First, some important properties of functions valued in the parameter dependent Clifford algebra Bn(2,αj,γij) were studied. Second, we obtained Cauchy-Pompeiu formulae for functions valued in Bn(2,αj,γij) and the integral representation of solutions to the higher order λ-weighted Dirac equation, respectively. Finally, the integral representation of solutions to bilateral higher order λ-weighted Dirac equations was derived.
Citation: Xiaojing Du, Xiaotong Liang, Yonghong Xie. Integral expressions of solutions to higher order λ-weighted Dirac equations valued in the parameter dependent Clifford algebra[J]. AIMS Mathematics, 2025, 10(1): 1043-1060. doi: 10.3934/math.2025050
[1] | Yuwei Cao, Bing Li . Existence and global exponential stability of compact almost automorphic solutions for Clifford-valued high-order Hopfield neutral neural networks with D operator. AIMS Mathematics, 2022, 7(4): 6182-6203. doi: 10.3934/math.2022344 |
[2] | Abdulaziz M. Alanazi, R. Sriraman, R. Gurusamy, S. Athithan, P. Vignesh, Zaid Bassfar, Adel R. Alharbi, Amer Aljaedi . System decomposition method-based global stability criteria for T-S fuzzy Clifford-valued delayed neural networks with impulses and leakage term. AIMS Mathematics, 2023, 8(7): 15166-15188. doi: 10.3934/math.2023774 |
[3] | Rutwig Campoamor-Stursberg, Eduardo Fernández-Saiz, Francisco J. Herranz . Generalized Buchdahl equations as Lie–Hamilton systems from the "book" and oscillator algebras: quantum deformations and their general solution. AIMS Mathematics, 2025, 10(3): 6873-6909. doi: 10.3934/math.2025315 |
[4] | Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228 |
[5] | Ziqiang Wang, Kaihao Shi, Xingyang Ye, Junying Cao . Higher-order uniform accurate numerical scheme for two-dimensional nonlinear fractional Hadamard integral equations. AIMS Mathematics, 2023, 8(12): 29759-29796. doi: 10.3934/math.20231523 |
[6] | Wei Gong, Zhanping Wang . Stability of nonlinear population systems with individual scale and migration. AIMS Mathematics, 2023, 8(1): 125-147. doi: 10.3934/math.2023006 |
[7] | Yupei Zhang, Yongzhi Luan . Dimension formulas of the highest weight exceptional Lie algebra-modules. AIMS Mathematics, 2024, 9(4): 10010-10030. doi: 10.3934/math.2024490 |
[8] | Younes Talaei, Sanda Micula, Hasan Hosseinzadeh, Samad Noeiaghdam . A novel algorithm to solve nonlinear fractional quadratic integral equations. AIMS Mathematics, 2022, 7(7): 13237-13257. doi: 10.3934/math.2022730 |
[9] | Xiaopeng Yi, Chongyang Liu, Huey Tyng Cheong, Kok Lay Teo, Song Wang . A third-order numerical method for solving fractional ordinary differential equations. AIMS Mathematics, 2024, 9(8): 21125-21143. doi: 10.3934/math.20241026 |
[10] | Jung Yoog Kang, Cheon Seoung Ryoo . Exploring variable-sensitive q-difference equations for q-SINE Euler polynomials and q-COSINE-Euler polynomials. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812 |
First, some important properties of functions valued in the parameter dependent Clifford algebra Bn(2,αj,γij) were studied. Second, we obtained Cauchy-Pompeiu formulae for functions valued in Bn(2,αj,γij) and the integral representation of solutions to the higher order λ-weighted Dirac equation, respectively. Finally, the integral representation of solutions to bilateral higher order λ-weighted Dirac equations was derived.
In 1878, Clifford algebra was defined in [1]. In 1982, Brackx et al. [2] generalized some results of the complex analysis to Clifford analysis. Malonek and Ren [3] studied the Almansi-type decomposition theorems for the k-order monogenic functions and k-order λ-weighted monogenic functions in 2002. In the unweighted case, the star-like condition of the domain is needed. This fact accounts for the greater generality of the decomposition in the weighted case, which indeed holds in any domain. When k=1, the origin of the notion of λ-weighted monogenic functions is given. In 2017, García et al. [4] studied an integral representation for the solution to the sandwich Dirac equation in Clifford analysis. Yang et al. [5] obtained the Cauchy theorem for the solution to the k-order Dirac equation with α-weight in 2018, where k>0 is an integer and α is a nonzero real number. In 2020, Blaya et al. [6] gave the integral representation for the solution of the bilateral higher-order Dirac equation and proved some properties for Cauchy and Teodorescu transforms. In 2022, Peláez et al. [7] took the sum of the left Dirac operator multiplied by α and the right Dirac operator multiplied by β as a new operator, and studied the integral representation of solutions to higher-order new operators, where α,β are real numbers. In 2023, Dinh [8] introduced (α,β)-monogenic functions and isotonic functions, where α,β are real numbers and α≠β; they gave the integral representation formulae of these functions respectively by using the new proof method and proved the series representation of polynomial Dirac equations. In 2024, Gao et al. [9] got an integral representation for the solution of the bilateral higher order Dirac equation with α-weight, where α is a nonzero real number. Liu et al. [10] investigated some Riemann-Hilbert boundary value problems for perturbed Dirac operators in the Clifford algebra Cl(V3,3). D. A. Santiesteban et al.[11] examined well-posed boundary value problems for second-order elliptic systems of partial differential equations in bounded regular domains of Euclidean spaces.
In 2008, Clifford algebras depending on parameters emerged as an extension of the classical Clifford algebra. Its applications in partial differential equations were introduced by Tutschke and Vanegas [12]. In 2012, Di Teodoro et al. [13] studied solutions for the first order homogeneous meta-Dirac equation and then gave a solution of the inhomogeneous equation by using Fubini′s theorem. In 2013, the integral representations for the meta-Dirac operator of n-order and its conjugate operators of n-order are derived by Balderrama et al. [14]. In 2014, some achievements of hypercomplex analysis were expounded and some of its development trends were presented in reference [15]. Ariza et al. [16] gave the integral formulae to solutions for second order elliptic Dirac equation in 2015. In 2017, Ariza García et al. [17] obtained the correlation between first-order differential operators and q-Dirac operators, with the aim of studying initial value problems, where q is a n-dimensional vector. In 2021, Cuong et al. [18] studied the integral expression of monogenic functions in the Clifford algebra depending on three parameters and solved two boundary value problems related to this function.
Based on the above work, we have conducted certain work with the aim of extending the results from the classical Clifford algebra to the framework of parameter dependent Clifford algebra. In Section 2, we investigate some important properties of functions valued in this Clifford algebra. In Section 3, integral representations for p-order λ-weighted monogenic functions and right q-order λ-weighted monogenic functions are derived. Furthermore, in Section 4, we present an integral representation for (p+q)-order λ-weighted monogenic functions. Finally, Section 5 contains the conclusion and discussion of this paper. This paper mainly generalizes some results of references [5,9].
In this section, we present some basic results on the parameter dependent Clifford analysis, meanwhile, we prove some important properties of some functions valued in the parameter dependent Clifford algebra.
Suppose that αj, γij=γji are nonnegative real numbers for i,j=1,2,…,n,i≠j, the set of base element is {e0=1,e1,…,en}, and the base element satisfies the following multiplication rule
{e2j=−αj,eiej+ejei=2γij. | (2.1) |
From this, we obtain a parameter dependent Clifford algebra Bn(2,αj,γij) which is generated by the structural relationship (2.1). Every element of the algebra is of the form c=∑A1cA1eA1, cA1∈R, where A1:={j1,…,jk}⊆{1,…,n}, j1<j2<⋯<jk, eA1=ej1⋯ejk, and e0=e∅=1. As indices we use the elements A1 of the set containing the ordered subsets of {1,2,…,n}, with the empty subset corresponding to the index 0. The set A1 runs over all the possible ordered sets A1={1≤j1<…<jk≤n}, or A1=∅. The dimension of this algebra is 2n.
Let N∗ be the set of positive integers. If 1≤j≤n and j∈N∗, the base element satisfies the involution ¯ej=−ej. If eA=eh1⋯hr=eh1⋯ehr, then ¯eA=¯ehr⋯¯eh1=(−1)rehr⋯eh1. For any ξ=∑A1ξA1eA1∈Bn(2,αj,γij), we define ¯ξ=∑A1ξA1¯eA1, |ξ|2=∑A1ξ2A1, where ξA1∈R.
The Euclidean Clifford algebra Bn(2,1,0) is one of the special cases of Bn(2,αj,γij).
The function f:Ω→Bn(2,αj,γij) is denoted by f(x)=∑AfA1(x)eA1, where fA1(x) is a real-valued function and Ω is an open connected bounded domain in Rn. f is a r-times continuously differentiable function, which means fA1 is a r-times continuously differentiable function, where r∈N∗. The set consisting of the r-times continuously differentiable function is denoted by Fr(Ω,Bn(2,αj,γij)).
When f∈F1(Ω,Bn(2,αj,γij)), Dirac operators and its conjugate operators acting on function f are defined respectively as follows:
Dxf=n∑k=1ek∂f∂xk,fDx=n∑k=1∂f∂xkek,¯Dxf=n∑k=1¯ek∂f∂xk,f¯Dx=n∑k=1∂f∂xk¯ek. |
After a direct calculation, we have
Dx¯Dx=¯DxDx=n∑j=1αj∂2j−2∑1≤i<j≤nγij∂i∂j, |
the corresponding quadratic form is
n∑j=1αjξ2j−2∑1≤i<j≤nγijξiξj, | (2.2) |
which has a coefficient matrix
B=(α1−γ12⋯−γ1n−γ12α2⋯−γ2n⋯⋯⋱⋯−γ1n−γ2n⋯αn). | (2.3) |
Denote
B1=α1,B2=(α1−γ12−γ12α2),B3=(α1−γ12−γ13−γ12α2−γ12−γ13−γ12α3),⋯,Bn=B. |
See references [19,20]. By using the Sylvester′s criterion, (2.2) is a positive definite quadratic form if and only if the determinant of each Bj is a positive number for all j=1,2,…,n, i.e.,
det(Bj)>0. | (2.4) |
In this situation, Dx¯Dx=¯DxDx becomes an elliptic Dirac operator, so we denote Dx¯Dx=¯DxDx by ˜Δn.
Suppose that (2.4) holds in this paper, then the inverse matrix of matrix B exists and can be represented by
A=(a11a12⋯a1na12a22⋯a2n⋯⋯⋱⋯a1na2n⋯ann), | (2.5) |
where aij=aji, i,j=1,2,…,n.
See reference [12]. For two points x=(x1,⋯,xn) and ζ=(ζ1,⋯,ζn) in Rn, x≠ζ, the representation of the non-Euclidean distance ρ as follows:
ρ2:=ρ2(x,ζ)=n∑i,j=1aij(xi−ζi)(xj−ζj), | (2.6) |
the representation of the Euclidean distance is ι=|x−ζ|.
See reference [14]. Suppose that for some Y∈Rn and Y satisfying |Y|=1, we denote x−ξ=ιY, then the infimum of ρ(Y,0) for all Y is positive, i.e., ρ2(Y,0)≥c0>0, where c0 is a constant, so ρ2(x,ξ)≥c0ι2.
For f∈F1(Ω,Bn(2,αj,γij)), the first-order λ-weighted Dirac operators acting on the function f are defined as follows:
Dλxf=ρ−λxH(x)(Dxf),fDλx=(fDx)ρ−λxH(x), |
where ρx=(∑ni,j=1aijxixj)12, H(x)=∑ni,j=1¯eiaijxj, and λ is a fixed nonzero real number.
Definition 2.1. [12] Suppose f∈F1(Ω,Bn(2,αj,γij)), then a solution f of the Dirac equation Dxf(x)=0 (f(x)Dx=0) is called a left (right) monogenic function.
See reference [12]. We know that ρ−nxH(x) is not only a left monogenic function but also a right monogenic function.
Definition 2.2. Suppose f∈Fp+q(Ω,Bn(2,αj,γij)), p,q are positive integers.
(i) A solution f of the p-order λ-weighted Dirac equation (Dλx)pf(x)=0 is called a left p-order λ-weighted monogenic function, where (Dλx)p=Dλx∘⋯∘Dλx (p-times), ∘ is a composite operation of operators.
(ii) A solution f of the right q-order λ-weighted equation f(x)(Dλx)q=0 is called a right q-order λ-weighted monogenic function, where (Dλx)q=Dλx∘⋯∘Dλx (q-times).
Remark 2.1. (i) When p=1(q=1) in Definition 2.2, a solution f of the λ-weighted Dirac equation Dλxf(x)=0(f(x)Dλx=0) is called a left (right) λ-weighted monogenic function.
(ii) A left p-order λ-weighted monogenic function can be called a p-order λ-weighted monogenic function for short. A left λ-weighted monogenic function can be called a λ-weighted monogenic function for short.
Definition 2.3. Suppose f∈Fp+q(Ω,Bn(2,αj,γij)), p and q are positive integers, then the solution f of equation ((Dλx)pf(x))(Dλx)q=0 is called a (p+q)-order λ-weighted monogenic function.
If f is a left p-order λ-weighted monogenic function, then f is a (p+q)-order monogenic λ-weighted function.
Remark 2.2. ρ−nxH(x), ρ−n+(p−1)λxH(x), and ρ−n+(p+q−1)λxH(x) are (p+q)-order λ-weighted monogenic functions, where λ is a fixed nonzero real number.
For x∈∂Ω, its outer unit normal vector is N(x)=(N(x1),…,N(xn))=(N1,…,Nn), dσx=n∑i=1Nieidμ is the Clifford-algebra-valued measure element of ∂Ω, dμ represents the scalar measure element of ∂Ω, and ∂Ω is a sufficiently smooth boundary.
Lemma 2.1. [12] Suppose f,g∈F1(Ω,Bn(2,αj,γij)), then
∫∂Ωf(x)dσxg(x)=∫Ω[(f(x)Dx)g(x)+f(x)(Dxg(x))]dx, |
where dx=dx1∧dx2∧⋯∧dxn.
Similar to the proof of the theorem in reference [21], we can prove that Lemma 2.2 holds.
Lemma 2.2. Suppose f,g∈F1(Ω,Bn(2,αj,γij)), then
Dx(f(x)g(x))=(Dxf(x))g(x)+n∑k=1ekf(x)∂g(x)∂xk,(f(x)g(x))Dx=n∑k=1∂f(x)∂xkg(x)ek+f(x)(g(x)Dx). |
Proof. We suppose that f(x)=∑A1fA1(x)eA1, g(x)=∑A2gA2(x)eA2, where fA1(x) and gA2(x) are real-valued functions, then
Dx(f(x)g(x))=n∑k=1ek∂(f(x)g(x))∂xk=n∑k=1ek∂[(∑A1fA1(x)eA1)(∑A2gA2(x)eA2)]∂xk=n∑k=1ek∑A1∑A2∂(fA1(x)gA2(x))∂xkeA1eA2=n∑k=1ek∑A1∑A2[∂fA1(x)∂xkgA2(x)+fA1(x)∂gA2(x)∂xk]eA1eA2=n∑k=1ek∂∑A1fA1(x)eA1∂xk∑A2gA2(x)eA2+n∑k=1ek∑A1fA1(x)eA1∂∑A2gA2(x)eA2∂xk=(Dxf(x))g(x)+n∑k=1ekf(x)∂g(x)∂xk. |
Similarly, we can prove the other equality.
Suppose that Mλs(x)=Es(x)ρ−λxH(x), where Es(x)=Csρn−sλx, Cs=1ωnλs−1(s−1)!, s∈N∗, ωn represents the Euclidean surface measure of the unit sphere.
Proposition 2.1. When s>1, we have
DxMλs(x)=Mλs(x)Dx=Es−1(x). |
Proof. Since AB=E and E is the identity matrix, we obtain that for m,k=1,2,…,n,
αkakm−n∑i=1,i≠kγikaim={0,m≠k,1,m=k, |
then
n∑i,k=1ek¯eiamkaim=n∑k=1ek¯ekamkakm+n∑i,k=1,k<iek¯eiamkaim+n∑i,k=1,k>iek¯eiamkaim=n∑k=1ek¯ekamkakm+n∑i,k=1,k<iek¯eiamkaim+n∑j,l=1,j<lel¯ejamlajm=n∑k=1ek¯ekamkakm+n∑i,k=1,k<i(ek¯ei+ei¯ek)amkaim=n∑k=1αkamkakm−2n∑i,k=1,k<iγikamkaim=n∑k=1αkamkakm−n∑i,k=1,k≠iγikamkaim=n∑k=1(αkamk−n∑i=1,k≠iγikaim)akm=n∑k=1δkmakm=amm, |
therefore,
n∑i,k,m=1ek¯eiamkaimx2m=n∑m=1ammx2m. |
Also,
n∑m,i,j,k=1,j≠mek¯eiamkaijxmxj=n∑m,i,j,k=1,j<mek¯eiamkaijxmxj+n∑m,i,j,k=1,j<mek¯eiajkaimxjxm=n∑m,j,k=1,j<mek¯ek(amkakj+ajkakm)xmxj+n∑m,i,j,k=1,i<k,j<mek¯ei(amkaij+ajkaim)xmxj+n∑m,i,j,k=1,i<k,j<mei¯ek(amkaij+ajkaim)xmxj=n∑m,j,k=1,j<mαk(amkakj+ajkakm)xmxj−2n∑m,i,j,k=1,i<k,j<mγik(amkaij+ajkaim)xmxj=n∑m,j,k=1,j<mαk(amkakj+ajkakm)xmxj−n∑m,i,j,k=1,i≠k,j<mγik(amkaij+ajkaim)xmxj=n∑m,k,j=1,j<m(αkamk−n∑i=1,i≠kγikaim)akjxmxj+n∑m,k,j=1,j<m(αkajk−n∑i=1,i≠kγikaij)akmxmxj=n∑m,k,j=1,j<mδkmakjxmxj+n∑m,k,j=1,j<mδkjakmxmxj=n∑m,j=1,j≠mamjxmxj. |
Consequently,
¯H(x)H(x)=(n∑i,j=1eiaijxj)(n∑k,m=1¯ekakmxm)=(n∑i,k,m=1ek¯eiamkaimx2m)+(n∑m,i,j,k=1,m≠jek¯eiamkaijxmxj)=n∑m=1ammx2m+n∑j,m=1,m≠jamjxmxj=ρ2x. |
By ¯H(x)=−H(x), we can conclude that H(x)¯H(x)=−H2(x)=ρ2x.
By AB=E, we have
DxH(x)=n∑i,j=1eiaji¯ej=n∑i=1aiiei¯ei+n∑i,j=1,i<jaij(ei¯ej+ej¯ei)=n∑j=1ajjαj−n∑i,j=1,i≠jaijγij=n∑j=1(ajjαj−n∑i=1,i≠jaijγij)=n. |
Similarly, we can prove that H(x)D=n.
By equalities ¯H(x)H(x)=ρ2x and DxH(x)=n, we can conclude that
DxMλs(x)=Cs[(Dxρ−n+(s−1)λx)H(x)+ρ−n+(s−1)λx(DxH(x))]=Cs[n∑k=1ek∂(n∑i,j=1aijxixj)−n+(s−1)λ2∂xkH(x)+nρ−n+(s−1)λx]=Cs[n∑k=1ek−n+(s−1)λ2(n∑i,j=1aijxixj)−n+(s−1)λ2−1(n∑i=1aikxi+n∑j=1akjxj)H(x)+nρ−n+(s−1)λx]=Cs[n∑k=1ek(−n+(s−1)λ)ρ−n+(s−1)λ−2xn∑i=1aikxiH(x)+nρ−n+(s−1)λx]=Cs[(−n+(s−1)λ)ρ−n+(s−1)λ−2xn∑i,k=1aikxiekH(x)+nρ−n+(s−1)λx]=Cs[(−n+(s−1)λ)ρ−n+(s−1)λ−2x¯H(x)H(x)+nρ−n+(s−1)λx]=Cs(s−1)λρ−n+(s−1)λx=Es−1(x). |
Similarly, we have Mλs(x)Dx=Es−1(x).
Proposition 2.2. Let f∈Fk(Ω,Bn(2,αj,γij)), k∈N∗, s=1,2,…,k.
(1) Suppose that f is a solution of the Dirac equation Dxf=0, then
(Dλx)s(ρkλxf(x))=k!(k−s)!λsρ(k−s)λxf(x). |
(2) Suppose that f is a solution of the Dirac equation fDx=0, then
(ρkλxf(x))(Dλx)s=k!(k−s)!λsρ(k−s)λxf(x). |
Proof. (1) When s=1, by using the equality H(x)¯H(x)=ρ2x, it is easy to deduce that
Dx(ρkλxf(x))=(Dρkλx)f(x)+n∑m=1emρkλx∂f(x)∂xm=n∑m=1em∂(n∑i,j=1aijxixj)kλ2∂xmf(x)+ρkλx(Df(x))=n∑m=1emkλ2ρkλ−2x(n∑i=1aimxi+n∑j=1amjxj)f(x)=kλρkλ−2x(n∑m,i=1aimxiem)f(x)=kλρkλ−2x¯H(x)f(x), |
and
Dλx(ρkλxf(x))=ρ−λxH(x)[Dx(ρkλxf(x))]=kλρ(k−1)λxf(x). |
We suppose that (Dλx)s−1(ρkλxf(x))=k!(k−s+1)!λs−1ρ(k−s+1)λxf(x) holds, then
(Dλx)s(ρkλxf(x))=Dλx(k!(k−s+1)!λs−1ρ(k−s+1)λxf(x))=k!(k−s+1)!λs−1ρ−λxH(x)[Dx(ρ(k−s+1)λxf(x))]=k!(k−s+1)!λs−1ρ−λxH(x)[(k−s+1)λρ(k−s+1)λ−2x¯H(x)f(x)]=k!(k−s)!λsρ(k−s)λxf(x). |
According to the mathematical induction, we get the conclusion.
Similarly, we can prove that (2) holds
Proposition 2.3. Suppose 1≤s≤p, 1≤t≤q, and 1≤k≤p+q, where s,t,k,p,q∈N∗.
(1) Let f∈Fp(Ω,Bn(2,αj,γij)) be a solution of the equation Dxf=0. Then, ρ(p−s)λxf(x) is a solution of the p-order λ-weighted Dirac equation (Dλx)pf(x)=0.
(2) Let f∈Fq(Ω,Bn(2,αj,γij)) be a solution of the right equation fDx=0. Then, ρ(q−t)λxf(x) is a solution of the right q-order λ-weighted Dirac equation f(x)(Dλx)q=0.
(3) Let f∈Fp+q(Ω,Bn(2,αj,γij)) be a solution of the equation system Dxf=0 and fDx=0. Then, ρ(p+q−k)λxf(x) is a solution of the (p+q)-order λ-weighted Dirac equation ((Dλx)pf(x))(Dλx)q=0.
Proof. By Proposition 2.2, (1) and (2) hold.
(3) (i) When q≤k≤p+q, i.e., 1≤k−q≤p, by (1) in Proposition 2.3, we conclude that ρ(p−(k−q))λxf(x) satisfies equation (Dλx)p(ρ(p−(k−q))λxf(x))=0. Therefore, (3) is clearly valid.
(ii) When 1<k≤q, as f satisfies condition Dxf=0 and based on (1) in Proposition 2.2, we can deduce that
(Dλx)p(ρ(p+q−k)λxf(x))=(p+q−k)!(q−k)!λpρ(q−k)λxf(x). |
As f satisfies condition fDx=0 and based on (2) in Proposition 2.3, we obtain
[(Dλx)p(ρ(p+q−k)λxf(x))](Dλx)q=(p+q−k)!(q−k)!λp[(ρ(q−k)λxf(x))(Dλx)q]=0, |
therefore, (3) is established.
Theorem 2.1. Let 1≤s≤p, 1≤t≤q, 1≤k≤p+q, where s,t,k,p,q∈N∗.
(1)Ep(x)ρ−sλxH(x) is a solution of the p-order λ-weighted Dirac equation (Dλx)pf(x)=0.
(2)Eq(x)ρ−tλxH(x) is a solution of the right q-order λ-weighted Dirac equation f(x)(Dλx)q=0.
(3)Ep+q(x)ρ−kλxH(x) is a solution of the (p+q)-order λ-weighted Dirac equation ((Dλx)pf(x))(Dλx)q=0.
Proof. By Proposition 2.3, (1) and (2) hold.
(3) It is obvious that
Ep+q(x)ρ−kλxH(x)=Cp+qρn−(p+q)λxρ−kλxH(x)=ρ(p+q−k)λxCp+qH(x)ρnx. |
By Proposition 2.3 and the equality Dx(ρ−nxH(x))=(ρ−nxH(x))Dx=0, we conclude that (3) in Theorem 2.1 is established.
In this section, we prove two Cauchy-Pompeiu integral formulae for functions valued in Bn(2,αj,γij), and obtain the Cauchy integral formulae for the null solution to higher order λ-weighted Dirac operators as their corollary, respectively.
In this paper, we denote {x|y0=x+x0∈Ω} as Ω∗x0, for any x0∈Ω.
Theorem 3.1. Let p,q∈N∗, s=0,1,…,p; r=0,1,…,q.
(1) If f∈Fp(¯Ω,Bn(2,αj,γij)), then for any x0∈¯Ω, when 0<λ<1p, (Dλx)sf(y0) is a bounded function in ¯Ω∗x0.
(2) If f∈Fq(¯Ω,Bn(2,αj,γij)), then for any x0∈¯Ω, when 0<λ<1q, f(y0)(Dλx)r is a bounded function in ¯Ω∗x0.
Proof. (1) When s=0, as f∈Fp(¯Ω,Bn(2,αj,γij)), (Dλx)0f(y0) is a bounded function in ¯Ω∗x0.
When s=1,2,…,p, we denote H(x)fs(x) by gs(x), and let
f1(x)=Dxf(y0),f2(x)=−λf1(x)+Dxg1(x),f3(x)=−2λf2(x)+Dxg2(x),⋯fp−1(x)=−(p−2)λfp−2(x)+Dxgp−2(x),fp(x)=−(p−1)λfp−1(x)+Dxgp−1(x). |
As f∈Fp(¯Ω,Bn(2,αj,γij)), f1,f2,...,fp are bounded functions in ¯Ω∗x0.
When s=1, we have Dλxf(y0)=ρ−λxH(x)(Dxf(y0))=ρ−λxg1(x).
We suppose that t<p, t∈N∗, and (Dλx)tf(y0)=ρ−tλxgt(x), then
(Dλx)t+1f(y0)=ρ−λxH(x)[Dx(ρ−tλxgt(x))]=ρ−λxH(x)[((−tλ)ρ−tλ−2x¯H(x))gt(x)+ρ−tλx(Dxgt(x))]=ρ−(t+1)λxH(x)[−tλft(x)+Dx(gt(x))]=ρ−(t+1)λxgt+1(x). |
According to the mathematical induction, we get
(Dλx)sf(y0)=ρ−sλxgs(x). |
So for any x0∈¯Ω, if 0<λ<1s, then we conclude that (Dλx)sf(y0) is bounded in ¯Ω∗x0.
Hence, for any x0∈¯Ω, when λ∈⋂ps=1(0,1s)=(0,1p), we conclude that (Dλx)sf(y0) is bounded in ¯Ω∗x0, where s=1,2,…,p.
Similarly, we can prove that (2) holds.
Theorem 3.2. Suppose that f∈Fp(¯Ω,Bn(2,αj,γij)), p≤n,0<λ<1p,p∈N∗, for arbitrary x0∈Ω, then we have
c1(αj,γij)f(x0)=p∑s=1(−1)s∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0))−(−1)p∫Ω∗x0Ep(x)((Dλx)pf(y0))dx, | (3.1) |
where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy-Pompeiu integral formula of the function f∈Fp(¯Ω,Bn(2,αj,γij)).
Proof. For any x0∈Ω, we have 0+x0∈Ω, so 0∈Ω∗x0.
We can choose an arbitrarily small positive number δ, and make a small ball Bδ={x:|x|<δ} such that ¯Bδ is a subset of Ω∗x0.
For any s=2,3,…,p, by Lemma 2.1, Proposition 2.1, and Theorem 3.1, we have
∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0))−limδ→0∫∂BδMλs(x)dσx((Dλx)s−1f(y0))=limδ→0∫Ω∗x0∖Bδ(Mλs(x)Dx)((Dλx)s−1f(y0))dx+limδ→0∫Ω∗x0∖BδMλs(x)[Dx((Dλx)s−1f(y0))]dx=limδ→0∫Ω∗x0∖BδEs−1(x)((Dλx)s−1f(y0))dx+limδ→0∫Ω∗x0∖BδEs(x)((Dλx)sf(y0))dx=∫Ω∗x0Es−1(x)((Dλx)s−1f(y0))dx+∫Ω∗x0Es(x)((Dλx)sf(y0))dx. |
From Theorem 3.1, it can be derived that (Dλx)s−1f(y0) is a bounded function in ¯Ω∗x0, then |(Dλx)s−1f(y0)|≤M1.
For x∈∂Bδ, suppose that x=δX, where X∈∂B1={X:|X|=1}, dμ=δn−1dμ1, dμ1 is the surface element of the unit sphere ∂B1, and since ρ2x≥c0δ2, we can obtain
|∫∂BδMλs(x)dσx((Dλx)s−1f(y0))|≤M1∫∂Bδ|Es(x)|ρ1−λx|dσx|=M1∫∂Bδ|Cs|ωnρn−sλxρ1−λxdμ=M1∫∂Bδ|Cs|ωnρn−1−(s−1)λxδn−1dμ1≤M2∫∂Bδ1δn−1−(s−1)λδn−1dμ1=M2∫∂Bδ1δ−(s−1)λdμ1≤M3δ(s−1)λ+1≤M3δ2, |
where Mi>0 are constants, i=1,2,3, then we can conclude that
limδ→0∫∂BδMλs(x)dσx((Dλx)s−1f(y0))=0. |
Hence,
∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0))=∫Ω∗x0Es−1(x)(f(y0)(Dλx)s−1)dx+∫Ω∗x0Es(x)((Dλx)sf(y0))dx, | (3.2) |
where s=2,3,…,p.
For s=1, by Lemma 2.1 and the equality (ρ−nxH(x))D=0, we have
∫∂Ω∗x0Mλ1(x)dσxf(y0)−limδ→0∫∂BδMλ1(x)dσxf(y0)=limδ→0∫Ω∗x0∖Bδ(Mλ1(x)Dx)f(y0)dx+limδ→0∫Ω∗x0∖BδMλ1(x)(Dxf(y0))dx=limδ→0∫Ω∗x0∖Bδ[(H(x)ωnρnx)Dx]f(y0)dx+limδ→0∫Ω∗x0∖BδE1(x)(Dλxf(y0))dx=∫Ω∗x0E1(x)(Dλxf(y0))dx. |
We can calculate that
limδ→0∫∂Bδ1ωnρn−1xdμ=limδ→0∫∂B11ωnδn−1(n∑i,j=1aijXiXj)n−12δn−1dμ1=∫∂B11ωn(n∑i,j=1aijXiXj)n−12dμ1=c1(αj,γij), | (3.3) |
we can conclude that c1(αj,γij) is a Clifford constant, and c1(αj,γij) does not depend on δ but only on the values of the parameters αj and γij; see Remark 2.6 in reference [14].
Hence,
limδ→0∫∂BδMλ1(x)dσxf(y0)=limδ→0∫∂BδH(x)ωnρnxH(x)ρxf(y0)dμ=limδ→0∫∂Bδ−1ωnρn−1x(f(y0)−f(x0))dμ+limδ→0∫∂Bδ−1ωnρn−1xf(x0)dμ=−[limδ→0∫∂Bδ1ωnρn−1xdμ1]f(x0)=−c1(αj,γij)f(x0), |
therefore,
∫∂Ω∗x0Mλ1(x)dσxf(y0)+c1(αj,γij)f(x0)=∫Ω∗x0E1(x)(Dλxf(y0))dx. | (3.4) |
By Equalities (3.2) and (3.4), we have
p∑s=2(−1)s∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0))−∫∂Ω∗x0Mλ1(x)dσxf(y0)−c1(αj,γij)f(x0)=(−1)p∫Ω∗x0Ep(x)((Dλx)pf(y0))dx+(−1)p∫Ω∗x0Ep−1(x)((Dλx)p−1f(y0))dx+(−1)p−1∫Ω∗x0Ep−1(x)((Dλx)p−1f(y0))dx+(−1)p−1∫Ω∗x0Ep−2(x)((Dλx)p−2f(y0))dx+⋯+∫Ω∗x0E2(x)((Dλx)2f(y0))dx+∫Ω∗x0E1(x)(Dλxf(y0))dx−∫Ω∗x0E1(x)(Dλxf(y0))dx=(−1)p∫Ω∗x0Ep(x)((Dλx)pf(y0))dx. |
Consequently, we prove that the conclusion holds.
Remark 3.1. When c1(αj,γij) is not required to be invertible, the value of f(x0) is not uniquely determined by the integral transform.
Corollary 3.1. Suppose that f∈Fp(¯Ω,Bn(2,αj,γij)) is a solution of the equation (Dλx)pf(y0)=0 in ¯Ω∗x0, p≤n,0<λ<1p, p∈N∗, for arbitrary x0∈Ω, then we have
c1(αj,γij)f(x0)=p∑s=1(−1)s∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0)), | (3.5) |
where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy integral formula of the p-order λ-weighted monogenic function.
Theorem 3.3. Suppose that f∈Fq(¯Ω,Bn(2,αj,γij)), q≤n,0<λ<1q,q∈N∗, for arbitrary x0∈Ω, then we have
f(x0)c1(αj,γij)=q∑r=1(−1)r∫∂Ω∗x0(f(y0)(Dλx)r−1)dσxMλr(x)−(−1)q∫Ω∗x0Eq(x)(f(y0)(Dλx)q)dx, | (3.6) |
where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy-Pompeiu integral formula of the function f∈Fq(¯Ω,Bn(2,αj,γij)).
Proof. Similar to the proof of Theorem 3.2, we can prove Theorem 3.3.
Corollary 3.2. Suppose that f∈Fq(¯Ω,Bn(2,αj,γij)) is a solution of right q-order λ-weighted Dirac equation f(y0)(Dλx)q=0 in ¯Ω∗x0, q≤n,0<λ<1q, q∈N∗, for arbitrary x0∈Ω, then we have
f(x0)c1(αj,γij)=q∑r=1(−1)r∫∂Ω∗x0(f(y0)(Dλx)r−1)dσxMλr(x), | (3.7) |
where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy integral formula of the right q-order λ-weighted monogenic function.
In this section, we obtain the integral representation for the (p+q)-order λ-weighted monogenic function.
Theorem 4.1. Let p,q∈N∗, s=0,1,…,p; r=0,1,…,q.
Suppose that f∈Fp+q(¯Ω,Bn(2,αj,γij)), when 0<λ<1p+q, then for arbitrary x0∈¯Ω, ((Dλx)sf(y0))(Dλx)r is a bounded function in ¯Ω∗x0.
Proof. (i) For arbitrary x0∈¯Ω, when s=0 and r=0,1,…,q, from Theorem 3.1 and the inequality 0<λ<1p+q<1q, it follows that f(y0)(Dλx)r is a bounded function in ¯Ω∗x0.
(ii) When s=1,2,…,p, and r=1,…,q, we denote H(x)fs,0(x) by gs,0(x), we denote fs,r(x)H(x) by g′s,r(x), and let
f1,0(x)=Dxf(y0),f2,0(x)=−λf1,0(x)+Dxg1,0(x),f3,0(x)=−2λf2,0(x)+Dxg2,0(x),⋯fs,0(x)=−(s−1)λfs−1,0(x)+Dxgs−1,0(x),fs,1(x)=−sλρ−2xgs,0(x)¯H(x)+gs,0(x)Dx,fs,2(x)=−(s+1)λfs,1(x)+g′s,1(x)Dx,fs,3(x)=−(s+2)λfs,2(x)+g′s,2(x)Dx,⋯fs,r(x)=−(s+r−1)λfs,r−1(x)+g′s,r−1(x)Dx. |
As f∈Fp+q(¯Ω,Bn(2,αj,γij)), f1,0,…,fs,0,fs,1,…,fs,r are bounded functions in ¯Ω∗x0.
(a) When s=1 and r=0, by directly calculating, we can obtain
Dλxf(y0)=ρ−λxH(x)(Dxf(y0))=ρ−λxg1,0(x). |
When s=2,…,p and r=0, we suppose that s=t, where t<p,t∈N∗, and
(Dλx)tf(y0)=ρ−tλxgt,0(x), |
then
(Dλx)t+1f(y0)=Dλx(ρ−tλxgt,0(x))=ρ−λxH(x)[Dx(ρ−tλxgt,0(x))]=ρ−λxH(x)[(−tλρ−tλ−2x¯H(x))H(x)ft,0(x)+ρ−tλx(Dxgt,0(x))]=ρ−(t+1)λxH(x)(−tλft,0(x)+Dxgt,0(x))=ρ−(t+1)λxgt+1,0(x). |
According to the mathematical induction, we have
(Dλx)sf(y0)=ρ−sλxgs,0(x). | (4.1) |
For any x0∈¯Ω, when 0<λ<1p+q, we conclude that 0<λ≤1s, so (Dλ)sf(y0) is a bounded function in ¯Ω∗x0.
(b) When s=1,…,p and r=1, by Equality (4.1), we have
((Dλx)sf(y0))Dλx=[(ρ−sλxgs,0(x))Dx]ρ−λxH(x)=[−sλρ−sλ−2xgs,0(x)¯H(x)+ρ−sλx(gs,0(x)Dx)]ρ−λxH(x)=(−sλρ−2xgs,0(x)¯H(x)+gs,0(x)Dx)ρ−(s+1)λxH(x)=fs,1(x)ρ−(s+1)λxH(x)=g′s,1(x)ρ−(s+1)λx. |
When s=1,…,p and r=2,…,q, we suppose that r=l, where l<q,l∈N∗, and
((Dλx)sf(y0))(Dλx)l=g′s,l(x)ρ−(s+l)λx, |
then
((Dλx)sf(y0))(Dλx)l+1=[(g′s,l(x)ρ−(s+l)λx)Dx]ρ−λxH(x)=[−(s+l)λg′s,l(x)ρ−(s+l)λ−2x¯H(x)+ρ−(s+l)λx(g′s,l(x)Dx)]ρ−λxH(x)=(−(s+l)λfs,l(x)+g′s,l(x)Dx)ρ−(s+l+1)λxH(x)=fs,l+1(x)ρ−(s+l+1)λxH(x)=g′s,l+1(x)ρ−(s+l+1)λx. |
According to the mathematical induction, we have
((Dλx)sf(y0))(Dλx)r=g′s,r(x)ρ−(s+r)λx. |
For arbitrary x0∈¯Ω, when 0<λ<1p+q, we conclude that 0<λ<1s+r, so ((Dλx)sf(y0))(Dλx)r is a bounded function in ¯Ω∗x0, where s=1,2,…,p; r=1,…,q.
From the above, for any x0∈¯Ω, when 0<λ<1p+q, we conclude that 0<λ<1s+r, it can be concluded that ((Dλx)sf(y0))(Dλx)r is a bounded function in ¯Ω∗x0, where s=0,1,…,p; r=0,1,…,q.
Theorem 4.2. Suppose that f∈Fp+q(¯Ω,Bn(2,αj,γij)),p+q≤n,0<λ<1p+q,p,q∈N∗, for arbitrary x0∈Ω, then we have
c1(αj,γij)f(x0)=q∑r=1(−1)p+r∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)+p∑s=1(−1)s∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0))−(−1)p+q∫Ω∗x0Ep+q(x)[((Dλx)pf(y0))(Dλx)q]dx, | (4.2) |
where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy-Pompeiu integral formula of the function f∈Fp+q(¯Ω,Bn(2,αj,γij)).
Proof. We can conclude that Theorem 4.2 holds by applying Theorem 3.2, once we prove that the following equality holds, that is,
q∑r=1(−1)p+r∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)−(−1)p+q∫Ω∗x0Ep+q(x)[((Dλx)pf(y0))(Dλx)q]dx=−(−1)p∫Ω∗x0Ep(x)((Dλx)pf(y0))dx. |
For any x0∈Ω, we know that 0+x0∈Ω, so 0∈Ω∗x0. We can choose an arbitrarily small positive number δ and make a small ball Bδ={x:|x|<δ} such that ¯Bδ is a subset of Ω∗x0.
When r=1,2,3,…,q, by Lemma 2.1 and Proposition 2.1, we have
∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)−limδ→0∫∂Bδ[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)=limδ→0∫Ω∗x0∖Bδ[((Dλx)pf(y0))(Dλx)r]Ep+r(x)dx+limδ→0∫Ω∗x0∖Bδ[((Dλx)pf(y0))(Dλx)r−1]Ep+r−1(x)dx=∫Ω∗x0[((Dλx)pf(y0))(Dλx)r]Ep+r(x)dx+∫Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]Ep+r−1(x)dx. |
By Theorem 4.1, it follows that ((Dλx)pf(y0))(Dλx)r−1 is a bounded function in ¯Ω∗x0, then |((Dλx)pf(y0))(Dλx)r−1|≤M4, hence,
|∫∂Bδ[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)|≤M4∫∂Bδ|Ep+r(x)|ρ1−λx|dσx|=M4∫∂Bδ|Cp+r|ρn−(p+r)λxρ1−λxdμ≤M5∫∂Bδ1δ−(p+r−1)λdμ1≤M6δ(p+r−1)λ+1≤M6δ2, |
where Mi>0 are positive constants, i=4,5,6, and we can conclude that
limδ→0∫∂Bδ[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)=0. |
Hence,
∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)=∫Ω∗x0[((Dλx)pf(y0))(Dλx)r]Ep+r(x)dx+∫Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]Ep+r−1(x)dx. | (4.3) |
By Equality (4.3), we can deduce that
q∑r=1(−1)p+r∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)=(−1)p+q∫Ω∗x0[((Dλx)pf(y0))(Dλx)q]Ep+q(x)dx+(−1)p+q∫Ω∗x0[((Dλx)pf(y0))(Dλx)q−1]Ep+q−1(x)dx+(−1)p+q−1∫Ω∗x0[((Dλx)pf(y0))(Dλx)q−1]Ep+q−1(x)dx+(−1)p+q−1∫Ω∗x0[((Dλx)pf(y0))(Dλx)q−2]Ep+q−2(x)dx+⋯+(−1)p+1∫Ω∗x0[((Dλx)pf(y0))Dλx]Ep+1(x)dx+(−1)p+1∫Ω∗x0((Dλx)pf(y0))Ep(x)dx=(−1)p+q∫Ω∗x0Ep+q(x)[((Dλx)pf(y0))(Dλx)q]dx−(−1)p∫Ω∗x0Ep(x)((Dλx)pf(y0))dx. |
We complete the proof.
Corollary 4.1. Suppose that f∈Fp+q(¯Ω,Bn(2,αj,γij)) is a solution of the equation ((Dλ)pf(y0))(Dλ)q=0 in ¯Ω∗x0, p+q≤n,0<λ<1p+q,p,q∈N∗, for arbitrary x0∈Ω, then we have
c1(αj,γij)f(x0)=q∑r=1(−1)p+r∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)+p∑s=1(−1)s∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0)), | (4.4) |
where c1(αj,γij) is a Clifford constant. If c1(αj,γij) has a single inverse element, this formula is called the Cauchy integral formula of the (p+q)-order λ-weighted monogenic function.
Remark 4.1. Theorem 4.1 is used to prove Theorem 4.2. As p∈N∗, where N∗ is a set of positive integers, there is no direct relationship between Theorems 3.3 and 4.2. However, when p=0 in Theorem 4.2, if p∑s=1(−1)s∫∂Ω∗x0Mλs(x)dσx((Dλx)s−1f(y0))=0 in Equality (4.2), then the right end of the equality in Theorem 4.2 is reduced to the right end of the equality in Theorem 3.3. When q=0 in Theorem 4.2, if q∑r=1(−1)p+r∫∂Ω∗x0[((Dλx)pf(y0))(Dλx)r−1]dσxMλp+r(x)=0 in Equality (4.2), then the equality in Theorem 4.2 is reduced to the equality in Theorem 3.2.
In recent years, the integral representations for the solution to the higher order Dirac equation in Bn(2,αj,γij) have been studied, which generalize the integral representation in the classical Clifford algebra. In this paper, we not only prove three Cauchy-Pompeiu integral formulae for functions valued in the dependent parameter Clifford algebra, but also obtain integral representations for three different higher order λ-weighted monogenic functions.
If Bn(2,αj,γij)=Bn(2,1,0), then Corollary 3.1 in this paper is reduced to one result of Theorem 3.7 in reference [5], that is,
Theorem 5.1. [5] Suppose that Ω⊆Rn is a domain, Ω∗:={x|y0=x+x0∈Ω}, Hj(x)=Aj|x|n−jα, Aj=(−1)j−1ωnαj−1(j−1)!, 0<α<1k. If f(x+x0) is a k-monogenic function with α-weight in Ω∗, for arbitrary x0∈Ω, then we have
f(x0)=k∑j=1(−1)j−1∫∂Ω∗Hj(x)|x|−αxdσx((Dαx)j−1f(x+x0)). | (5.1) |
If Bn(2,αj,γij)=Bn(2,1,0), Corollary 4.1 in this paper is reduced to Corollary 3.5 in [9], that is,
Theorem 5.2. [9] Suppose f∈Cr(Ω,Cl0,n(R)), where r≥p+q, n≥p+q, Ω⊆Rn is a domain, Ω∗:={x|y0=x+x0∈Ω}, Hp+j(x)=Ap+j|x|n−(p+j)α, Ap+j=(−1)p+j−1ωnαp+j−1(p+j−1)!, 0<α<1p+q. If f(x+x0) is a (p,q)-monogenic function with α-weight in Ω∗, then for any x0∈Ω, we have
f(x0)=q∑j=1(−1)p+j∫∂Ω∗((Dαx)pf(x+x0))(Dαx)j−1dσx(x|x|−αHp+j(x))+p∑j=1(−1)j∫∂Ω∗Hj(x)|x|−αxdσx((Dαx)j−1f(x+x0)). | (5.2) |
With the method of the Clifford analytic approach and Newton embedding method, reference [10] proved the existence and uniqueness of solutions of the nonlinear Riemann-Hilbert problems. For a k-vector field Fk, reference [11] obtained the solution of boundary value problems for the associated with the equations (Dx)2s−1(Fk)Dx=fk, where fk∈F(Ω,B(k)m(2,1,0)), B(k)m(2,1,0) is the space of pseudo-scalars in the classical Clifford algebra Bm(2,1,0). We hope to solve the boundary value problem related to the equation (Dx)2s−1(Fk)Dx=fk in the dependent parameter Clifford algebra in our future work.
Xiaojing Du: Conceptualization, Writing-original draft, Writing-review and editing; Xiaotong Liang: Validation and Writing-review; Yonghong Xie: Supervision, Validation and Funding acquisition. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work was supported by the Natural Science Foundation of Hebei Province (Nos. A2023205006, A2023205045, A2022208007 and A2024208005), the Key Development Foundation of Hebei Normal University (No. L2024ZD08), the National Natural Science Foundation of China (No. 12431005), and the Funding Project of Central Guidance for Local Scientific and Technological Development (No. 246Z7608G).
The authors state that there is no conflicts of interest in this paper.
[1] |
P. Clifford, Applications of Grassmann's extensive algebra, Am. J. Math., 1 (1878), 350–358. https://doi.org/10.2307/2369379 doi: 10.2307/2369379
![]() |
[2] | F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limits, 1982. |
[3] |
H. R. Malonek, G. B. Ren, Almansi-type theorems in Clifford analysis, Math. Method. Appl. Sci., 25 (2002), 1541–1552. https://doi.org/10.1002/mma.387 doi: 10.1002/mma.387
![]() |
[4] |
A. M. García, T. M. García, R. A. Blaya, J. B. Reyes, A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 27 (2017), 1147–1159. https://doi.org/10.1007/s00006-016-0745-z doi: 10.1007/s00006-016-0745-z
![]() |
[5] |
H. Yang, Y. Qiao, Y. Xie, L. Wang, Cauchy integral formula for k-monogenic function with α-weight, Adv. Appl. Clifford Algebras, 28 (2018), 2. https://doi.org/10.1007/s00006-018-0825-3 doi: 10.1007/s00006-018-0825-3
![]() |
[6] |
R. A. Blaya, J. B. Reyes, A. M. García, T. M. García, A Cauchy integral formula for infrapolymonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 30 (2020), 21. https://doi.org/10.1007/s00006-020-1049-x doi: 10.1007/s00006-020-1049-x
![]() |
[7] |
M. Peláez, R. Blaya, A. García, J. Almira, Integral representation formulas for higher order Dirac equations, J. Math. Anal. Appl., 515 (2022), 126414. https://doi.org/10.1016/j.jmaa.2022.126414 doi: 10.1016/j.jmaa.2022.126414
![]() |
[8] |
D. Dinh, Applications of endomorphisms on Clifford algebras to (α,β)-monogenic functions and isotonic functions, Complex Anal. Oper. Theory, 17 (2023), 21. https://doi.org/10.1007/s11785-022-01326-4 doi: 10.1007/s11785-022-01326-4
![]() |
[9] |
L. Gao, X. J. Du, Y. Liu, Y. H. Xie, A Cauchy integral formula for (p,q)-monogenic functions with α-weight, Appl. Math. J. Chin. Univ., 39 (2024), 545–553. https://doi.org/10.1007/s11766-024-4530-9 doi: 10.1007/s11766-024-4530-9
![]() |
[10] |
X. Liu, Y. Liu, Perturbed Dirac operators and boundary value problems, Axioms, 13 (2024), 363. https://doi.org/10.3390/axioms13060363 doi: 10.3390/axioms13060363
![]() |
[11] |
D. A. Santiesteban, R. A. Blaya, J. B. Reyes, On the well-posedness of boundary value problems for higher order Dirac operators in Rm, J. Differ. Equations, 416 (2025), 1729–1746. https://doi.org/10.1016/j.jde.2024.10.036 doi: 10.1016/j.jde.2024.10.036
![]() |
[12] | W. Tutschke, C. J. Vanegas, Clifford algebras depending on parameters and their applications to partial differential equations, In: Some topics on value distribution and differentiability in complex and p-adic analysis, Beijing: Science Press, 11 (2008), 430–450. |
[13] |
A. Di Teodoro, C. J. Vanegas, Fundamental solutions for the first order meta-monogenic operator, Adv. Appl. Clifford Algebras, 22 (2012), 49–58. https://doi.org/10.1007/s00006-011-0293-5 doi: 10.1007/s00006-011-0293-5
![]() |
[14] |
C. Balderrama, A. Di Teodoro, A. Infante, Some integral representation for meta-monogenic function in Clifford algebras depending on parameters, Adv. Appl. Clifford Algebras, 23 (2013), 793–813. https://doi.org/10.1007/s00006-013-0408-2 doi: 10.1007/s00006-013-0408-2
![]() |
[15] | S. Bernstein, U. Kähler, I. Sabadini, F. Sommen, Hypercomplex analysis: new perspectives and applications, Cham: Birkhäuser, 2014. https://doi.org/10.1007/978-3-319-08771-9 |
[16] |
E. Ariza, A. Di Teodoro, A. Infante, J. Vanegas, Fundamental solutions for second order elliptic operators in Clifford-type algebras, Adv. Appl. Clifford Algebras, 25 (2015), 527–538. https://doi.org/10.1007/s00006-014-0526-5 doi: 10.1007/s00006-014-0526-5
![]() |
[17] |
E. Ariza García, A. Di Teodoro, J. Vanegas, First order differential operators associated to the space of q-monogenic functions, Adv. Appl. Clifford Algebras, 27 (2017), 135–147. https://doi.org/10.1007/s00006-015-0583-4 doi: 10.1007/s00006-015-0583-4
![]() |
[18] |
D. Cuong, L. Son, Some new results for function theory in hypercomplex analysis with parameters, Adv. Appl. Clifford Algebras, 31 (2021), 37. https://doi.org/10.1007/s00006-021-01144-5 doi: 10.1007/s00006-021-01144-5
![]() |
[19] |
G. T. Gilbert, Positive definite matrices and Sylvester's criterion, American Mathematical Monthly, 98 (1991), 44–46. https://doi.org/10.1080/00029890.1991.11995702 doi: 10.1080/00029890.1991.11995702
![]() |
[20] |
G. Giorgi, Various proofs of the Sylvester criterion for quadratic forms, Journal of Mathematics Research, 9 (2017), 55–66. https://doi.org/10.5539/JMR.V9N6P55 doi: 10.5539/JMR.V9N6P55
![]() |
[21] | S. Huang, Y. Qiao, G. Wen, Real and complex Clifford analysis, New York: Springer-Verlag, 2006. https://doi.org/10.1007/b105856 |