First, some important properties of functions valued in the parameter dependent Clifford algebra $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ were studied. Second, we obtained Cauchy-Pompeiu formulae for functions valued in $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ and the integral representation of solutions to the higher order $ \lambda $-weighted Dirac equation, respectively. Finally, the integral representation of solutions to bilateral higher order $ \lambda $-weighted Dirac equations was derived.
Citation: Xiaojing Du, Xiaotong Liang, Yonghong Xie. Integral expressions of solutions to higher order $ \lambda $-weighted Dirac equations valued in the parameter dependent Clifford algebra[J]. AIMS Mathematics, 2025, 10(1): 1043-1060. doi: 10.3934/math.2025050
First, some important properties of functions valued in the parameter dependent Clifford algebra $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ were studied. Second, we obtained Cauchy-Pompeiu formulae for functions valued in $ \mathcal{B}_{n}(2, \alpha_{j}, \gamma_{ij}) $ and the integral representation of solutions to the higher order $ \lambda $-weighted Dirac equation, respectively. Finally, the integral representation of solutions to bilateral higher order $ \lambda $-weighted Dirac equations was derived.
[1] | P. Clifford, Applications of Grassmann's extensive algebra, Am. J. Math., 1 (1878), 350–358. https://doi.org/10.2307/2369379 doi: 10.2307/2369379 |
[2] | F. Brackx, R. Delanghe, F. Sommen, Clifford analysis, Boston: Pitman Books Limits, 1982. |
[3] | H. R. Malonek, G. B. Ren, Almansi-type theorems in Clifford analysis, Math. Method. Appl. Sci., 25 (2002), 1541–1552. https://doi.org/10.1002/mma.387 doi: 10.1002/mma.387 |
[4] | A. M. García, T. M. García, R. A. Blaya, J. B. Reyes, A Cauchy integral formula for inframonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 27 (2017), 1147–1159. https://doi.org/10.1007/s00006-016-0745-z doi: 10.1007/s00006-016-0745-z |
[5] | H. Yang, Y. Qiao, Y. Xie, L. Wang, Cauchy integral formula for $k$-monogenic function with $\alpha$-weight, Adv. Appl. Clifford Algebras, 28 (2018), 2. https://doi.org/10.1007/s00006-018-0825-3 doi: 10.1007/s00006-018-0825-3 |
[6] | R. A. Blaya, J. B. Reyes, A. M. García, T. M. García, A Cauchy integral formula for infrapolymonogenic functions in Clifford analysis, Adv. Appl. Clifford Algebras, 30 (2020), 21. https://doi.org/10.1007/s00006-020-1049-x doi: 10.1007/s00006-020-1049-x |
[7] | M. Peláez, R. Blaya, A. García, J. Almira, Integral representation formulas for higher order Dirac equations, J. Math. Anal. Appl., 515 (2022), 126414. https://doi.org/10.1016/j.jmaa.2022.126414 doi: 10.1016/j.jmaa.2022.126414 |
[8] | D. Dinh, Applications of endomorphisms on Clifford algebras to ($\alpha, \beta$)-monogenic functions and isotonic functions, Complex Anal. Oper. Theory, 17 (2023), 21. https://doi.org/10.1007/s11785-022-01326-4 doi: 10.1007/s11785-022-01326-4 |
[9] | L. Gao, X. J. Du, Y. Liu, Y. H. Xie, A Cauchy integral formula for ($p, q$)-monogenic functions with $\alpha$-weight, Appl. Math. J. Chin. Univ., 39 (2024), 545–553. https://doi.org/10.1007/s11766-024-4530-9 doi: 10.1007/s11766-024-4530-9 |
[10] | X. Liu, Y. Liu, Perturbed Dirac operators and boundary value problems, Axioms, 13 (2024), 363. https://doi.org/10.3390/axioms13060363 doi: 10.3390/axioms13060363 |
[11] | D. A. Santiesteban, R. A. Blaya, J. B. Reyes, On the well-posedness of boundary value problems for higher order Dirac operators in $\mathbf{R}^{m}$, J. Differ. Equations, 416 (2025), 1729–1746. https://doi.org/10.1016/j.jde.2024.10.036 doi: 10.1016/j.jde.2024.10.036 |
[12] | W. Tutschke, C. J. Vanegas, Clifford algebras depending on parameters and their applications to partial differential equations, In: Some topics on value distribution and differentiability in complex and $p$-adic analysis, Beijing: Science Press, 11 (2008), 430–450. |
[13] | A. Di Teodoro, C. J. Vanegas, Fundamental solutions for the first order meta-monogenic operator, Adv. Appl. Clifford Algebras, 22 (2012), 49–58. https://doi.org/10.1007/s00006-011-0293-5 doi: 10.1007/s00006-011-0293-5 |
[14] | C. Balderrama, A. Di Teodoro, A. Infante, Some integral representation for meta-monogenic function in Clifford algebras depending on parameters, Adv. Appl. Clifford Algebras, 23 (2013), 793–813. https://doi.org/10.1007/s00006-013-0408-2 doi: 10.1007/s00006-013-0408-2 |
[15] | S. Bernstein, U. Kähler, I. Sabadini, F. Sommen, Hypercomplex analysis: new perspectives and applications, Cham: Birkhäuser, 2014. https://doi.org/10.1007/978-3-319-08771-9 |
[16] | E. Ariza, A. Di Teodoro, A. Infante, J. Vanegas, Fundamental solutions for second order elliptic operators in Clifford-type algebras, Adv. Appl. Clifford Algebras, 25 (2015), 527–538. https://doi.org/10.1007/s00006-014-0526-5 doi: 10.1007/s00006-014-0526-5 |
[17] | E. Ariza García, A. Di Teodoro, J. Vanegas, First order differential operators associated to the space of $q$-monogenic functions, Adv. Appl. Clifford Algebras, 27 (2017), 135–147. https://doi.org/10.1007/s00006-015-0583-4 doi: 10.1007/s00006-015-0583-4 |
[18] | D. Cuong, L. Son, Some new results for function theory in hypercomplex analysis with parameters, Adv. Appl. Clifford Algebras, 31 (2021), 37. https://doi.org/10.1007/s00006-021-01144-5 doi: 10.1007/s00006-021-01144-5 |
[19] | G. T. Gilbert, Positive definite matrices and Sylvester's criterion, American Mathematical Monthly, 98 (1991), 44–46. https://doi.org/10.1080/00029890.1991.11995702 doi: 10.1080/00029890.1991.11995702 |
[20] | G. Giorgi, Various proofs of the Sylvester criterion for quadratic forms, Journal of Mathematics Research, 9 (2017), 55–66. https://doi.org/10.5539/JMR.V9N6P55 doi: 10.5539/JMR.V9N6P55 |
[21] | S. Huang, Y. Qiao, G. Wen, Real and complex Clifford analysis, New York: Springer-Verlag, 2006. https://doi.org/10.1007/b105856 |