g f g’y dy, (2.11)
0 0 0
and +00 0o )4 +00
f ( f g(y)dy) xdx < é f gy~ dy, (2.12)
0 X 0

withg>0,p>1andr > 0.

In what follows, we only consider variable exponent Lebesgue spaces, L (y,) with respect to the
Gaussian measure y,.

Remark 2.1. The families {T}>0, {P:}i>0 and {Js}ps0 are bounded on LPO(yy), for p(-) € P;’,‘;(Rd) N
LHyRY) with 1 < p_ < p, < oo. For the proof see [7].

The next condition was introduced by E. Dalmasso and R. Scotto in [3].

Definition 2.3. Let p(-) € P(R?,y,), we say that p(-) € P;‘;(Rd) if there exist constants C,, > 0 and
Do = 1 such that

Gy,
IP(x) = pol < —5, (2.13)
[l
forx e R, x # 0.
Example 2.1. There exist non-constant functions in Py, RY), by considering

p(x)=p x € RY, for any pe > 1,A > 0and g > 2.

ot
(e +[lxl))?

Remark 2.2. It is easy to see that o (RY) ¢ LH.(RY).

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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Finally, we need some technical results

Lemma 2.1. Given k € N and t > 0 then ,ufl/ 2 satisfies

+00
\ﬁ

Lemma 2.2. Given an integer k > 0, let p(-) € P3(RY) N LHy(R?) and f € L'(y,), then

k, (1/2)
M
otk

(ds) < % (2.14)

For the proof see [11].

o ok
wpzf < Cp(.) ﬁpsf )
P()sya p(),yd
Jor 0 < s <t < +4oo. Moreover,
ak Ck,p()
MP,f < & 1 peryes > 0. (2.15)
)ZQ5 7

For the proof see [9].

The variable Gaussian Besov—Lipschitz space were defined in [9], following [6, 10].

Definition 2.4. Let p(-) € P5(RY) N LHyR?) and q(-) € Pow. Let @ > 0 and k be the smallest

integer greater than . The variable Gaussian Besov—Lipschitz space B y(Ya), is the set of functions

(02

Pp()q(:
f € LPY(yy) such that
okP
| BT < o0, (2.16)
otk
POYyallg)u
with norm
oP.f
— k—a t
1Al = 1T+ [ | 2.17)
POYallge)u

The variable Gaussian Besov—Lipschitz space Bi(,)m(yd), is the set of functions f € LPO(y,) for
which there exists a constant A such that

okP
f < AR v >0,
ok ||
12057
and the norm
Ilf IIB;(_)W = 1y + AkC) (2.18)

where Ai(f) is the smallest constant A in the above inequality.

One of the main results in [9] was that the definition of B;j(.)’q(_)(yd) is independent on the integer

k> a.

For more details about the definition of variable Gaussian Besov—Lipschitz spaces, we refer to [9].
Additionally, in [9] we obtained some inclusion relations between variable Gaussian

Besov—Lipschitz spaces. These results are analogous to Proposition 10, page 153 in [10].

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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Proposition 2.1. Let p(-) € P;‘;(Rd) N LHyR?) and q,(-), g2(-) € Pow. The inclusion Bpé)ql()(yd) -
B2 (o) holds, ie, [flly: < Cliflly: if
; p00a20) 20141 0)

i) a; > ay > 0(qi(-) and q2(+) do not need to be related), or
ii) If ay = @y and q,(t) < q2(t)  a.e.

As usual in this theory, C represents a constant that is not necessarily the same in each occurrence.
3. Results

The main results of the paper are the regularity properties of the Gaussian Bessel potentials and the
Gaussian Bessel fractional derivatives on variable Gaussian Besov—Lipschitz spaces.
Let us start considering the regularity properties of the Gaussian Bessel potentials. In the following

theorem we consider their action on B“( N (74) spaces, which is analogous to Theorem 4 in [6].

