Research article

Integral expressions of solutions to higher order $ \lambda $-weighted Dirac equations valued in the parameter dependent Clifford algebra

  • Received: 08 November 2024 Revised: 20 December 2024 Accepted: 09 January 2025 Published: 17 January 2025
  • MSC : 30E20, 35G35, 45E05

  • First, some important properties of functions valued in the parameter dependent Clifford algebra $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ were studied. Second, we obtained Cauchy-Pompeiu formulae for functions valued in $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ and the integral representation of solutions to the higher order $ \lambda $-weighted Dirac equation, respectively. Finally, the integral representation of solutions to bilateral higher order $ \lambda $-weighted Dirac equations was derived.

    Citation: Xiaojing Du, Xiaotong Liang, Yonghong Xie. Integral expressions of solutions to higher order $ \lambda $-weighted Dirac equations valued in the parameter dependent Clifford algebra[J]. AIMS Mathematics, 2025, 10(1): 1043-1060. doi: 10.3934/math.2025050

    Related Papers:

  • First, some important properties of functions valued in the parameter dependent Clifford algebra $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ were studied. Second, we obtained Cauchy-Pompeiu formulae for functions valued in $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ and the integral representation of solutions to the higher order $ \lambda $-weighted Dirac equation, respectively. Finally, the integral representation of solutions to bilateral higher order $ \lambda $-weighted Dirac equations was derived.



    加载中


    [1] P. Clifford, Applications of Grassmann's extensive algebra, Am. J. Math., 1 (1878), 350–358. https://doi.org/10.2307/2369379 doi: 10.2307/2369379
    [2] F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limits, 1982.
    [3] H. R. Malonek, G. B. Ren, Almansi-type theorems in Clifford analysis, Math. Method. Appl. Sci., 25 (2002), 1541–1552. https://doi.org/10.1002/mma.387 doi: 10.1002/mma.387
    [4] A. M. García, T. M. García, R. A. Blaya, J. B. Reyes, A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 27 (2017), 1147–1159. https://doi.org/10.1007/s00006-016-0745-z doi: 10.1007/s00006-016-0745-z
    [5] H. Yang, Y. Qiao, Y. Xie, L. Wang, Cauchy integral formula for $k$-monogenic function with $\alpha$-weight, Adv. Appl. Clifford Algebras, 28 (2018), 2. https://doi.org/10.1007/s00006-018-0825-3 doi: 10.1007/s00006-018-0825-3
    [6] R. A. Blaya, J. B. Reyes, A. M. García, T. M. García, A Cauchy integral formula for infrapolymonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 30 (2020), 21. https://doi.org/10.1007/s00006-020-1049-x doi: 10.1007/s00006-020-1049-x
    [7] M. Peláez, R. Blaya, A. García, J. Almira, Integral representation formulas for higher order Dirac equations, J. Math. Anal. Appl., 515 (2022), 126414. https://doi.org/10.1016/j.jmaa.2022.126414 doi: 10.1016/j.jmaa.2022.126414
    [8] D. Dinh, Applications of endomorphisms on Clifford algebras to ($\alpha, \beta$)-monogenic functions and isotonic functions, Complex Anal. Oper. Theory, 17 (2023), 21. https://doi.org/10.1007/s11785-022-01326-4 doi: 10.1007/s11785-022-01326-4
    [9] L. Gao, X. J. Du, Y. Liu, Y. H. Xie, A Cauchy integral formula for ($p, q$)-monogenic functions with $\alpha$-weight, Appl. Math. J. Chin. Univ., 39 (2024), 545–553. https://doi.org/10.1007/s11766-024-4530-9 doi: 10.1007/s11766-024-4530-9
    [10] X. Liu, Y. Liu, Perturbed Dirac operators and boundary value problems, Axioms, 13 (2024), 363. https://doi.org/10.3390/axioms13060363 doi: 10.3390/axioms13060363
    [11] D. A. Santiesteban, R. A. Blaya, J. B. Reyes, On the well-posedness of boundary value problems for higher order Dirac operators in $\mathbf{R}^{m}$, J. Differ. Equations, 416 (2025), 1729–1746. https://doi.org/10.1016/j.jde.2024.10.036 doi: 10.1016/j.jde.2024.10.036
    [12] W. Tutschke, C. J. Vanegas, Clifford algebras depending on parameters and their applications to partial differential equations, In: Some topics on value distribution and differentiability in complex and $p$-adic analysis, Beijing: Science Press, 11 (2008), 430–450.
    [13] A. Di Teodoro, C. J. Vanegas, Fundamental solutions for the first order meta-monogenic operator, Adv. Appl. Clifford Algebras, 22 (2012), 49–58. https://doi.org/10.1007/s00006-011-0293-5 doi: 10.1007/s00006-011-0293-5
    [14] C. Balderrama, A. Di Teodoro, A. Infante, Some integral representation for meta-monogenic function in Clifford algebras depending on parameters, Adv. Appl. Clifford Algebras, 23 (2013), 793–813. https://doi.org/10.1007/s00006-013-0408-2 doi: 10.1007/s00006-013-0408-2
    [15] S. Bernstein, U. Kähler, I. Sabadini, F. Sommen, Hypercomplex analysis: new perspectives and applications, Cham: Birkhäuser, 2014. https://doi.org/10.1007/978-3-319-08771-9
    [16] E. Ariza, A. Di Teodoro, A. Infante, J. Vanegas, Fundamental solutions for second order elliptic operators in Clifford-type algebras, Adv. Appl. Clifford Algebras, 25 (2015), 527–538. https://doi.org/10.1007/s00006-014-0526-5 doi: 10.1007/s00006-014-0526-5
    [17] E. Ariza García, A. Di Teodoro, J. Vanegas, First order differential operators associated to the space of $q$-monogenic functions, Adv. Appl. Clifford Algebras, 27 (2017), 135–147. https://doi.org/10.1007/s00006-015-0583-4 doi: 10.1007/s00006-015-0583-4
    [18] D. Cuong, L. Son, Some new results for function theory in hypercomplex analysis with parameters, Adv. Appl. Clifford Algebras, 31 (2021), 37. https://doi.org/10.1007/s00006-021-01144-5 doi: 10.1007/s00006-021-01144-5
    [19] G. T. Gilbert, Positive definite matrices and Sylvester's criterion, American Mathematical Monthly, 98 (1991), 44–46. https://doi.org/10.1080/00029890.1991.11995702 doi: 10.1080/00029890.1991.11995702
    [20] G. Giorgi, Various proofs of the Sylvester criterion for quadratic forms, Journal of Mathematics Research, 9 (2017), 55–66. https://doi.org/10.5539/JMR.V9N6P55 doi: 10.5539/JMR.V9N6P55
    [21] S. Huang, Y. Qiao, G. Wen, Real and complex Clifford analysis, New York: Springer-Verlag, 2006. https://doi.org/10.1007/b105856
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(47) PDF downloads(10) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog