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1. Introduction

Auxiliary information in the sampling technique is used to improve estimator accuracy at the
discovery level, the design stage, or both stages [1, 2]. If the research and the auxiliary variables are
positively correlated, the ratio estimation method is used; otherwise, the product estimation method
is used. Different forms of impartial estimators for population mean were used by [3–5]. [6] used the
coefficient of variance in conjunction with the population mean of the auxiliary variate. [7] used many
different independent population mean estimators. In simple random sampling (SRS), the ratio cum-
product estimator of the finite population mean was suggested by [8] and [9, 10] using the same data.

The proportionate size of sample variable Y , (i.e., the number of population units with values less
than or equal to the threshold value ty), is also of concern to statisticians. For example, one may be
curious to seek a ratio between the percentage of people in the country who have lung cancer and the
proportion who have another disease. The population distribution function (PDF) plays a significant
role in this situation. Depending on auxiliary details, [11] and [12] investigated specific methods and
characteristics for estimating the finite PDF under quantiles. To assess the PDF using survey data, [13]
proposed a prediction and classical system. Several estimators of the finite population distribution
function are derived by taking into account sampling with probability proportional to size or aggregate
size [14–16]. The model-based and design-based methods of sampling inference are used to build
rival estimators of the distribution function of a finite population. [17–19]. In [20] and [21] two novel
estimators for modified FDP were proposed. However, two novel families of estimators based on SRS
were presented by [22] to estimate the FPD function under the presence of non response. The authors
of [23–25] work introduced advanced estimators using exponential transformations to improve the
precision of ratio and product-type estimations. Studies [26–28] present a regression-based framework
for estimating the finite population mean under conditions of non response. In [29, 30], the authors
found the characteristics of various estimators using a generalized exponential-type estimator. [31, 32]
analyzed the properties of various estimators using a generalized exponential-type estimator. [33]
proposed estimators for population mean under non response outperform existing estimators in terms
of bias and mean square error, demonstrating improved relative efficiency. [34] introduced the proposed
general class of estimators for population distribution functions that demonstrate superior performance,
validated through theoretical comparisons, empirical data, and simulation studies. [35] proposed
exponential estimators for population mean under non response, showing superior efficiency over
existing methods through theoretical and numerical validation.

This study discusses a novel family of unbiased ratio estimators using the Hartley-Ross (HR)
method. The estimators are designed to estimate the PDF in the context of SRS with non response. To
assess their performance, expressions for variance are obtained up to the initial (first) approximation
order. The proposed estimators’ efficiency is evaluated analytically and numerically compared to
existing estimators. Additionally, the accuracy of the estimators is assessed using four real-world
datasets and a simulation analysis.

The rest of the work is organized as follows. Section 2 revises the existing estimators. Section 3
proposes a new, improved class of estimators under non-response. Sections 4–7 present the theoretical
comparison, data comparison, conditional values, and simulation study, respectively. Section 8 gives an
overview of the existing estimators under non response. Section 9 discusses the estimation of the PDF
under non response. Section 10 proposes a class of estimators under non response. Sections 11–13
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present the theoretical comparison, data comparison, and conditional values, respectively. The paper
concludes in Section 14 with the conclusion.

2. Existing estimators

2.1. Notations and symbols

Let us consider finite population Ω = {1, 2, . . . , i, . . . ,N} having N independent and identifiable
units. Here, Y is the study variable X is the auxiliary variable, R is rank of X, PV is population
variance, PC is population covariance, PCn is population correlation, PCV is population coefficient of
variance, SDF is sample distribution function, and PDF is population distribution function.

Y f = I(Yi ≤ ty) =

1 if Yi ≤ ty

0 otherwise

X f = I(Xi ≤ ty) =

1 if Xi ≤ ty

0 otherwise

Z f = I(Zi ≤ ty) =

1 if Zi ≤ ty

0 otherwise

The PDF of Z is P(tz) = 1
N

∑N
i=1 Z f , where Zi = Yi

Xi
.

Let P̂(ty) = 1
n

∑n
i=1 Y f , P̂(tx) = 1

n

∑n
i=1 X f , and P̂(tz) = 1

n

∑n
i=1 Z f be the SDFs correspondingly. Let

P(ty), P(tx) and P(tz) be the PDFs respectively.

Let S 2
P(ty) =

∑N
i=1
{Y f−P(ty)}

2

N−1 , S 2
P(tx) =

∑N
i=1
{X f−P(tx)}

2

N−1 and S 2
P(tz)

=
∑N

i=1
{Z f−P(tz)}

2

N−1 be the PV of Y f , X f ,

and Z f .
Let CP(ty) =

S P(ty)

P(ty) , CP(tx) =
S P(tx)

P(tx) and CP(tz) =
S P(tz)

P(tz)
be the PCV of Y f , X f , and Z f .

Let S P(ty)P(tx) =
∑N

i=1

[(
Y f−P(ty)

)(
X f−P(tx)

)]
N−1 be the PC between Y f and X f .

Let ρP(ty)P(tx) =
S P(ty)P(tx)

S P(ty)S P(tx)
be the PCV between Y f and X f .

The following error terms are used below. Let e0 =
P̂(ty)−P(ty)

P(ty) , e1 =
P̂(tx)−P(tx)

P(tx) and e2 =
P̂(tz)−P(tz)

P(tz)
,

where, E(ei) = 0, (i = 0, 1, 2), E(e2
0) = λC2

P(ty) , E(e2
1) = λC2

P(tx) , E(e2
2) = λC2

P(tz)
, E(e0e1) =

λρP(ty)P(tx)CP(ty)CP(tx) , E(e0e2) = λρP(ty)P(tz)CP(ty)CP(tz) , and E(e1e2) = λρP(tx)P(tz)CP(tx)CP(tz), where λ =

( 1
n −

1
N ).

(1) The usual sample distribution function HP is given by:

P̂(ty0) = P̂(ty). (2.1)

The variance of P̂(ty0) is given by:

Var(P̂(ty0)) � λP2(ty)C2
P(ty). (2.2)
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(2) The ratio estimator in the form of distribution function HP is given by:

P̂(tyR) = P̂(ty)
(P(tx)
P̂(tx)

)
. (2.3)

Following equation provides the bias and mean square error of P̂(tyR) as

Bias(P̂(tyR)) � λP(ty)
[
C2

P(tx) − ρP(ty)P(tx)CP(ty)CP(tx)

]
(2.4)

and
MSE(P̂(tyR)) � λP2(ty)

[
C2

P(ty) + C2
P(tx) − 2ρP(ty)P(tx)CP(ty)CP(tx)

]
. (2.5)

(3) Using HP [24], we obtain:

P̂(tyexp(R)) = P̂(ty) exp
(P(tx) − P̂(tx)
P(tx) + P̂(tx)

)
. (2.6)

The following equation provides the bias and MSE of P̂(tyexp(R)) as:

Bias(P̂(tyexp(R))) � λP(ty)
[3
8

C2
P(tx) −

1
2
ρP(ty)P(tx)CP(ty)CP(tx)

]
(2.7)

and
MSE(P̂(tyexp(R))) � λP2(ty)

[
C2

P(ty) +
1
4

C2
P(tx) − ρP(ty)P(tx)CP(ty)CP(tx)

]
. (2.8)

(4) The ratio type estimator [25] is given as:

P̂(tySK(R)) = P̂(ty)
(P(tx)
P̂(tx)

)2

. (2.9)

Bias and MSE of P̂(tySK(R)) is given as

Bias
(
P̂(tySK(R))

)
� λP(ty)

[
3C2

P(tx) − 2ρP(ty)P(tx)CP(ty)CP(tx)

]
(2.10)

and
MSE

(
P̂(tySK(R))

)
� λP2(ty)

[
C2

P(ty) + 4C2
P(tx) − 4ρP(ty)P(tx)CP(ty)CP(tx)

]
. (2.11)

3. New improved class of estimators

We have proposed a new family of HR type unbiased ratio estimators for estimating the PDF
under SRS and developed the HR type estimators for the population mean along side their variance
equations. Thus, the HR type unbiased estimator for estimating DF is given as:

P̂(tz) =
1
n

n∑
i=1

Z f ,
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where Zi = Yi
Xi

.
Now, the HR estimator:

P̂(tyHR) = P(tx)P̂(tz). (3.1)

Taking expectations on both sides:

E
(
P̂(tyHR)

)
= P(tx)E

(
P̂(tz)

)
,

E
(
P̂(tyHR)

)
= P(tx)E

(1
n

n∑
i=1

Z f

)
or

E
(
P̂(tyHR)

)
= P(tx)

( 1
N

N∑
i=1

Z f

)
. (3.2)

The following equation provides the bias of P̂(tyHR), as:

Bias
(
P̂(tyHR)

)
= E

(
P̂(tyHR)

)
− P(ty),

Bias
(
P̂(tyHR)

)
= P(tx)

( 1
N

N∑
i=1

Z f

)
−

( 1
N

N∑
i=1

Y f
)

or
B̂ias

(
P̂(tyHR)

)
= −

(N − 1
N

)( n
n − 1

)(
P̂(ty) − P̂(tz)P̂(tx)

)
. (3.3)

Now adjust the bias estimator as follows:

P̂(tyHR) = P(tx)P̂(tz) − B̂ias
(
P(tȳHR)

)
,

P̂(tyHR) = P(tx)P̂(tz) +

(N − 1
N

)( n
n − 1

)(
P̂(ty) − P̂(tz)P̂(tx)

)
. (3.4)

Under the assumption
(

N−1
N

)(
n

n−1

)
≈ 1.

P̂(tyHR) = P(tx)P̂(tz) +

(
P̂(ty) − P̂(tz)P̂(tx)

)
(3.5)

or
P̂(tyHR) = P̂(ty) + P̂(tz)

[
P(tx) − P̂(tx)

]
.

Regarding to errors,
P̂(tyHR) = P(ty)(1 + e0) + P(tz)(1 + e2)

(
− e1P(tx)

)
. (3.6)

So the estimator becomes:
E
(
P̂(tyHR)

)
= P(ty). (3.7)

Now, the variance of the proposed estimator is given by:

Var(P̂(tyHR)) � λ
[
S 2

P(ty) + P2(tz)S 2
P(tx) − 2P(tz)S P(ty)P(tx)

]
. (3.8)
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4. Theoretical comparison

In this section, we compare the variance of the proposed HR type unbiased ratio estimators in
Eq (3.8) with the MSE of the existing estimators in (Section 2); we have the following conditions:

(i) By Eqs (2.2) and (3.8),
Var(P̂(ty0)) − Var(P̂(tyHR)) > 0 if

[−P2(tz)S 2
P(tx) + 2P(tz)S P(ty)P(tx)] > 0.

(ii) By Eqs (2.5) and (3.8),
MSE(P̂(tyR)) − Var(P̂(tyHR)) > 0 if

[P2(ty)C2
P(tx) − 2P2(ty)ρP(ty)P(tx)CP(ty)CP(tx) − P2(tz)S 2

P(tx) + 2P(tz)S P(ty)P(tx)] > 0.

(iii) By Eqs (2.8) and (3.8),
MSE(P̂(tyexp(R))) − Var(P̂(tyHR)) > 0 if

[
1
4

P2(ty)C2
P(tx) − 2P2(ty)ρP(ty)P(tx)CP(ty)CP(tx) − P2(tz)S 2

P(tx) + 2P(tz)S P(ty)P(tx)] > 0.

(iv) By Eqs (2.11) and (3.8),
MSE(P̂(tySK(R))) − Var(P̂(tyHR)) > 0 if

[4P2(ty)C2
P(tx) − 4P2(ty)ρP(ty)P(tx)CP(ty)CP(tx) − P2(tz)S 2

P(tx) + 2P(tz)S P(ty)P(tx)] > 0.

If requirements (i) through (iv) are satisfied, the suggested estimator P̂(tyHR) performs better than
other existing estimators.

5. Data comparison

Four natural populations are utilized to assess the effectiveness of the suggested estimator. P̂(tyHR)
in relation to other existing ones. The following are the summary statistics of the population.
Pop I. Source: [26]

Using ty = Ȳ , tx = X̄ and tz = Z̄:
Let Y represent the sum of apple production in 1999 and X represent the number of apple trees

in 1999.
N = 106 , n = 30 , P(ty) = 0.8301887 , P(tx) = 0.7641509 ,CP(ty) = 0.4544156 ,CP(tx) =

0.5581948 , P(tz) = 0.5660377 , S P(ty) = 0.3772507 , S P(tx) = 0.4265451 , S P(ty)P(tx) = 0.1309973 ,
ρP(ty)P(tx) = 0.8140806 , Ȳ = 1536.774 , X̄ = 24375.59 and Z̄ = 0.03927598.

Let Y f =1 for Yi ≤ 1536.774, Y f =0 for all Yi > 1536.774,
X f =1 for Xi ≤ 24375.59, X f =0 for all Xi > 24375.59 and
Z f =1 for Zi ≤ 0.03927598, Z f =0 for all Zi > 0.03927598.
Pop II. Source: [27]
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Using ty = Ȳ , tx = X̄ and tz = Z̄:
Assume that Y is the total amount of fish that recreational marine fishermen caught in 1995 and X

is the total amount of fish that recreational marine fishermen caught in 1992.
N = 69 , n = 25 , P(ty) = 0.7246377 , P(tx) = 0.7101449 ,CP(ty) = 0.6209575 ,CP(tx) =

0.643557 , P(tz) = 0.7246377 , S P(ty) = 0.4499692 , S P(tx) = 0.4570188 , S P(ty)P(tx) = 0.1690111 ,
ρP(ty)P(tx) = 0.821861 , Ȳ = 4514.899 , X̄ = 4230.174 and Z̄ = 1.251484.

Let Y f =1 for Yi ≤ 4514.899, Y f =0 for all Yi > 4514.899,
X f =1 for Xi ≤ 4230.174, X f =0 for all Xi > 4230.174 and
Z f =1 for Zi ≤ 1.251484, Z f =0 for all Zi > 1.251484.
Pop III. Source: [26]

Using ty = Ȳ , tx = X̄ and tz = Z̄:
X denotes the quantity of apple trees in 1999, and Y represents the total amount of apples produced

in that year.
N = 171 , n = 95 , P(ty) = 0.9005848 , P(tx) = 0.8479532 ,CP(ty) = 0.3332251 ,CP(tx) =

0.4246941 , P(tz) = 0.5964912 ,
S P(ty) = 0.3000975 , S P(tx) = 0.3601208 , S P(ty)P(tx) = 0.07891297 , ρP(ty)P(tx) = 0.7301934 , Ȳ =

5588.012 , X̄ = 74364.68 and Z̄ = 0.04436282.
Let Y f =1 for Yi ≤ 5588.012, Y f =0 for all Yi > 15588.012,

X f =1 for Xi ≤ 74364.68, X f =0 for all Xi > 74364.68 and
Z f =1 for Zi ≤ 0.04436282, Z f =0 for all Zi > 0.04436282.
Pop IV. Source: [26]

Using ty = Ȳ , tx = X̄ and tz = Z̄:
Let Y be the total amount of apples produced in 1999, and let X be the total number of apple trees

in 1998.
N = 95 , n = 13 , P(ty) = 0.8191489 , P(tx) = 0.7765957 ,CP(ty) = 0.4723909 ,CP(tx) =

0.53922581 , P(tz) = 0.6489362 , S P(ty) = 0.3869585 , S P(tx) = 0.4187605 , S P(ty)P(tx) = 0.1312057 ,
ρP(ty)P(tx) = 0.809697 , Ȳ = 9384.309 , X̄ = 72409.95 and Z̄ = 0.06322204.

Let Y f =1 for Yi ≤ 9384.309, Y f =0 for all Yi > 9384.309,
X f =1 for Xi ≤ 72409.95, X f =0 for all Xi > 72409.95 and
Z f =1 for Zi ≤ 0.06322204, Z f =0 for all Zi > 0.06322204.

The (PRE) can be found using the equation that follows:

PRE =
Var(P̂(ty0))

Var(P̂(tyk)) or MSE(P̂(tyk))
× 100,

where k= 0, R, exp(R), SK(R) and HR.

6. Conditional values

By adjusting for possible bias and inflated variance, the modified HR estimators conditionally
provide more accurate estimates in the presence of simple random sampling.

AIMS Mathematics Volume 10, Issue 1, 1061–1084.



1068

6.1. Simple random sampling

Every person has an equal chance of being chosen by simple random sampling, which encourages
representatives in the sample. For example, in a diet-related study, researchers may randomly select
participants from a list of people in the public. Even with this random selection, there is a chance that
some participants would omit questions regarding certain foods they consume, such as sugary snacks,
which could leave gaps in the data. If specific dietary practices are underrepresented, these gaps may
impact the analysis as a whole. Researchers rely on the selection process’s inherent unpredictability
in these situations to minimize bias and guarantee that the sample still accurately represents the
larger population.

When using a SRS, the HR type estimators conditionally produce unbiased estimates of the
population mean if the sample conditions ensure each unit has an equal probability of selection. In
these circumstances, the estimators efficiently utilize the additional data, which lowers variance and
improves precision.

The study thoroughly evaluates the performance of several estimators, highlighting the superior
effectiveness of the proposed estimator. As shown in Table 1, all the evaluators demonstrate positive
outcomes, indicating that they are generally reliable and capable of performing estimation tasks to
a satisfactory standard. However, the proposed estimator consistently outperforms its counterparts,
demonstrating its ability to provide more accurate and efficient estimates of the expected values. This
distinguishes it as the most reliable choice among those examined.

Table 1. Conditional values for (IV) populations.

Conditions Pop I Pop II Pop III Pop IV
ty, tx, tz = Ȳ , X̄, Z̄

i 0.0900 0.1353 0.0479 0.0964
ii 0.0201 0.0078 0.0267 0.0148
iii 0.0014 0.0172 0.0008 0.0068
iv 0.3797 0.3153 0.2979 0.3232

To further support the findings, additional analyses presented in Tables 2 and 3 provide
a deeper examination of the comparative performance of the estimators. These tables utilize
various performance metrics, including MSE and possibly other criteria, such as bias, variance, or
computational efficiency, to deliver a comprehensive assessment. The results in these tables clearly
indicate that the proposed estimator consistently outperforms the others across different conditions,
demonstrating superior accuracy and precision. This sustained advantage not only highlights the
robustness of the proposed estimator but also its adaptability to various estimation scenarios.

In conclusion, the conditional results presented in Table 1, alongside the thorough comparisons in
Tables 2 and 3, strongly support the effectiveness of the proposed estimator. Its superior performance
across multiple metrics demonstrates its efficiency and reliability in estimating expected values,
outperforming alternative estimators. These findings reinforce the conclusion that the proposed
estimator is the best choice for obtaining accurate and dependable estimates in the contexts examined.
It is a valuable tool for both practical applications and future research efforts.
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Table 2. Using PRE, and MSE with a population means.

ty, tx, tz = Ȳ , X̄, Z̄
Pop I Pop II

Estimators MSE PRE MSE PRE
P̂(ty0) 0.00474 100.000 0.00810 100.000
P̂(tyR) 0.00241 196.496 0.00300 269.855
P̂(tyexp(R)) 0.00179 265.091 0.00338 239.949
P̂(tySK(R)) 0.01440 32.942 0.01530 52.928
P̂(tyHR) 0.00174 272.052 0.00269 301.279

Table 3. Utilizing population mean, MSE, and PRE of several estimators.

ty, tx, tz = Ȳ , X̄, Z̄
Pop III Pop IV

Estimators MSE PRE MSE PRE
P̂(ty0) 0.00095 100.000 0.0115 100.000
P̂(tyR) 0.00072 131.0473 0.0052 220.0355
P̂(tyexp(R)) 0.00046 210.3242 0.0047 249.0718
P̂(tySK(R)) 0.00356 26.49113 0.0289 39.7629
P̂(tyHR) 0.00044 214.1214 0.0041 280.9528

Tables 2 and 3 provide a detailed comparison of the performance of various estimators, including
ratio and exponential-type estimators. The results indicate that both ratio and exponential-type
estimators generally perform well across different scenarios, demonstrating their effectiveness in many
estimation tasks. However, a notable observation is that dual ratio-type estimators perform relatively
weaker compared to the other estimators evaluated. This suggests that while dual ratio-type estimators
may have some utility, their efficiency and accuracy do not match those of the ratio, exponential-type,
or other estimators included in the analysis. This finding underscores the importance of selecting the
appropriate estimator based on the specific requirements and characteristics of the estimation problem
at hand.

Researchers and practitioners can obtain accurate and dependable estimations by using these
estimators in their statistical analyses due to their better performance. Nevertheless, prior to choosing
the best estimator, it is also crucial to thoroughly evaluate the particular context and features of the data
that is being studied.

7. Simulation study

A detailed simulation study is carried out to evaluate the usefulness of the suggested type of
unbiased estimators. This study produced 1000 iterations utilizing SRS, and the formula given in
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Eq (20) was utilized to get the MSE values for the unbiased ratio estimators. The simulation results
are shown in Tables 4 and 5.

The suggested estimator surpassed all other known estimators when the results were analyzed. ty,
tx, and tz, the mean values of population Y , X, and Z, respectively, were used to illustrate this degree
of superiority. The suggested estimator performed better in estimating the required quantities than
other estimators.

The two populations previously mentioned were used to model a real-life dataset to further
confirm the suggested estimators’ practical utility. By including these populations in the analysis, the
suggested estimators demonstrated their capacity to offer precise estimations in practical situations.
The simulation analysis and real-world dataset model verified that the suggested class of unbiased
estimators in the Hartley-Ross style has much practical use. Tables 4 and 5 exhibit how well they
perform, which implies that they are useful tools for estimating population parameters. They may also
be applied practically in various statistical analyses and real-world settings.

Var(P̂(tyHR)) =
1

1000

1000∑
i=1

[
P̂(tyik) − P̂(ty0)

]2
. (7.1)

The values of k are 0, R, exp(R), SK(R), and HR.

Table 4. PRE of different estimators.

Pop I

Estimators n=40 n=50 n=60
P̂(ty0) 100.000 100.000 100.000
P̂(tyR) 259.5124 280.8869 265.6376

P̂(tyexp(R)) 190.1314 195.3926 188.3682
P̂(tySK(R)) 50.82763 75.24619 71.41701
P̂(tyHR) 340.6476 483.2862 605.6851

Table 5. PRE of different estimators.

Pop II

Estimators n=40 n=50 n=60
P̂(ty0) 100.000 100.000 100.000
P̂(tyR) 254.1994 263.7851 296.0213

P̂(tyexp(R)) 224.886 231.225 230.7736
P̂(tySK(R)) 43.33509 43.88207 58.32776
P̂(tyHR) 817.8522 716.9396 444.0827

Among all the evaluated estimators, the HR unbiased estimator shows the least variation, as
demonstrated by the results in Tables 4 and 5. Notably, the proposed unbiased estimator outperforms
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alternative methods in terms of variation, yielding results that are both consistent and precise. When
specifically compared to the ratio of exponential estimators, the proposed estimator consistently
provides more reliable estimates, reinforcing its robustness.

The performance of the proposed estimator improves as the sample size increases, demonstrating
its scalability and adaptability to larger datasets. This scalability indicates that the estimator not
only maintains its precision with smaller samples but also achieves greater accuracy with larger ones.
Such features make it a promising choice for practical applications where the availability of data may
vary. Overall, the HR unbiased estimator stands out as an excellent option for obtaining reliable and
consistent results, especially in situations that require low variation and high accuracy.

8. Existing estimators under non response

8.1. Notations and symbols

Suppose population of Ω = 1, 2, . . . ,N that consists of N units. To determine the size of the
sample, this study employed simple random sampling without replacement (SRSWOR) sample n
from the N.

Let P(ty) =
1
N

N∑
i=1

Y f : the PDF of Y f ,

P̂(ty) =
1
n

n∑
i=1

Y f : the SDF of Y f when there is a full response,

P(tx) =
1
N

N∑
i=1

X f : the PDF of X f ,

P̂(tx) =
1
n

n∑
i=1

X f : the SDF of X f when there is a full response,

P(tz) =
1
N

N∑
i=1

Z f : PDF of Z f and

P̂(tz) =
1
n

n∑
i=1

Z f : SDF of Z f when there is a full response.

Let P∗(ty) =
1
N

N∑
i=N1+1

Y∗f : the PDF of Y∗f for non response group,

P∗(tx) =
1
N

N∑
i=N1+1

X∗f ): the PDF of X∗f for non response group and

P∗(tz) =
1
N

N∑
i=1

Z∗f : the PDF of Z∗f for non response group.

Let S 2
P(ty) =

N∑
i=1

(Y f − P(ty))2

N − 1
: the PV of Y f and

S 2
P(tx) =

N∑
i=1

(X f − P(tx))2

N − 1
: the PV of X f .
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Let S 2
P∗(ty) =

N∑
i=N1+1

(Y∗f − P∗(ty))2

N2 − 1
: the PV of Y∗f for the non response group and

S 2
P∗(tx) =

N∑
i=N1+1

(X∗f − P∗(tx))2

N2 − 1
: the PV of X∗f for the non-response group.

Let CP(ty) =
S P(ty)

P(ty)
: the PCV of {Y f } and

CP(tx) =
S P(tx)

P(tx)
: the PCV of Y f .

Let CP∗(ty) =
S P∗(ty)

P∗(ty)
: the PCV of {Y∗f } for the non-response group and

CP∗(tx) =
S P∗(tx)

P∗(tx)
: the PCV of I(X∗i ≤ tx) for the non-response group.

Let S P(ty)P(tx) =

N∑
i=1

[(
Y f − P(ty)

)(
X f − P(tx)

)]
N − 1

: the PC between Y f and X f .

Let S P∗(ty)P∗(tx) =

N∑
i=N1+1

[(
Y∗f − P∗(ty)

)(
X∗f − P∗(tx)

)]
N2 − 1

: the PC between Y∗f and X∗f for the non-

response group.

Let ρP(ty)P(tx) =
S P(ty)P(tx)

S P(ty)S P(tx)
: the PC between Y f and X f .

Let ρP∗(ty)P∗(tx) =
S P∗(ty)P∗(tx)

S P∗(ty)S P∗(tx)
: the PC between Y∗f and X∗f for the non-response group.

Let

Urst =
E
[
(P(ty) − P̂(ty)r(P(tx) − P̂(tx)s(P(tz) − P̂(tz)t]

P(ty)rP(tx)sP(tz)t

and

U∗rst =
E
[
(P(ty) − P̂∗(ty)r(P(tx) − P̂∗(tx)s(P(tz) − P̂∗(tz)t]

P(ty)rP(tx)sP(tz)t ,

where r, s, t = 0, 1, 2.
Let e0 =

P̂(ty)−P(ty)
P(ty) , e1 =

P̂(tx)−P(tx)
P(tx) , e2 =

P̂(tz)−P(tz)
P(tz)

, e∗0 =
P̂∗(ty)−P(ty)

P(ty) , e∗1 =
P̂∗(tx)−P(tx)

P(tx) and

e∗2 =
P̂∗(tz)−P(tz)

P(tz)
such that E(ei) = 0, (i = 0, 1, 2) and E(e∗i ) = 0, (i∗ = 0, 1, 2). E(e2

0) = λC2
P(ty) �

U200 , E(e2
1) = λC2

P(tx) � U020 , E(e2
2) = λC2

P(tz)
� U002 , E(e0e1) = λρP(ty)P(tx)CP(ty)CP(tx) � U110 ,

E(e0e2) = λρP(ty)P(tz)CP(ty)CP(tz) � U101 , and E(e1e2) = λρP(tz)P(tz)CP(tx)CP(tz) � U011. Let E(e∗20 ) =
λS 2

P(ty)+λ
∗S 2

P∗(ty)

P2(ty) � U∗200 , E(e∗21 ) =
λS 2

P(tx)+λ
∗S 2

P∗(tx)

F2(tx) � U∗020 , E(e∗0e∗1) =

λS 2
P(ty)P(tx)+λ

∗S 2
P∗(ty)P∗(tx)

P(ty)P(tx) � U∗110 , E(e∗0e1) = λρP(ty)P(tx)CP(ty)CP(tx) � U110 , where λ = ( 1
n −

1
N ), λ∗ = (W2(K−1)

n ),

W2 = N2
N , N2 be the number of population corresponding to the non response group.
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9. Estimating population distribution function under non response

Let us assume that there are two categories within the underlying population, (i) the response (N1

units) and (ii) the non response (N2 units), and N1, N2 represents the number of units in the response
and non response groups, where N1 + N2 = N is the number of units in the response and non response
groups. The finite population distribution function CDF, P(ty), is given by:

P(ty) = W1P(ty) + W2P∗(ty) (9.1)

where W1 = N1
N and W2 = N2

N .
Let this study select n units from a population of N units where n1 units respond and n2 units do

not respond, where n1 + n2 = n. Through a personal interview, the non respondents are again reached
to receive a response from n2. Then subsamples with a size of r = n2

k for (k > 1) are obtained from non
responding units of n2. Both r units are presumed to respond. Let P(ty) and P(∗r)(ty) be a DF based on
sensitive units of n2 and r. [28] proposed a non response unbiased estimator for P(ty), given as:

P̂∗(ty) = w1P(ty) + w2P(∗r)(ty) (9.2)

where, w1 = n1
n and w2 = n2

n .
The MSE of P(ty) is given by:

MSE(P̂∗(ty)) = λS 2
P(ty) + λ∗S 2

P∗(ty). (9.3)

Similarly, the estimator (unbaised) of P(tx) for non response:

P̂∗(tx) = w1P(tx) + w2P(∗r)(tx). (9.4)

The MSE of P(tx) is given by:

MSE(P̂∗(tx)) = λS 2
P(tx) + λ∗S 2

P∗(tx). (9.5)

The non response in this study affects both the auxiliary and study variables.

(1) The ratio type estimator of distribution function under non-response is given by:

P̂2(tyR) = P̂∗(ty)
( P(tx)
P̂∗(tx)

)
. (9.6)

The bias and MSE of P̂2(tyR) are given by:

Bias(P̂2(tyR)) = P(ty)
[
U∗020 + U∗110

]
(9.7)

and
MSE(P̂2(tyR)) = P2(ty)

[
U∗200 + U∗020 − 2U∗110

]
. (9.8)

(2) [24] suggested ratio estimators of finite population distribution function under non response,
which are

P̂2(tyexp(R)) = P̂∗(ty) exp
(P(tx) − P̂∗(tx)
P(tx) + P̂∗(tx)

)
, (9.9)
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The bias and MSE of P̂2(tyexp(R)) are given by:

Bias(P̂2(tyexp(R))) = P(ty)
[3
8

U∗020 −
1
2

U∗110
]

(9.10)

and
MSE(P̂2(tyexp(R))) = P2(ty)

[
U∗200 +

1
4

U∗020 − U∗110
]
. (9.11)

(3) [25] proposed ratio type estimators of finite population distribution function under non response,
is given by:

P̂2(tySK(R)) = P̂∗(ty)
( P(tx)
P̂∗(tx)

)2

, (9.12)

The bias and MSE of P̂2(tySK(R)), is given by:

Bias
(
P̂2(tySK(R))

)
= P(ty)

[
3U∗020 − 2U∗110

]
(9.13)

and
MSE

(
P̂2(tySK(R))

)
= P2(ty)

[
U∗200 + 4U∗020 − 4U∗110

]
. (9.14)

10. Improved class of estimators

HR type unbiased estimator is used to estimate population distribution function in non
response presence.

Suppose that this study takes n units as a sample from a population of N units, this study may
define the ratio as follows.

P̂∗(tz) =
1
n

n∑
i=1

Z∗f ,

where Z∗i = Yi
Xi

.
Now, the ratio estimator of the population mean given as:

P̂2(tyHR) = P(tx)P̂∗(tz). (10.1)

Now, apply expectations on both sides of the equation.

E
(
P̂2(tyHR)

)
= P(tx)E

(
P̂∗(tz)

)
,

E
(
P̂2(tyHR)

)
= P(tx)E

(1
n

n∑
i=1

Z∗f
)

and

E
(
P̂2(tyHR)

)
= P(tx)

( 1
N

N∑
i=1

Z∗f
)
. (10.2)

It is a biased estimator. To find its bias, we use

Bias
(
P̂2(tyHR)

)
= E

(
P(tyHR)

)
− P(ty),
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Bias
(
P̂2(tyHR)

)
= P(tx)

( 1
N

N∑
i=1

Z∗f
)
−

( 1
N

N∑
i=1

Y∗f
)
,

Bias
(
P̂2(tyHR)

)
= −

(N2 − 1
N2

)( n2

n2 − 1

)(
P̂∗(ty) − P̂∗(tz)P̂(tx)

)
. (10.3)

Now, the estimator becomes

P̂2(tyHR) = P(tx)P̂∗(tz) − Bias
(
P(tyHR)

)
,

P̂2(tyHR) = P(tx)P̂∗(tz) +

(N2 − 1
N2

)( n2

n2 − 1

)(
P̂∗(ty) − P̂∗(tz)P̂∗(tx)

)
. (10.4)

Under the assumption
(

N2−1
N2

)(
n2

n2−1

)
≈ 1.

P̂2(tyHR) = P(tx)P̂∗(tz) +

(
P̂∗(ty) − P̂∗(tz)P̂∗(tx)

)
, (10.5)

P̂2(tyHR) = P(ty)(1 + e∗0) + P(tz)(1 + e∗2)(−e∗1P(tx)). (10.6)

Now, the variance of the proposed estimators under non-response is given by:

Var(P̂2(tyHR)) =
[
P2(ty)U∗200 + P2(tz)P2(tx)U∗020 − 2P(tz)P(ty)P(tx)U∗110

]
. (10.7)

11. Theoretical comparison

Now, the suggested estimator to the following estimators:

(i) From (9.3) and (10.7),
MSE(P̂2(ty0)) − Var(P̂2(tyHR)) > 0 or if[

λS 2
P(ty) + λ∗S 2

P∗(ty)
]
−

[
P2(ty)U∗200 + P2(tz)P2(tx)U∗020 − 2P(tz)P(ty)P(tx)U∗110

)
] > 0.

(ii) From (9.8) and (10.7),
MSE(P̂2(tyR)) − Var(P̂2(tyHR)) > 0 or if

U∗020
[
P2(ty) − P2(tz)P2(tx)

]
− 2U∗110P(ty)

[
P(ty) − P(tz)P(tx)

]
> 0.

(iii) From (9.11) and (10.7),
MSE(P̂2(tyexp(R))) − Var(P̂2(tyHR)) > 0 or if

U∗020
[1
4

P2(ty) − P2(tz)P2(tx)
]
− U∗110P(ty)

[
P(ty) + 2P(tz)P(tx)

]
> 0.

(iv) From (9.14) and (10.7),
MSE(P̂2(tySK(R))) − Var(P̂2(tyHR)) > 0 or if

U∗020
[
4P2(ty) − P2(tz)P2(tx)

]
− 2U∗110P(ty)

[
2P(ty) − P(tz)P(tx)

]
> 0.
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The conditions under which the proposed estimator P̂2(tyHR) exhibits lower mean squared error,
indicating greater accuracy compared to both simple and usual estimators, can be derived from
the expressions provided above. By analyzing the mathematical expressions and considering the
properties of the proposed estimator, this study can determine the specific conditions or scenarios
where P̂2(tyHR) outperforms the other estimators in terms of accuracy. These conditions will enable
researchers and practitioners to identify the appropriate circumstances for utilizing P̂2(tyHR) to
achieve more precise estimations in their statistical analyses.

12. Data comparison

The performance of the proposed P̂2(tyHR) estimator is compared to the performance of other
current estimators using four natural population data sets. The population’s summary statistics are
listed below.
Pop I. Source: [25]

Suppose Y is the total sum of apples produced, and X is ratio of apple tree.
N = 106 , n = 30 , P(ty) = 0.8301887 , P(tx) = 0.7641509 , P(tz) = 1.08642 , S P(ty) =

0.3772507 , S P(tx) = 0.4265451 , S P(ty)P(tx) = 0.1309973 and ρP(ty)P(tx) = 0.8140806 .
Let Y f =1 for Y ≤ 1536.774 or (mean of Y), Y f =0 for all Y > 1536.774 or (mean of Y),
X f =1 for X ≤ 24375.59 or (mean of X), X f =0 for all X > 24375.59 or (mean of X) and
Z f =1 for Z ≤ 0.03927598 or (mean of Z), Z f =0 for all Z > 0.03927598 or (mean of Z).

(1) The non response ratio is calculated by the last 26 units of N and multiplying it by 25 percent.
N2 = 26 , P∗(ty) = 0.6923077 , P∗(tx) = 0.6923077 , P∗(tz) = 0.6153846
Let Y∗f =1 for Y ≤ 848.5 or (mean of Y), Y∗f =0 for all Y > 848.5 or (mean of Y),
X∗f =1 for X ≤ 20660 or (mean of X), X∗f =0 for all X > 20660 or (mean of X) and
Z∗f =1 for Z ≤ 0.03261708 or (mean of Z), Z∗f =0 for all Z > 0.03261708 or (mean of Z).

(2) The non response ratio is calculated by the last 32 units of N and multiplying it by 30 percent.
N2 = 32 , P∗(ty) = 0.71875 , P∗(tx) = 0.71875 , P∗(tz) = 0.59375
Let Y∗f =1 for Y ≤ 768.9688 or (mean of Y), Y∗f =0 for all Y > 768.9688 or (mean of Y),
X∗f =1 for X ≤ 21605.53 or (mean of X), X∗f =0 for all X > 21605.53 or (mean of X) and
Z∗f =1 for Z ≤ 0.03243408 or (mean of Z), Z∗f =0 for all Z > 0.03243408 or (mean of Z).

(3) The non response ratio is calculated by the last 37 units of N and multiplying it by 35 percent.
N2 = 37 , P∗(ty) = 0.7567568 , P∗(tx) = 0.7567568 , P∗(tz) = 0.5945946
Let Y∗f =1 for Y ≤ 685.3784 or (mean of Y), Y∗f =0 for all Y > 685.3784 or (mean of Y),
X∗f =1 for X ≤ 19064.3 or (mean of X), X∗f =0 for all X > 19064.3 or (mean of X) and
Z∗f =1 for Z ≤ 0.03676974 or (mean of Z), Z∗f =0 for all Z > 0.03676974 or (mean of Z).

Pop II. Source: [27]
Let Y represent the estimated number of fish caught by fishermen and X represent the estimated

number of fish caught by fishermen.
N = 69 , n = 25 , P(ty) = 0.7246377 , P(tx) = 0.7101449 , P(tz) = 0.7246377 , S P(ty) =

0.4499692 , S P(tx) = 0.4570188 , S P(ty)P(tx) = 0.1690111 and ρP(ty)P(tx) = 0.821861 .
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Let Y f =1 for Y ≤ 4514.899 or (mean of Y), Y f =0 for all Y > 4514.899 or (mean of Y),
X f =1 for X ≤ 4230.174 or (mean of X), X f =0 for all X > 4230.174 or (mean of X) and
Z f =1 for Z ≤ 1.251484 or (mean of Z), Z f =0 for all Z > 1.251484 or (mean of Z).

(1) The non response ratio is calculated by the last 17 units of N and multiplying it by 25 percent.
N2 = 17 , P∗(ty) = 0.7647059 P∗(tx) = 0.7647059, , P∗(tz) = 0.6470588
Let Y∗f =1 for Y ≤ 3155.059 or (mean of Y), Y∗f =0 for all Y > 3155.059 or (mean of Y),
X∗f =1 for X ≤ 2872.118 or (mean of X), X∗f =0 for all X > 2872.118 or (mean of X) and
Z∗f =1 for Z ≤ 1.099427 or (mean of Z), Z∗f =0 for all Z > 1.099427 or (mean of Z).

(2) The non response ratio is calculated by the last 21 units of N and multiplying it by 30 percent.
N2 = 21 , P∗(ty) = 0.7142857 , P∗(tx) = 0.7142857 , P∗(tz) = 0.6666667
Let Y∗f =1 for Y ≤ 3356.095 or (mean of Y), Y∗f =0 for all Y > 3356.095 or (mean of Y),
X∗f =1 for X ≤ 3135.667 or (mean of X), X∗f =0 for all X > 3135.667 or (mean of X) and
Z∗f =1 for Z ≤ 1.08177 or (mean of Z), Z∗f =0 for all Z > 1.08177 or (mean of Z).

(3) The non response ratio is calculated by the last 24 units of N and multiplying it by 35 percent.
N2 = 24 , P∗(ty) = 0.75 , P∗(tx) = 0.7083333 , P∗(tz) = 0.6666667
Let Y∗f =1 for Y ≤ 4338.792 or (mean of Y), Y∗f =0 for all Y > 4338.792 or (mean of Y),
X∗f =1 for X ≤ 4231.417 or (mean of X), X∗f =0 for all X > 4231.417 or (mean of X) and
Z∗f =1 for Z ≤ 1.070156 or (mean of Z), Z∗f =0 for all Z > 1.070156 or (mean of Z).

Pop III. Source: [26]
Assume Y denotes the total sum of apples produced, and X is the proportion of apple trees.
N = 171 , n = 95 , P(ty) = 0.9005848 , P(tx) = 0.8479532 , P(tz) = 0.5964912 , S P(ty) =

0.3000975 , S P(tx) = 0.3601208 , S P(ty)P(tx) = 0.07891297 and ρP(ty)P(tx) = 0.7301934 .
Let Y f =1 for Y ≤ 5588.012 or (mean of Y), Y f =0 for all Y > 5588.012 or (mean of Y),
X f =1 for X ≤ 74364.68 or (mean of X), X f =0 for all X > 74364.68 or (mean of X) and
Z f =1 for Z ≤ 0.04436282 or (mean of Z), Z f =0 for all Z > 0.04436282 or (mean of Z).

(1) The non response ratio is calculated by the last 43 units of N and multiplying it by 25 percent.
N2 = 43 , P∗(ty) = 0.9069767 , P∗(tx) = 0.8837209 , P∗(tz) = 0.5813953.
Let Y∗f =1 for Y ≤ 8266.698 or (mean of Y), Y∗f =0 for all Y > 8266.698 or (mean of Y),
X∗f =1 for X ≤ 98138.7 or (mean of X), X∗f =0 for all X > 98138.7 or (mean of X) and
Z∗f =1 for Z ≤ 0.04413647 or (mean of Z), Z∗f =0 for all Z > 0.04413647 or (mean of Z).

(2) The non response ratio is calculated by the last 51 units of N and multiplying it by 30 percent.
N2 = 51 , P∗(ty) = 0.9215686 , P∗(tx) = 0.8823529 , P∗(tz) = 0.5882353
Let Y∗f =1 for Y ≤ 7255.412 or (mean of Y), Y∗f =0 for all Y > 7255.412 or (mean of Y),
X∗f =1 for X ≤ 87643.02 or (mean of X), X∗f =0 for all X > 87643.02 or (mean of X) and
Z∗f =1 for Z ≤ 0.04491961 or (mean of Z), Z∗f =0 for all Z > 0.04491961 or (mean of Z).

(3) The non response ratio is calculated by the last 60 units of N and multiplying it by 35 percent.
N2 = 60 , P∗(ty) = 0.9166667 , P∗(tx) = 0.8666667 , P∗(tz) = 0.5945946
Let Y∗f =1 for Y ≤ 7012.967 or (mean of Y), Y∗f =0 for all Y > 7012.967 or (mean of Y),
X∗f =1 for X ≤ 90549.07 or (mean of X), X∗f =0 for all X > 90549.07 or (mean of X) and
Z∗f =1 for Z ≤ 0.04419811 or (mean of Z), Z∗f =0 for all Z > 0.04419811 or (mean of Z).
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Pop IV. Source: [26]
Suppose Y shows the total sum of apples produced, and X represents the proportion of apple trees.
N = 95 , n = 55 , P(ty) = 0.8191489 , P(tx) = 0.7765957 , P(tz) = 0.6489362 , S P(ty) =

0.3869585 , S P(tx) = 0.4187605 , S P(ty)P(tx) = 0.1312057 and ρP(ty)P(tx) = 0.809697 .
Assume Y f =1 for Y ≤ 9384.309 or (mean of Y), Y f =0 for all Y > 9384.309 or (mean of Y),
X f =1 for X ≤ 72409.95 or (mean of X), X f =0 for all X > 72409.95 or (mean of X) and
Z f =1 for Z ≤ 0.06322204 or (mean of Z), Z f =0 for all Z > 0.06322204 or (mean of Z).

(1) The non response ratio is calculated by the last 70 units of N and multiplying it by 25 percent.
N2 = 70 , P∗(ty) = 0.8333333 , P∗(tx) = 0.75 , P∗(tz) = 0.5833333.
Let Y∗f =1 for Y ≤ 1437.042 or (mean of Y), Y∗f =0 for all Y > 1437.042 or (mean of Y),
X∗f =1 for X ≤ 25656.46 or (mean of X), X∗f =0 for all X > 25656.46 or (mean of X) and
Z∗f =1 for Z ≤ 0.04199972 or (mean of Z), Z∗f =0 for all Z > 0.04199972 or (mean of Z).

(2) The non response ratio is calculated by the last 28 units of the N and multiplying it by 30 percent.
N2 = 28 , P∗(ty) = 0.8214286 , P∗(tx) = 0.7857143 , P∗(tz) = 0.6071429
Let Y∗f =1 for Y ≤ 2390.429 or (mean of Y), Y∗f )=0 for all Y > 2390.429 or (mean of Y),
X∗f =1 for X ≤ 37522.71 or (mean of X), X∗f =0 for all X > 37522.71 or (mean of X) and
Z∗f =1 for Z ≤ 0.04519338 or (mean of Z), Z∗f =0 for all Z > 0.04519338 or (mean of Z).

(3) The non response ratio is calculated by the last 33 units of the N and multiplying it by 35 percent.
N2 = 33 , P∗(ty) = 0.7878788 , P∗(tx) = 0.7575758 P∗(tz) = 0.5151515
Let Y∗f =1 for Y ≤ 2689.788 or (mean of Y), Y∗f =0 for all Y > 2689.788 or (mean of Y),
X∗f =1 for X ≤ 40433.21 or (mean of X), X∗f =0 for all X > 40433.21 or (mean of X) and
Z∗f =1 for Z ≤ 0.04833449 or (mean of Z), Z∗f =0 for all Z > 0.04833449 or (mean of Z).

Now, the following expression is used for real data to obtain the PRE:

PRE =
MSE(P̂2(ty0))

MSE(P̂2(tyi))
× 100,

where P̂2(tyi)=P̂2(tyHR), P̂2(tyR), P̂2(tyexp(R)) and P̂2(tySK(R)).

13. Conditional values

By adjusting for possible bias and inflated variance, the modified HR estimators conditionally
provide more accurate estimates in the presence of non response. Even when non response causes some
of the data to be missing, these estimators can increase the accuracy of population mean estimations.

13.1. Non response

Non-response is a common problem in real-world survey applications that can seriously impair
the quality of information received. For instance, those with more severe symptoms may be less
inclined to engage in healthcare surveys that look at mental health or chronic disorders because of
stigma, cognitive difficulties, or physical restrictions. In the same way, people with higher incomes may
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decline to participate in income and wealth surveys due to privacy concerns. In contrast, respondents
with lower incomes may find it difficult to disclose their financial situation. When this non response
is consistently connected to the unobserved outcome variables, bias is introduced and it becomes non
ignorable. To ensure the validity of the survey results, addressing this issue calls for advanced methods
like multiple imputation or weighting changes to reduce the influence of non response bias.

The experimental results presented in Tables 6–9 demonstrate the strong performance of the
proposed estimators across all tested conditions. Notably, the reaction times were consistently efficient,
and the MSE was significantly lower than that of alternative estimators. This consistent reduction in
MSE highlights the superior accuracy and reliability of the proposed estimators, showcasing their
effectiveness across a variety of scenarios and datasets.

Table 6. Conditional values using Population I.

W1=0.25 W2=0.30 W3=0.35
i 0.00465 0.00479 0.00489
ii 0.00049 0.00039 0.00037
iii 0.00024 0.00018 0.00019
iv 0.01501 0.01523 0.01538

Table 7. Conditional values using Population II.

W1=0.25 W2=0.30 W3=0.35
i 0.00612 0.00679 0.00740
ii 0.00039 0.00034 0.00017
iii 0.00058 0.00072 0.00083
iv 0.01603 0.01666 0.01662

Table 8. Conditional values using Population III.

W1=0.25 W2=0.30 W3=0.35
i 0.00069 0.00065 0.00067
ii 0.00029 0.00033 0.00036
iii 0.00014 0.00012 0.00010
iv 0.00361 0.00384 0.00410

Table 9. Conditional values using Population IV.

W1=0.25 W2=0.30 W3=0.35
i 0.0021 0.00115 0.00217
ii 0.00034 0.00041 0.00022
iii 0.00081 0.0010 0.00023
iv 0.00767 0.00805 0.00004

AIMS Mathematics Volume 10, Issue 1, 1061–1084.



1080

A more detailed summary of these findings is provided in Tables 10–13, which compile the
performance metrics and offer a comparative overview. These summarized results further confirm
the robustness and efficiency of the proposed estimators, highlighting their advantages over existing
methods. The superior performance shown in both the detailed and summarized results reinforces the
appropriateness of these estimators for practical applications, especially in situations that require high
precision and lower error rates.

Table 10. PREs of estimators using Population I.

W1=0.25 W2=0.30 W3=0.35

Estimators PRE PRE PRE
P̂2(ty) 100 100 100
P̂2(tyR) 271.4145 281.1132 285.9669

P̂2(tyexp(R)) 303.0255 307.0009 308.9259
P̂2(tySK(R)) 38.90143 39.54889 39.86403
P̂2(tyHR) 339.7875 334.6623 337.7393

Table 11. PREs of estimators using Population II.

W1=0.25 W2=0.30 W3=0.35

Estimators PRE PRE PRE

P̂2(ty) 100 100 100
P̂2(tyR) 234.0302 252.4467 300.773

P̂2(tyexp(R)) 223.8694 231.7421 254.3968
P̂2(tySK(R)) 50.2447 51.59956 54.0492
P̂2(tyHR) 257.0119 274.7351 316.0341

Table 12. PREs of estimators using Population III.

W1=0.25 W2=0.30 W3=0.35

Estimators PRE PRE PRE

P̂2(ty) 100 100 100
P̂2(tyR) 148.2967 137.3221 133.6888

P̂2(tyexp(R)) 225.6373 218.2278 215.9063
P̂2(tySK(R)) 28.56793 27.00226 26.43597
P̂2(tyHR) 231.8627 223.0608 219.9059
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Table 13. PREs of estimators using Population IV.

W1=0.25 W2=0.30 W3=0.35

Estimators PRE PRE PRE

P̂2(ty) 100 100 100
P̂2(tyR) 206.8332 189.095 204.2619

P̂2(tyexp(R)) 246.1225 227.1769 235.4009
P̂2(tySK(R)) 37.72911 37.71416 39.38638
P̂2(tyHR) 261.3122 242.7319 240.0694

The response rates for different populations are presented in Tables 10–13, revealing the
effectiveness of the proposed estimators compared to existing ones. Based on the study, the suggested
estimators routinely capture greater response rates across a variety of the population than the present
estimators. This suggests that the proposed estimators may be able to produce estimates that are more
reliable and precise, thereby improving the standard of decision-making and data analysis procedures.

14. Conclusions

The present study proposes a class of unbiased estimators for non-response (SRS) that are modeled
after the HR approach for estimating the distribution function (DF). Using both mathematical modeling
and statistical computations, this study establishes the efficiency criterion for proposed estimators by
taking into account both the maximum response and failure to respond (non response).

It is important to note that all the conditional outcomes in SRS with failure to respond (non
response) are positive, consistent with the positive value conditions found in simulated and statistical
studies. Tables 2–5 and Tables 10–13 present these findings. Through a comparison of the percent
relative utility of several estimators with the normal estimators, our analysis founds that the P̂(tyHR)
estimators we presented perform consistently better than the competing estimators.

In light of these promising findings, the paper suggests that future investigations focus on applying
the suggested estimators for practical PDF estimation in the context of auxiliary variables in SRS and
non-response frameworks. The proposed estimators’ proven better performance indicates that they
have the potential to increase statistical accuracy and dependability, which will improve decision-
making in real-world applications.

Future work will enhance this research by incorporating two-phase sampling methods and
leveraging distribution functions along with probability proportional to size (PPS) sampling techniques.
By integrating these advanced sampling strategies, the proposed estimators can be refined to better
account for varying population characteristics, thereby improving their applicability to real-world
scenarios. The use of distribution functions will allow for more robust modeling of the underlying data
structure. Additionally, PPS sampling will ensure that more significant or more relevant units have a
greater likelihood of being selected, which will enhance the precision and efficiency of the estimators.
This extension will provide a comprehensive framework for addressing complex estimation problems
across diverse fields. Future research will also examine how different sample sizes affect estimator
performance to improve scalability and accuracy.
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