Theorem 3.1. Let a > 0,8 > 0 then for p(-) € o<’(R”’) N LHy(RY) with 1 < p_ < p, < oco. Then, the
Gaussian Bessel potential 3 is bounded from B"( )eolYa) into Bp( i W(Vd)

Proof. Let k > @ + f3 a fixed integer and f € B, (va), then Jgf € L"(y,) (see [7]). By using the
representation (1.5), the dominated convergence theorem, and the chain’s rule, we obtain

" 1 L ds
%Pt(jﬁf)(x) = F_(ﬁ)fo sPe u(k)(x,f+s)?~

Then, using Minkowski’s integral inequality (2.8), and splitting the integral into two

i C ("4
r—@fﬁ’

otk
TE) f e
H+ D).

d
Pt + s)||p(.m TS

- P(Isf)

Py

P()vd s

Now, proceeding as in [6] by Lemma 2.2 since t + s > ¢

C !
= — Sﬁ =S
D= 15 fo ¢

U+ S)”p(-),w 5

P, f f’ s e
=~ ssP1d
: ') H O |5, Jo ’ i
< Fi(ﬁ)A (H k”’f s~ 1ds, since f € B (Ya)
— tﬁA k+a
F(,B) 7 k()

— CIBAk(f)t_k+a+ﬁ~

On the other hand, as k > @ + 8 and again by Lemma 2.2, since t + s > s

C * )
i = gz [ Sl

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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ds

140571 §

oP,f
sk

c - -5
< w5

Ar(f)
C
')

s_k+a+ﬁ—1ds, since f € BZ('),W(yd)

Ak(f ) t—k+a+ﬂ
LBk —(a+p))
= CrapAc(HI .

IA

Thus,

k

9 —k+a+
ﬁPt(f/’ﬁf) < CAWf)** forall t > 0,

P().Ya

which implies that Jzf € BZ:’foo(yd) and A (Jpf) < CAL(f).
Moreover, by Remark 2.1,

T

B‘;wa - ||jﬁf||p()’yd + Ak(jﬁf)
C”f”p(.)’yd + CA(f) < C”f”B‘,f(,)’m-

IA

O

In the next theorem we consider the action of Gaussian Bessel potentials on BZ(-),q(~)(7d) spaces. It
is analogous to Theorem 2.4 (i) of [8].

Theorem 3.2. Leta > 0, 8> 0, p(:) € “(Rd) N LHy(RY) with 1 < p_ < pJr < oo and q(-) € Po.co-
Then, the Gaussian Bessel potential Jg is bounded from Bp( - ,(Ya) into Bp( [P »(Ya)-

Proof. Let f € BY . (va) then Jpf € LY (y,) since J5 is bounded on LPO(y,).
Let denote U(x, 1) = P.Jf(x). Using the representation (2.4) of P, and the semigroup property

Ulx,t + 1) = P (P, (T )(x) = fo Ts(sz(jﬁf))(X)#é(dS).

Now, fix k and [ as integer greater than « and 3, respectively. By using the dominated convergence
theorem, differentiating k times with respect to #, and / times with respect to #;, we obtain

6k+lU(x, Hh+1t) oo
So, taking t = #; + t,, we obtain
U(x, 1) oo
=), T ”f' £ (@5

therefore, by using inequality (2.8), the boundedness of T, on LP(')(yd) and Lemma 2.1

—+00
<cf
0

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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ﬁkP Sl I
< £ (Jﬁf) f — ;. (ds)
pOya V0 atl
6
< 0kP,ZJ'Bf (3.1
P()ya
On the other hand, by the chain’s rule
okP, 1 oo O P, f(x) ds _o'P O P f(x)ds
= — SB - t+s _ f 1+s =
g I = o fo S ¥ ) N
and again by inequality (2.8)
kp oo kp
2 . S f PPust ] ds 42
! PC).ya B) Jo (t+5) PC).ya

Now, since the definition of BZ(-),q(~)(7d) is independent of the integer k > «, take k > « + B and [ > S3;
thenk+[1>a+28>a+p.
We will show that Jsf € B3y (va)-

In fact, taking #; = t, = t/2 in (3.1) and by (3.2), we obtain

(9k+lU(-, t)

tk+l—(a/+ﬁ)
atk+l

POvallge)u

k
<C tk+l—(a+,3)

e
< ( 2)
P()ya

akPS+%f
a(s + S

oL — = (Tpf)

C llpam| [ P
S - t —(a+ f e—S
) 0

k
< < f(@tp) ftsg Pt f
') 0

o(s + é)k
IR (P f "
') :

q().u

ds)
S
p()sya

d s]
N
p().va oy

akps+%f ds ]
S
p()ya

o(s + )k
Thus, by Lemma 2.2 (since s + % > %) and the change of variables u = ¢/2, we have

q().u

q().p
=1+11I

k
;< C|lpam ftsﬁ TP ds
) o || 9" s
27 W6 oMY
P, f
= C N k—a u
ks || ouk
PCOvallgeyu

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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Finally, by Lemma 2.2 (since s + % > s) and Hardy’s inequality (2.10), with r = k — (o + 8) and

P,
g(s) = 5% 5 ‘kf , we have
5 lperya
10 < E |- (fmsﬁ P f @)
< k
r(ﬁ) t ds P()sYa 5 g
- £ f(@+p) ( f || 8BS ds]
k
') t Js PO)va FIONT
k
< C sk—(a+ﬁ)+1 . .S“B_l a sz
') ds POWYallg)p
- ak
= Ck,a,ﬁ Sk @Psf
POyallgeyu
Therefore, Jsf € By, ')8 o0 (Ya)-
Moreover, || Jsf | B < Cllf “Biﬁ(-) oN ’
JLOXIC ’

Now, we will study the action of the Bessel fractional derivative ©” on variable Gaussian
Besov—Lipschitz spaces B;f(,)’q(,)(yd) . We will use the representation (1.6) of the Bessel fractional
derivative and Hardy’s inequalities.

First, we need to consider the forward differences. Remember, for a given function f, the k-th order
forward difference of f starting at ¢ with increment s is defined as

k

k .
Afn =) (j)(—1)~’f(t + (k= ))9).

J=0

The forward differences have the following properties (see Appendix 10.9 in [11]): We will need the
following technical result.

Lemma 3.1. For any positive integer k

i) AN, 1) = ATIAS, ). 0 = AdAT(f, ), D)

[+S Vi+s Vi—2+S Vi—1+S
i) AK(f,1) = f f f f FOC)dVdVi_y...dvadv.
t Vi V-2 Vi-1

For any positive integer k,

L =k s, (3.3)
and for any integer j > 0,
o/ .
@(A’;(f, n) = AS(fY, 0. (3.4)

Additionally, we obtain the next result.

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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Lemma 3.2. Let p(-) € PR?, v,), f € LP(y,) and k,n € N, then

Proof. By Lemma 3.1 ii), we have

f+s Vi+S Vi—2+S Vi-1+S
A W™ (x,-),1) :f f f f u ™ (x, vdvidvi_y...dvadvy,
t Vi V-2 Vi1

thus, by using inequality (2.8) and Lemma 2.2 k-times, respectively, we obtain

[+ Vi+s Vi—2+S Vi—1+S
| ct G| | dvidvicy...dvadvy
P()sYa
t V] Vik-2 Vi-1
k+n

CHCp)' s [|u™ . )

A, 1)|| < Cropoy s [u®C 0|

P()Ya pOya”

Ar®, 1)

P(C)sYa

—u(-, 1)

_ k
= CprS” || 5

IA

P()sYa
Py

O

We are ready to consider the action of Gaussian Bessel fractional derivatives on BZ(.) q(.)(yd) spaces.
This is the analogous result to Theorem 8 in [6].

Remark 3.1. By semigroup property of {P,}, we have

%

k
=0
k
=0

(e'P =D f(x) (k.)(e_tPt)k_j (=D f(x)

J
K\ .
> (J.)(—l)fv(x, (k= 1) = Afv(x, ), 0),

J
where v(x, 1) = e'u(x, 1).

Theorem 3.3. Let 0 < 8 < a, p(-) € PZ(RY) N LH(RY) with 1 < p_ < p. < o and q(-) € Py Then,

107 a—f3

the Gaussian Bessel fractional derivative Dy is bounded from Bp(,)’q(,)(%z) into Bp(.),q(‘)(yd).
Proof. Let f € BZ(.),q(.)(Vd) and k € N such that k — 1 < 8 < k. Then by Remark 3.1, inequality (2.11),
the fundamental theorem of calculus, and Lemma 3.1,

+00

1
— [ s AR G, 2, O)lds
Cﬂ 0

1 +00 S
— s Pl f
s Jo 0

+00

k
— | AT (x), nldr
Beg Jo

IA

1D f ()]

drds

IA

9
5 A (%), 0)

IA

and by inequality (2.8), we obtain

k —+00
I96fl,,, < 3C [

k—=1,/.7
pC)ya — ﬁcﬂ Ar (v ,I”)” dr.

P()sya

AIMS Mathematics Volume 10, Issue 1, 1026-1042.
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Again, by Lemma 3.1 and inequality (2.8),
2r Vi+r 2+r
A];_I(V'J’)”p()y f ‘[VI \kaz ||V( )( = 1)”1,()7 dvi_1dvi...dvadvy,

and also by Leibnitz’s differentiation rule,

“v(k)(., vk_1)||p(~),w

k

Z( )(e—vk DDy y, )
=0 P()vd

Bl bl
0

Thus, by Lemma 2.2, since p(-) € P5(R?) N LHy(RY),

J
k

]:

T, r)||

p(),va
k— 1 —
<Ckp(>2() g

Therefore, by using the boundedness of P, on L") (y,)
for p(-) € P (RY) N LHy(RY), see [7],

k
—Cy, ()f PPl
ﬁcﬁ 17()]
kT (k) koo
= C § ‘ f pk=D=B=j)=1 p=r
p(),BCﬂ il Jo

j=0

uk j)( r)”

pCyya”

(k ])( r)”l’()%i

12571,

gy dr

P()yya

P.f

k +00 . .
+ck,p(.)ﬁ—cﬂ fo FPle 1P fll .y, dr

k-1

Crper . Z(k) f - r(k‘j)‘(ﬁ‘j)“'
Bes <= \J) Jo

k + 00 gl
+Ck,p(~>137ﬁfo PPN Al o)y dr-

o

ork=i dr

P()yd

IA

P.f

Thus,

ok
ork=i

dr

P.f

k k-1 k +00
k= j—(B—j
||Dﬁf||p<>yd = C"”’('),B_CB;(])[O e

kU'(k — B)
Beg
since f € BY (va) C By) (y)asa> B> B~ j2 0, for j€{0,...k— 1},

by Proposition 2.1, since p(-) € P35 (RY) N LHy(R?) and g(-) € P -
Hence, Dy f € LFY(yy).

p().vd

+Crp() A1y < Cillfllpe

PO)a()’
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On the other hand, it is clear that

k

P& Py~ D' f(x) = Z( )( e Du(x, e+ (k = )s).

=0

Letn €e Nsuchthatn — 1 < a < n, then

" 1 +00 k k . .
—P(DH(x) = — s‘ﬁ-IZ(.)(—1>fe‘s<"‘”u<"><x,r+(k—j)s)ds
or g Jo 0

e[ +00

= — sP AN w(x, -, Dds,
Cﬁ 0

where w(x,t) = e’ u(")(x, t). Thus, by using the fundamental theorem of calculus,

an et —+00 _ﬁ_] N 8 ‘
P (Dpf)x) = — S —A (w(x,),)drds.
Cﬁ 0 0 or

Then, by inequality (2.11), and Lemma 3.1,

ke' [
< — PN W (x, ), ¢ + )\
csB Jo

6}1

Pt(@ﬁf )(x)
Now, proceeding as above, using again Lemma 3.1 and Leibnitz’s differentiation rule

k
k
k-1 k=1 -
AWt r)”p(-),yd < Ck’p(')z(j et
=0

w4+ )|

pOya’
and by inequality (2.8) we obtain that
k <& (k)
k—p—1 (k+n 5]
—P(Dpf) < Copo—3 ()f r e (-,t+7r) dr.
PO)Ya Cﬂﬁjzz(; 7l Jo ”P”
Therefore,
(@=p)
- ‘at" (Dsf)
POyallg)u
k —+00
< (a=p) k—=p—-1
Ckp()c,B |ltn L d ¢ p()y
Jj= 0 q()u

Now, foreach1 < j < k,0 < @« -+ k—j < @ Then by Lemma 2.2 and Proposition 2.1, since
p() € P;‘;(Rd) N LHy(RY) and ¢(-) € P o

tn—(a—ﬁ) f rk—ﬁ— e
0

< Cp( )F(k ,8)

dr

(),
Py q).p

(n+k— ])( )”

n+(k J—(a—B+k— ])|

Cp()ﬁa k”f”B

GO POa0)’

12057
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since By, .,(ya) C Bz(ff;r((_];_j)(yd), for je{l,-- kb

Finally, we study the case j = 0,

+00
f(@=p) f KBl

0

!
tn—(a—ﬁ)f rk—ﬂ—le—

0

+00
p-ap) f Bl o

t

() + (II).

(n+k)( t+r)||p()7 r

q).u

P().vd dr

q().u

U, e+ r)”p()

By Lemma 2.2,

()

IA

Cre

tn—(a—,@)‘f(; k—B—1 ||M(n+k)( )”p()y

_ @'
k-p

and by using again Lemma 2.2 and inequality (2.10) since g(-) € Pp >

tap) f s o, n)| - dr
t

P()ya

q().u

tn+k—a ||u(n+k)(_, t)”

)ZQ57 q()’# ’

)

IA

Cpi) l

n+k—a

IA

CpyCoyy ||7

u(n+k)(" I")”

POYallgeyu

Therefore,

PN P(Dpf)

” ort

POYallg)u

. 04 a—p
since f € Bp(.),q(_)()’d)- Thus, Dsf € Bp(_)’q(.)()/d).
Moreover, from all the above inequalities, we conclude that
al’l
—P.(D
o t( ﬁf )
k

k k
Cullfl ., + Coptr > (])Czllfllg »

=0

T 2

| B4y p()m

(@b '

P(C)sYa

q().u

IA

Cill fl5e
CllA Nl

P)g()

k
Ckp()_ﬁz Coll f1lge

P

PO’

q()

M

O
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Remark 3.2. The boundedness of Dg, for 0 < B < a, only uses the fact that « — > 0 and g > 0, It
does not matter how close [ is to the ends of the interval (0, @) or the dimension d.

The boundedness of Gaussian Riesz potentials and Riesz fractional derivatives on variable Gaussian
Besov—Lipschitz spaces and the regularity of all these operators on variable Gaussian Triebel-Lizorkin
spaces, which were also defined in [9], will be considered in a forthcoming paper.

4. Conclusions

(1) Theorems 3.1-3.3, extend some results obtained in [6] when we go from constant exponent to
variable exponent settings if the exponent functions p(-), g(-) satisfy the regularity conditions
p() € ?;‘;(Rd) N LHy(RY) and () € Py -

(i1) The key to the proof of theorems is the generalization of Minkowski’s integral inequality and
Hardy’s inequality to the context of variable exponents as well as Lemmas 2.1 and 2.2.

(iii) The boundedness of {T};>0, {P;}=0, and {Jp)p=0 On LY(y,) was also necessary to obtain the
results.

(iv) From the properties obtained in [9] for the Besov—Lipschitz spaces BZ(~),q(~)(7d)’ it was shown
that these form a decreasing family of spaces (in the sense of inclusion) that are continuously
immersed in LPV(y,).

(v) Boundedness of the Gaussian Bessel potentials s and fractional derivative Dp together with
inclusion properties between the Besov—Lipschitz spaces By | /(ya), indicate that when applying
the Bessel potential to a function, it gains regularity while when applying the fractional derivative,
it loses regularity (as a good derivative).

(vi) Currently, we do not have practical applications for the Gaussian measure, apart from having
generalized the study done for a constant exponent, but we consider that there may be applications

in the future in the field of partial differential equations, as occurs for the Lebesgue measure.
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