Research article

An improved family of unbiased ratio estimators for a population distribution function

  • Received: 22 September 2024 Revised: 19 December 2024 Accepted: 02 January 2025 Published: 17 January 2025
  • MSC : 68T07, 03H10, 68T09, 37N40, 62P20, 91G15, 91G30

  • This study discusses a novel family of unbiased ratio estimators using the Hartley-Ross (HR) method. The estimators are designed to estimate the population distribution function (PDF) in the context of simple random sampling with non-response. To assess their performance, expressions for variance are obtained up to the initial (first) approximation order. The efficiency of the proposed estimators is evaluated analytically and numerically compared to existing estimators. In addition, the accuracy of the estimators is assessed using four real-world datasets and a simulation analysis. The proposed estimator demonstrates exceptional performance for the distribution function under simple random sampling, achieving percentage relative efficiencies of 272.052,301.279,214.1214, and 280.9528 across four distinct populations, significantly outperforming existing estimators. For the distribution function under non-response using different weights, the proposed estimator exhibits remarkable efficiency, with percentage relative efficiencies of $ w_1 $ = 339.7875, $ w_2 $ = 334.6623, $ w_3 $ = 337.7393 in Population 1, $ w_1 $ = 257.0119, $ w_2 $ = 274.7351, $ w_3 $ = 316.0341 in Population 2, $ w_1 $ = 231.8627, $ w_2 $ = 223.0608, $ w_3 $ = 219.9059 in Population 3, and $ w_1 $ = 261.3122, $ w_2 $ = 242.7319, $ w_3 $ = 240.0694 in Population 4, validating its robustness and superiority.

    Citation: Sohail Ahmad, Moiz Qureshi, Hasnain Iftikhar, Paulo Canas Rodrigues, Mohd Ziaur Rehman. An improved family of unbiased ratio estimators for a population distribution function[J]. AIMS Mathematics, 2025, 10(1): 1061-1084. doi: 10.3934/math.2025051

    Related Papers:

  • This study discusses a novel family of unbiased ratio estimators using the Hartley-Ross (HR) method. The estimators are designed to estimate the population distribution function (PDF) in the context of simple random sampling with non-response. To assess their performance, expressions for variance are obtained up to the initial (first) approximation order. The efficiency of the proposed estimators is evaluated analytically and numerically compared to existing estimators. In addition, the accuracy of the estimators is assessed using four real-world datasets and a simulation analysis. The proposed estimator demonstrates exceptional performance for the distribution function under simple random sampling, achieving percentage relative efficiencies of 272.052,301.279,214.1214, and 280.9528 across four distinct populations, significantly outperforming existing estimators. For the distribution function under non-response using different weights, the proposed estimator exhibits remarkable efficiency, with percentage relative efficiencies of $ w_1 $ = 339.7875, $ w_2 $ = 334.6623, $ w_3 $ = 337.7393 in Population 1, $ w_1 $ = 257.0119, $ w_2 $ = 274.7351, $ w_3 $ = 316.0341 in Population 2, $ w_1 $ = 231.8627, $ w_2 $ = 223.0608, $ w_3 $ = 219.9059 in Population 3, and $ w_1 $ = 261.3122, $ w_2 $ = 242.7319, $ w_3 $ = 240.0694 in Population 4, validating its robustness and superiority.



    加载中


    [1] H. O. Hartley, A. Ross, Unbiased ratio estimators, Nature, 174 (1954), 270–271. http://dx.doi.org/10.1038/174270a0
    [2] D. S. Robson, Applications of multivariate polykays to the theory of unbiased ratiotype estimation, J. Amer. Statist. Assoc., 52 (1957), 511–522. http://dx.doi.org/10.1080/01621459.1957.10501407 doi: 10.1080/01621459.1957.10501407
    [3] Y. Rong, Z. Xu, J. Liu, H. Liu, J. Ding, X. Liu, et al., Du-bus: A real-time bus waiting time estimation system based on multi-source data, IEEE Trans. Intell. Transp. Syst., 23 (2022), 24524–24539. https://doi.org/10.1109/TITS.2022.3210170 doi: 10.1109/TITS.2022.3210170
    [4] M. Murthy, N. Nanjamma, Almost unbiased ratio estimates based on interpenetrating sub-sample estimates, Sankhya: Indian J. Stat., 1959,381–392. Available from: https://www.jstor.org/stable/25048435
    [5] Z. Zhou, X. Zhou, H. Qi, N. Li, C. Mi, Near miss prediction in commercial aviation through a combined model of grey neural network, Expert Syst. Appl., 255 (2024), 124690. http://dx.doi.org/10.1016/j.eswa.2024.124690 doi: 10.1016/j.eswa.2024.124690
    [6] B. Sisodia, V. Dwivedi, Modified ratio estimator using coefficient of variation of auxiliary variable, J. Indian Soc. Agric. Stat., 1981.
    [7] R. Biradar, H. Singh, On a class of almost unbiased ratio estimators, Biom. J., 34 (1992), 937–944. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710340807
    [8] L. N. Upadhyaya, H. P. Singh, Use of transformed auxiliary variable in estimating the finite population mean, J. Math. Meth. Biosci., 41 (1999), 627–636.
    [9] R. Tailor, B. Sharma, A modified ratio-cum-product estimator of finite population mean using known coefficient of variation and coefficient of kurtosis, Population, 10 (2009).
    [10] B. Xu, Y. Guo, A novel DVL calibration method based on robust invariant extended Kalman filter, IEEE Trans. Veh. Technol., 71 (2022), 9422–9434. http://dx.doi.org/10.1109/TVT.2022.3182017 doi: 10.1109/TVT.2022.3182017
    [11] R. L. Chambers, R. Dunstan, Estimating distribution functions from survey data, Biometrika, 73 (1986), 597–604. https://doi.org/10.1093/biomet/73.3.597 doi: 10.1093/biomet/73.3.597
    [12] R. Chambers, A. Dorfman, P. Hall, Properties of estimators of the finite population distribution function, Biometrika, 79 (1992), 577–582. https://doi.org/10.1093/biomet/79.3.577 doi: 10.1093/biomet/79.3.577
    [13] A. Y. Kuk, Estimation of distribution functions and medians under sampling with unequal probabilities, Biometrika, 75 (1988), 97–103. https://doi.org/10.1093/biomet/75.1.97 doi: 10.1093/biomet/75.1.97
    [14] A. Y. Kuk, T. Mak, Median estimation in the presence of auxiliary information, J. R. Stat. Soc. Ser. B. Meth., 51 (1989), 261–269. https://doi.org/10.1111/j.2517-6161.1989.tb01763.x doi: 10.1111/j.2517-6161.1989.tb01763.x
    [15] M. Rueda, A. Arcos, Improving ratio-type quantile estimates in a finite population, Stat. Pap., 45 (2004), 231–248. https://doi.org/10.1007/BF02777225 doi: 10.1007/BF02777225
    [16] M. Rueda, A. Arcos, M. Martínez-Miranda, Y. Román, Some improved estimators of finite population quantile using auxiliary information in sample surveys, Comput. Stat. Data Anal., 45 (2004), 825–848. https://doi.org/10.1016/S0167-9473(03)00097-5 doi: 10.1016/S0167-9473(03)00097-5
    [17] A. Dorfman, A comparison of design-based and model-based estimators of the finite population distribution function, Austral. J. Stat., 35 (1993), 29–41. https://doi.org/10.1111/j.1467-842X.1993.tb01310.x doi: 10.1111/j.1467-842X.1993.tb01310.x
    [18] M. Ahmed, W. Abu-Dayyeh, Estimation of finite-population distribution function using multivariate auxiliary information, Stat. Transit., 5 (2001), 501–507.
    [19] S. Ahmad, J. Shabbir, Use of extreme values to estimate finite population mean under PPS sampling scheme, J. Reliab. Stat. Stud., 2018, 99–112. Available from: https://journals.riverpublishers.com/index.php/JRSS/article/view/20877
    [20] S. Hussain, M. Zichuan, S. Hussain, A. Iftikhar, M. Asif, S. Akhtar, S. Ahmad, On estimation of distribution function using dual auxiliary information under nonresponse using simple random sampling, J. Probab. Stat., 2020 (2020). https://doi.org/10.1155/2020/1693612
    [21] S. Hussain, S. Ahmad, M. Saleem, S. Akhtar, Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling, PLoS One, 15 (2020). https://doi.org/10.1371/journal.pone.0239098
    [22] S. Hussain, S. Ahmad, S. Akhtar, A. Javed, U. Yasmeen, Estimation of finite population distribution function with dual use of auxiliary information under non-response, PLoS One, 15 (2020). https://doi.org/10.1371/journal.pone.0243584
    [23] S. Ahmad, M. Arslan, A. Khan, J. Shabbir, A generalized exponential-type estimator for population mean using auxiliary attributes, PLoS One, 16 (2021), e0246947. https://doi.org/10.1371/journal.pone.0246947 doi: 10.1371/journal.pone.0246947
    [24] S. Bahl, R. Tuteja, Ratio and product type exponential estimators, J. Inform. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058 doi: 10.1080/02522667.1991.10699058
    [25] H. P. Singh, S. Kumar, A regression approach to the estimation of the finite population mean in the presence of non-response, Aust. N. Z. J. Stat., 50 (2008), 395–408. https://doi.org/10.1111/j.1467-842X.2008.00525.x doi: 10.1111/j.1467-842X.2008.00525.x
    [26] C. Kadilar, H. Cingi, Ratio estimators in stratified random sampling, Biometrical J. 45 (2003), 218–225. https://doi.org/10.1002/bimj.200390007
    [27] S. Singh, Advanced sampling theory with applications: How michael "Selected", Springer Science & Business Media, 2 (2003). https://doi.org/10.1007/978-94-007-0789-4
    [28] M. H. Hansen, W. N. Hurwitz, The problem of non-response in sample surveys, J. Amer. Statist. Assoc., 41 (1946), 517–529. https://doi.org/10.1080/01621459.1946.10501894 doi: 10.1080/01621459.1946.10501894
    [29] C. Long, W. Chen, R. Yang, D. Yao, Ratio estimation of the population mean using auxiliary information under the optimal sampling design, Probab. Engrg. Inform. Sci., 36 (2022), 449–460. https://doi.org/10.1017/S0269964820000625 doi: 10.1017/S0269964820000625
    [30] L. Chen, T. Chen, T. Lan, C. Chen, J. Pan, The contributions of population distribution, healthcare resourcing, and transportation infrastructure to spatial accessibility of health care, INQUIRY, 60 (2023), 1438227527. https://doi.org/10.1177/00469580221146041 doi: 10.1177/00469580221146041
    [31] I. Hussain, M. Qureshi, M. Ismail, H. Iftikhar, J. Zywiołek, J. L. Lopez-Gonzales, Optimal features selection in the high dimensional data based on robust technique: Application to different health databases, Heliyon, 10 (2024), 17. https://doi.org/10.1016/j.heliyon.2024.e37241 doi: 10.1016/j.heliyon.2024.e37241
    [32] S. M. Gonzales, H. Iftikhar, J. L. Lopez-Gonzales, Analysis and forecasting of electricity prices using an improved time series ensemble approach: An application to the Peruvian electricity market, AIMS Math. 9 (2024), 21952–21971. http://dx.doi.org/10.3934/math.20241067
    [33] F. A. Almulhim, H. M. Aljohani, R. Aldallal, M. S. Mustafa, M. M. Alsolmi, A. Elshenawy, et al., Estimation of finite population mean using dual auxiliary information under non-response with simple random sampling, Alexandria Engrg. J., 100 (2024), 286–299. https://doi.org/10.1016/j.aej.2024.04.058 doi: 10.1016/j.aej.2024.04.058
    [34] M. Usman, G. N. Singh, J. Kumar, A. B. SM, An improved class of predictive estimators of population distribution function in the presence of non-response, Heliyon, 10 (2024), 18. https://doi.org/10.1016/j.heliyon.2024.e37232 doi: 10.1016/j.heliyon.2024.e37232
    [35] M. Hussain, Q. Zaman, L. Khan, A. E. Metawa, F. A. Awwad, E. A. Ismail, et al., Improved exponential-type mean estimators for non-response case using two concomitant variables in simple random sampling, Heliyon, 10 (2024), 6. https://doi.org/10.1016/j.heliyon.2024.e27535 doi: 10.1016/j.heliyon.2024.e27535
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(58) PDF downloads(18) Cited by(0)

Article outline

Figures and Tables

Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog