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1. Introduction

In 1878, Clifford algebra was defined in [1]. In 1982, Brackx et al. [2] generalized some
results of the complex analysis to Clifford analysis. Malonek and Ren [3] studied the Almansi-
type decomposition theorems for the k-order monogenic functions and k-order λ-weighted monogenic
functions in 2002. In the unweighted case, the star-like condition of the domain is needed. This fact
accounts for the greater generality of the decomposition in the weighted case, which indeed holds in
any domain. When k = 1, the origin of the notion of λ-weighted monogenic functions is given. In 2017,
Garcı́a et al. [4] studied an integral representation for the solution to the sandwich Dirac equation in
Clifford analysis. Yang et al. [5] obtained the Cauchy theorem for the solution to the k-order Dirac
equation with α-weight in 2018, where k > 0 is an integer and α is a nonzero real number. In 2020,
Blaya et al. [6] gave the integral representation for the solution of the bilateral higher-order Dirac
equation and proved some properties for Cauchy and Teodorescu transforms. In 2022, Peláez et al. [7]
took the sum of the left Dirac operator multiplied by α and the right Dirac operator multiplied by β
as a new operator, and studied the integral representation of solutions to higher-order new operators,
where α, β are real numbers. In 2023, Dinh [8] introduced (α, β)-monogenic functions and isotonic
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functions, where α, β are real numbers and α , β; they gave the integral representation formulae of
these functions respectively by using the new proof method and proved the series representation of
polynomial Dirac equations. In 2024, Gao et al. [9] got an integral representation for the solution
of the bilateral higher order Dirac equation with α-weight, where α is a nonzero real number. Liu
et al. [10] investigated some Riemann-Hilbert boundary value problems for perturbed Dirac operators
in the Clifford algebra Cl(V3,3). D. A. Santiesteban et al. [11] examined well-posed boundary value
problems for second-order elliptic systems of partial differential equations in bounded regular domains
of Euclidean spaces.

In 2008, Clifford algebras depending on parameters emerged as an extension of the classical Clifford
algebra. Its applications in partial differential equations were introduced by Tutschke and Vanegas [12].
In 2012, Di Teodoro et al. [13] studied solutions for the first order homogeneous meta-Dirac equation
and then gave a solution of the inhomogeneous equation by using Fubini′s theorem. In 2013, the
integral representations for the meta-Dirac operator of n-order and its conjugate operators of n-order
are derived by Balderrama et al. [14]. In 2014, some achievements of hypercomplex analysis were
expounded and some of its development trends were presented in reference [15]. Ariza et al. [16]
gave the integral formulae to solutions for second order elliptic Dirac equation in 2015. In 2017,
Ariza Garcı́a et al. [17] obtained the correlation between first-order differential operators and q-Dirac
operators, with the aim of studying initial value problems, where q is a n-dimensional vector. In 2021,
Cuong et al. [18] studied the integral expression of monogenic functions in the Clifford algebra
depending on three parameters and solved two boundary value problems related to this function.

Based on the above work, we have conducted certain work with the aim of extending the results from
the classical Clifford algebra to the framework of parameter dependent Clifford algebra. In Section 2,
we investigate some important properties of functions valued in this Clifford algebra. In Section 3,
integral representations for p-order λ-weighted monogenic functions and right q-order λ-weighted
monogenic functions are derived. Furthermore, in Section 4, we present an integral representation
for (p + q)-order λ-weighted monogenic functions. Finally, Section 5 contains the conclusion and
discussion of this paper. This paper mainly generalizes some results of references [5, 9].

2. Preliminaries

In this section, we present some basic results on the parameter dependent Clifford analysis,
meanwhile, we prove some important properties of some functions valued in the parameter dependent
Clifford algebra.

2.1. Some basic results on the parameter dependent Clifford analysis

Suppose that α j, γi j = γ ji are nonnegative real numbers for i, j = 1, 2, . . . , n, i , j, the set of base
element is {e0 = 1, e1, . . . , en}, and the base element satisfies the following multiplication rule{

e2
j = −α j,

eie j + e jei = 2γi j.
(2.1)

From this, we obtain a parameter dependent Clifford algebra Bn(2, α j, γi j) which is generated by
the structural relationship (2.1). Every element of the algebra is of the form c =

∑
A1

cA1eA1 , cA1 ∈ R,
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where A1 := { j1, . . . , jk} ⊆ {1, . . . , n}, j1 < j2 < · · · < jk, eA1 = e j1 · · · e jk , and e0 = e∅ = 1. As indices
we use the elements A1 of the set containing the ordered subsets of {1, 2, . . . , n}, with the empty subset
corresponding to the index 0. The set A1 runs over all the possible ordered sets A1 = {1 ≤ j1 < . . . <

jk ≤ n}, or A1 = ∅. The dimension of this algebra is 2n.
Let N∗ be the set of positive integers. If 1 ≤ j ≤ n and j ∈ N∗, the base element satisfies the

involution e j = −e j. If eA = eh1···hr = eh1 · · · ehr , then eA = ehr · · · eh1 = (−1)rehr · · · eh1 . For any
ξ =

∑
A1

ξA1eA1 ∈ Bn(2, α j, γi j), we define ξ =
∑
A1

ξA1eA1 , |ξ|
2 =

∑
A1

ξ2
A1

, where ξA1 ∈ R.

The Euclidean Clifford algebra Bn(2, 1, 0) is one of the special cases of Bn(2, α j, γi j).
The function f : Ω → Bn(2, α j, γi j) is denoted by f (x) =

∑
A

fA1(x)eA1 , where fA1(x) is a real-valued

function and Ω is an open connected bounded domain in Rn. f is a r-times continuously differentiable
function, which means fA1 is a r-times continuously differentiable function, where r ∈ N∗. The set
consisting of the r-times continuously differentiable function is denoted by Fr(Ω,Bn(2, α j, γi j)).

When f ∈ F1(Ω,Bn(2, α j, γi j)), Dirac operators and its conjugate operators acting on function f are
defined respectively as follows:

Dx f =

n∑
k=1

ek
∂ f
∂xk

, f Dx =

n∑
k=1

∂ f
∂xk

ek, Dx f =

n∑
k=1

ek
∂ f
∂xk

, f Dx =

n∑
k=1

∂ f
∂xk

ek.

After a direct calculation, we have

DxDx = DxDx =

n∑
j=1

α j∂
2
j − 2

∑
1≤i< j≤n

γi j∂i∂ j,

the corresponding quadratic form is

n∑
j=1

α jξ
2
j − 2

∑
1≤i< j≤n

γi jξiξ j, (2.2)

which has a coefficient matrix

B =


α1 −γ12 · · · −γ1n

−γ12 α2 · · · −γ2n

· · · · · ·
. . . · · ·

−γ1n −γ2n · · · αn

 . (2.3)

Denote

B1 = α1, B2 =

(
α1 −γ12

−γ12 α2

)
, B3 =


α1 −γ12 −γ13

−γ12 α2 −γ12

−γ13 −γ12 α3

 , · · · , Bn = B.

See references [19, 20]. By using the Sylvester′s criterion, (2.2) is a positive definite quadratic form if
and only if the determinant of each B j is a positive number for all j = 1, 2, . . . , n, i.e.,

det(B j) > 0. (2.4)

In this situation, DxDx = DxDx becomes an elliptic Dirac operator, so we denote DxDx = DxDx by ∆̃n.
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Suppose that (2.4) holds in this paper, then the inverse matrix of matrix B exists and can be
represented by

A =


a11 a12 · · · a1n

a12 a22 · · · a2n

· · · · · ·
. . . · · ·

a1n a2n · · · ann

 , (2.5)

where ai j = a ji, i, j = 1, 2, . . . , n.
See reference [12]. For two points x = (x1, · · · , xn) and ζ = (ζ1, · · · , ζn) in Rn, x , ζ, the

representation of the non-Euclidean distance ρ as follows:

ρ2 := ρ2(x, ζ) =

n∑
i, j=1

ai j(xi − ζi)(x j − ζ j), (2.6)

the representation of the Euclidean distance is ι = |x − ζ |.
See reference [14]. Suppose that for some Y ∈ Rn and Y satisfying |Y | = 1, we denote x − ξ = ιY ,

then the infimum of ρ(Y, 0) for all Y is positive, i.e., ρ2(Y, 0) ≥ c0 > 0, where c0 is a constant, so
ρ2(x, ξ) ≥ c0ι

2.
For f ∈ F1(Ω,Bn(2, α j, γi j)), the first-order λ-weighted Dirac operators acting on the function f are

defined as follows:
Dλ

x f = ρ−λx H(x)(Dx f ), f Dλ
x = ( f Dx)ρ−λx H(x),

where ρx =
(∑n

i, j=1 ai jxix j

) 1
2 , H(x) =

∑n
i, j=1 eiai jx j, and λ is a fixed nonzero real number.

Definition 2.1. [12] Suppose f ∈ F1(Ω,Bn(2, α j, γi j)), then a solution f of the Dirac equation
Dx f (x) = 0 ( f (x)Dx = 0) is called a left (right) monogenic function.

See reference [12]. We know that ρ−n
x H(x) is not only a left monogenic function but also a right

monogenic function.

Definition 2.2. Suppose f ∈ Fp+q(Ω,Bn(2, α j, γi j)), p, q are positive integers.
(i) A solution f of the p-order λ-weighted Dirac equation (Dλ

x)p f (x) = 0 is called a left p-order
λ-weighted monogenic function, where (Dλ

x)p = Dλ
x ◦ · · · ◦ Dλ

x (p-times), ◦ is a composite operation of
operators.

(ii) A solution f of the right q-order λ-weighted equation f (x)(Dλ
x)q = 0 is called a right q-order

λ-weighted monogenic function, where (Dλ
x)q = Dλ

x ◦ · · · ◦ Dλ
x (q-times).

Remark 2.1. (i) When p = 1(q = 1) in Definition 2.2, a solution f of the λ-weighted Dirac equation
Dλ

x f (x) = 0 ( f (x)Dλ
x = 0) is called a left (right) λ-weighted monogenic function.

(ii) A left p-order λ-weighted monogenic function can be called a p-order λ-weighted monogenic
function for short. A left λ-weighted monogenic function can be called a λ-weighted monogenic
function for short.

Definition 2.3. Suppose f ∈ Fp+q(Ω,Bn(2, α j, γi j)), p and q are positive integers, then the solution f of
equation

(
(Dλ

x)p f (x)
)
(Dλ

x)q = 0 is called a (p + q)-order λ-weighted monogenic function.
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If f is a left p-order λ-weighted monogenic function, then f is a (p+q)-order monogenic λ-weighted
function.

Remark 2.2. ρ−n
x H(x), ρ−n+(p−1)λ

x H(x), and ρ−n+(p+q−1)λ
x H(x) are (p + q)-order λ-weighted monogenic

functions, where λ is a fixed nonzero real number.

For x ∈ ∂Ω, its outer unit normal vector is N(x) = (N(x1), . . . ,N(xn)) = (N1, . . . ,Nn), dσx =
n∑

i=1
Nieidµ is the Clifford-algebra-valued measure element of ∂Ω, dµ represents the scalar measure

element of ∂Ω, and ∂Ω is a sufficiently smooth boundary.

Lemma 2.1. [12] Suppose f , g ∈ F1(Ω,Bn(2, α j, γi j)), then∫
∂Ω

f (x)dσxg(x) =

∫
Ω

[(
f (x)Dx

)
g(x) + f (x)

(
Dxg(x)

)]
dx,

where dx = dx1 ∧ dx2 ∧ · · · ∧ dxn.

Similar to the proof of the theorem in reference [21], we can prove that Lemma 2.2 holds.

Lemma 2.2. Suppose f , g ∈ F1(Ω,Bn(2, α j, γi j)), then

Dx
(
f (x)g(x)

)
=

(
Dx f (x)

)
g(x) +

n∑
k=1

ek f (x)
∂g(x)
∂xk

,

(
f (x)g(x)

)
Dx =

n∑
k=1

∂ f (x)
∂xk

g(x)ek + f (x)
(
g(x)Dx

)
.

Proof. We suppose that f (x) =
∑
A1

fA1(x)eA1 , g(x) =
∑
A2

gA2(x)eA2 , where fA1(x) and gA2(x) are real-valued

functions, then

Dx
(
f (x)g(x)

)
=

n∑
k=1

ek

∂
(

f (x)g(x)
)

∂xk
=

n∑
k=1

ek

∂
[(∑

A1

fA1(x)eA1

)(∑
A2

gA2(x)eA2

)]
∂xk

=

n∑
k=1

ek

∑
A1

∑
A2

∂
(

fA1(x)gA2(x)
)

∂xk
eA1eA2 =

n∑
k=1

ek

∑
A1

∑
A2

[∂ fA1(x)
∂xk

gA2(x) + fA1(x)
∂gA2(x)
∂xk

]
eA1eA2

=

n∑
k=1

ek

∂
∑
A1

fA1(x)eA1

∂xk

∑
A2

gA2(x)eA2 +

n∑
k=1

ek

∑
A1

fA1(x)eA1

∂
∑
A2

gA2(x)eA2

∂xk

=
(
Dx f (x)

)
g(x) +

n∑
k=1

ek f (x)
∂g(x)
∂xk

.

Similarly, we can prove the other equality. �

2.2. Some important properties of some functions valued in Bn(2, α j, γi j)

Suppose that Mλ
s (x) = Es(x)ρ−λx H(x), where Es(x) = Cs

ρn−sλ
x

, Cs = 1
ωnλs−1(s−1)! , s ∈ N∗, ωn represents the

Euclidean surface measure of the unit sphere.
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Proposition 2.1. When s > 1, we have

DxMλ
s (x) = Mλ

s (x)Dx = Es−1(x).

Proof. Since AB = E and E is the identity matrix, we obtain that for m, k = 1, 2, . . . , n,

αkakm −

n∑
i=1,i,k

γikaim =

{
0, m , k,
1, m = k,

then
n∑

i,k=1

ekeiamkaim =

n∑
k=1

ekekamkakm +

n∑
i,k=1,k<i

ekeiamkaim +

n∑
i,k=1,k>i

ekeiamkaim

=

n∑
k=1

ekekamkakm +

n∑
i,k=1,k<i

ekeiamkaim +

n∑
j,l=1, j<l

ele jamla jm =

n∑
k=1

ekekamkakm +

n∑
i,k=1,k<i

(ekei + eiek)amkaim

=

n∑
k=1

αkamkakm − 2
n∑

i,k=1,k<i

γikamkaim =

n∑
k=1

αkamkakm −

n∑
i,k=1,k,i

γikamkaim

=

n∑
k=1

(
αkamk −

n∑
i=1,k,i

γikaim

)
akm =

n∑
k=1

δkmakm = amm,

therefore,
n∑

i,k,m=1

ekeiamkaimx2
m =

n∑
m=1

ammx2
m.

Also,
n∑

m,i, j,k=1, j,m

ekeiamkai jxmx j =

n∑
m,i, j,k=1, j<m

ekeiamkai jxmx j +

n∑
m,i, j,k=1, j<m

ekeia jkaimx jxm

=

n∑
m, j,k=1, j<m

ekek(amkak j + a jkakm)xmx j +

n∑
m,i, j,k=1,i<k, j<m

ekei(amkai j + a jkaim)xmx j

+

n∑
m,i, j,k=1,i<k, j<m

eiek(amkai j + a jkaim)xmx j

=

n∑
m, j,k=1, j<m

αk(amkak j + a jkakm)xmx j − 2
n∑

m,i, j,k=1,i<k, j<m

γik(amkai j + a jkaim)xmx j

=

n∑
m, j,k=1, j<m

αk(amkak j + a jkakm)xmx j −

n∑
m,i, j,k=1,i,k, j<m

γik(amkai j + a jkaim)xmx j

=

n∑
m,k, j=1, j<m

(
αkamk −

n∑
i=1,i,k

γikaim

)
ak jxmx j +

n∑
m,k, j=1, j<m

(
αka jk −

n∑
i=1,i,k

γikai j

)
akmxmx j

=

n∑
m,k, j=1, j<m

δkmak jxmx j +

n∑
m,k, j=1, j<m

δk jakmxmx j =

n∑
m, j=1, j,m

am jxmx j.
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Consequently,

H(x)H(x) =
( n∑

i, j=1

eiai jx j

)( n∑
k,m=1

ekakmxm

)
=

( n∑
i,k,m=1

ekeiamkaimx2
m

)
+

( n∑
m,i, j,k=1,m, j

ekeiamkai jxmx j

)
=

n∑
m=1

ammx2
m +

n∑
j,m=1,m, j

am jxmx j = ρ2
x.

By H(x) = −H(x), we can conclude that H(x)H(x) = −H2(x) = ρ2
x.

By AB = E, we have

DxH(x) =

n∑
i, j=1

eia jie j =

n∑
i=1

aiieiei +

n∑
i, j=1,i< j

ai j
(
eie j + e jei)

=

n∑
j=1

a j jα j −

n∑
i, j=1,i, j

ai jγi j =

n∑
j=1

(
a j jα j −

n∑
i=1,i, j

ai jγi j

)
= n.

Similarly, we can prove that H(x)D = n.
By equalities H(x)H(x) = ρ2

x and DxH(x) = n, we can conclude that

DxMλ
s (x) = Cs

[(
Dxρ

−n+(s−1)λ
x

)
H(x) + ρ−n+(s−1)λ

x

(
DxH(x)

)]

=Cs

[ n∑
k=1

ek

∂
( n∑

i, j=1
ai jxix j

) −n+(s−1)λ
2

∂xk
H(x) + nρ−n+(s−1)λ

x

]
=Cs

[ n∑
k=1

ek
−n + (s − 1)λ

2

( n∑
i, j=1

ai jxix j

) −n+(s−1)λ
2 −1( n∑

i=1

aikxi +

n∑
j=1

ak jx j

)
H(x) + nρ−n+(s−1)λ

x

]
=Cs

[ n∑
k=1

ek

(
− n + (s − 1)λ

)
ρ−n+(s−1)λ−2

x

n∑
i=1

aikxiH(x) + nρ−n+(s−1)λ
x

]
=Cs

[(
− n + (s − 1)λ

)
ρ−n+(s−1)λ−2

x

n∑
i,k=1

aikxiekH(x) + nρ−n+(s−1)λ
x

]
=Cs

[(
− n + (s − 1)λ

)
ρ−n+(s−1)λ−2

x H(x)H(x) + nρ−n+(s−1)λ
x

]
=Cs(s − 1)λρ−n+(s−1)λ

x = Es−1(x).

Similarly, we have Mλ
s (x)Dx = Es−1(x). �

Proposition 2.2. Let f ∈ Fk(Ω,Bn(2, α j, γi j)), k ∈ N∗, s = 1, 2, . . . , k.
(1) Suppose that f is a solution of the Dirac equation Dx f = 0, then

(Dλ
x)s

(
ρkλ

x f (x)
)

=
k!

(k − s)!
λsρ(k−s)λ

x f (x).

(2) Suppose that f is a solution of the Dirac equation f Dx = 0, then(
ρkλ

x f (x)
)
(Dλ

x)s =
k!

(k − s)!
λsρ(k−s)λ

x f (x).

AIMS Mathematics Volume 10, Issue 1, 1043–1060.



1050

Proof. (1) When s = 1, by using the equality H(x)H(x) = ρ2
x, it is easy to deduce that

Dx

(
ρkλ

x f (x)
)

=
(
Dρkλ

x
)
f (x) +

n∑
m=1

emρ
kλ
x
∂ f (x)
∂xm

=

n∑
m=1

em

∂
( n∑

i, j=1
ai jxix j

) kλ
2

∂xm
f (x) + ρkλ

x

(
D f (x)

)
=

n∑
m=1

em
kλ
2
ρkλ−2

x

( n∑
i=1

aimxi +

n∑
j=1

am jx j

)
f (x) = kλρkλ−2

x

( n∑
m,i=1

aimxiem

)
f (x) = kλρkλ−2

x H(x) f (x),

and

Dλ
x

(
ρkλ

x f (x)
)

= ρ−λx H(x)
[
Dx

(
ρkλ

x f (x)
)]

= kλρ(k−1)λ
x f (x).

We suppose that (Dλ
x)s−1

(
ρkλ

x f (x)
)

= k!
(k−s+1)!λ

s−1ρ(k−s+1)λ
x f (x) holds, then

(Dλ
x)s

(
ρkλ

x f (x)
)

= Dλ
x

( k!
(k − s + 1)!

λs−1ρ(k−s+1)λ
x f (x)

)
=

k!
(k − s + 1)!

λs−1ρ−λx H(x)
[
Dx

(
ρ(k−s+1)λ

x f (x)
)]

=
k!

(k − s + 1)!
λs−1ρ−λx H(x)

[(
k − s + 1

)
λρ(k−s+1)λ−2

x H(x) f (x)
]

=
k!

(k − s)!
λsρ(k−s)λ

x f (x).

According to the mathematical induction, we get the conclusion.
Similarly, we can prove that (2) holds �

Proposition 2.3. Suppose 1 ≤ s ≤ p, 1 ≤ t ≤ q, and 1 ≤ k ≤ p + q, where s, t, k, p, q ∈ N∗.
(1) Let f ∈ Fp(Ω,Bn(2, α j, γi j)) be a solution of the equation Dx f = 0. Then, ρ(p−s)λ

x f (x) is a solution
of the p-order λ-weighted Dirac equation (Dλ

x)p f (x) = 0.
(2) Let f ∈ Fq(Ω,Bn(2, α j, γi j)) be a solution of the right equation f Dx = 0. Then, ρ(q−t)λ

x f (x) is a
solution of the right q-order λ-weighted Dirac equation f (x)(Dλ

x)q = 0.
(3) Let f ∈ Fp+q(Ω,Bn(2, α j, γi j)) be a solution of the equation system Dx f = 0 and f Dx = 0. Then,

ρ(p+q−k)λ
x f (x) is a solution of the (p + q)-order λ-weighted Dirac equation

(
(Dλ

x)p f (x)
)
(Dλ

x)q = 0.

Proof. By Proposition 2.2, (1) and (2) hold.
(3) (i) When q ≤ k ≤ p + q, i.e., 1 ≤ k − q ≤ p, by (1) in Proposition 2.3, we conclude that

ρ(p−(k−q))λ
x f (x) satisfies equation (Dλ

x)p
(
ρ(p−(k−q))λ

x f (x)
)

= 0. Therefore, (3) is clearly valid.
(ii) When 1 < k ≤ q, as f satisfies condition Dx f = 0 and based on (1) in Proposition 2.2, we can

deduce that
(Dλ

x)p
(
ρ(p+q−k)λ

x f (x)
)

=
(p + q − k)!

(q − k)!
λpρ(q−k)λ

x f (x).

As f satisfies condition f Dx = 0 and based on (2) in Proposition 2.3, we obtain[
(Dλ

x)p
(
ρ(p+q−k)λ

x f (x)
)]

(Dλ
x)q =

(p + q − k)!
(q − k)!

λp
[(
ρ(q−k)λ

x f (x)
)
(Dλ

x)q
]

= 0,

therefore, (3) is established. �

Theorem 2.1. Let 1 ≤ s ≤ p, 1 ≤ t ≤ q, 1 ≤ k ≤ p + q, where s, t, k, p, q ∈ N∗.
(1) Ep(x)ρ−sλ

x H(x) is a solution of the p-order λ-weighted Dirac equation (Dλ
x)p f (x) = 0.

(2) Eq(x)ρ−tλ
x H(x) is a solution of the right q-order λ-weighted Dirac equation f (x)(Dλ

x)q = 0.
(3) Ep+q(x)ρ−kλ

x H(x) is a solution of the (p+q)-order λ-weighted Dirac equation
(
(Dλ

x)p f (x)
)
(Dλ

x)q=0.
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Proof. By Proposition 2.3, (1) and (2) hold.
(3) It is obvious that

Ep+q(x)ρ−kλ
x H(x) =

Cp+q
ρn−(p+q)λ

x

ρ−kλ
x H(x) = ρ(p+q−k)λ

x Cp+q
H(x)
ρn

x
.

By Proposition 2.3 and the equality Dx
(
ρ−n

x H(x)
)

=
(
ρ−n

x H(x)
)
Dx = 0, we conclude that (3) in

Theorem 2.1 is established. �

3. Integral representations for the solutions of the p-order λ-weighted Dirac equation and right
q-order λ-weighted Dirac equation

In this section, we prove two Cauchy-Pompeiu integral formulae for functions valued in
Bn(2, α j, γi j), and obtain the Cauchy integral formulae for the null solution to higher order λ-weighted
Dirac operators as their corollary, respectively.

In this paper, we denote {x|y0 = x + x0 ∈ Ω} as Ω∗x0
, for any x0 ∈ Ω.

Theorem 3.1. Let p, q ∈ N∗, s = 0, 1, . . . , p; r = 0, 1, . . . , q.
(1) If f ∈ Fp(Ω,Bn(2, α j, γi j)), then for any x0 ∈ Ω, when 0 < λ < 1

p
, (Dλ

x)s f (y0) is a bounded

function in Ω∗x0
.

(2) If f ∈ Fq(Ω,Bn(2, α j, γi j)), then for any x0 ∈ Ω, when 0 < λ < 1
q
, f (y0)(Dλ

x)r is a bounded

function in Ω∗x0
.

Proof. (1) When s = 0, as f ∈ Fp(Ω,Bn(2, α j, γi j)), (Dλ
x)0 f (y0) is a bounded function in Ω∗x0

.
When s = 1, 2, . . . , p, we denote H(x) fs(x) by gs(x), and let

f1(x) = Dx f (y0),
f2(x) = −λ f1(x) + Dxg1(x),
f3(x) = −2λ f2(x) + Dxg2(x),

· · ·

fp−1(x) = −(p − 2)λ fp−2(x) + Dxgp−2(x),
fp(x) = −(p − 1)λ fp−1(x) + Dxgp−1(x).

As f ∈ Fp(Ω,Bn(2, α j, γi j)), f1, f2, ..., fp are bounded functions in Ω∗x0
.

When s = 1, we have Dλ
x f (y0) = ρ−λx H(x)

(
Dx f (y0)

)
= ρ−λx g1(x).

We suppose that t < p, t ∈ N∗, and (Dλ
x)t f (y0) = ρ−tλ

x gt(x), then

(Dλ
x)t+1 f (y0) = ρ−λx H(x)

[
Dx

(
ρ−tλ

x gt(x)
)]

=ρ−λx H(x)
[(

(−tλ)ρ−tλ−2
x H(x)

)
gt(x) + ρ−tλ

x

(
Dxgt(x)

)]
=ρ−(t+1)λ

x H(x)
[
− tλ ft(x) + Dx

(
gt(x)

)]
= ρ−(t+1)λ

x gt+1(x).

According to the mathematical induction, we get

(Dλ
x)s f (y0) = ρ−sλ

x gs(x).
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So for any x0 ∈ Ω, if 0 < λ < 1
s , then we conclude that (Dλ

x)s f (y0) is bounded in Ω∗x0
.

Hence, for any x0 ∈ Ω, when λ ∈
⋂p

s=1

(
0, 1

s

)
=

(
0, 1
p

)
, we conclude that (Dλ

x)s f (y0) is bounded in

Ω∗x0
, where s = 1, 2, . . . , p.
Similarly, we can prove that (2) holds. �

Theorem 3.2. Suppose that f ∈ Fp
(
Ω,Bn(2, α j, γi j)

)
, p ≤ n, 0 < λ < 1

p
, p ∈ N∗, for arbitrary x0 ∈ Ω,

then we have

c1(α j, γi j) f (x0) =

p∑
s=1

(−1)s
∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)
− (−1)p

∫
Ω∗x0

Ep(x)
(
(Dλ

x)p f (y0)
)
dx, (3.1)

where c1(α j, γi j) is a Clifford constant. If c1(α j, γi j) has a single inverse element, this formula is called
the Cauchy-Pompeiu integral formula of the function f ∈ Fp

(
Ω,Bn(2, α j, γi j)

)
.

Proof. For any x0 ∈ Ω, we have 0 + x0 ∈ Ω, so 0 ∈ Ω∗x0
.

We can choose an arbitrarily small positive number δ, and make a small ball Bδ = {x : |x| < δ} such
that Bδ is a subset of Ω∗x0

.
For any s = 2, 3, . . . , p, by Lemma 2.1, Proposition 2.1, and Theorem 3.1, we have∫

∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)
− lim

δ→0

∫
∂Bδ

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)

= lim
δ→0

∫
Ω∗x0\Bδ

(
Mλ

s (x)Dx

)(
(Dλ

x)s−1 f (y0)
)
dx + lim

δ→0

∫
Ω∗x0\Bδ

Mλ
s (x)

[
Dx

(
(Dλ

x)s−1 f (y0)
)]

dx

= lim
δ→0

∫
Ω∗x0\Bδ

Es−1(x)
(
(Dλ

x)s−1 f (y0)
)
dx + lim

δ→0

∫
Ω∗x0\Bδ

Es(x)
(
(Dλ

x)s f (y0)
)
dx

=

∫
Ω∗x0

Es−1(x)
(
(Dλ

x)s−1 f (y0)
)
dx +

∫
Ω∗x0

Es(x)
(
(Dλ

x)s f (y0)
)
dx.

From Theorem 3.1, it can be derived that (Dλ
x)s−1 f (y0) is a bounded function in Ω∗x0

, then
|(Dλ

x)s−1 f (y0)| ≤ M1.
For x ∈ ∂Bδ, suppose that x = δX, where X ∈ ∂B1 = {X : |X| = 1}, dµ = δn−1dµ1, dµ1 is the surface

element of the unit sphere ∂B1, and since ρ2
x ≥ c0δ

2, we can obtain∣∣∣∣∣ ∫
∂Bδ

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)∣∣∣∣∣

≤M1

∫
∂Bδ
|Es(x)|ρ1−λ

x |dσx| = M1

∫
∂Bδ

|Cs|

ωnρn−sλ
x

ρ1−λ
x dµ = M1

∫
∂Bδ

|Cs|

ωnρ
n−1−(s−1)λ
x

δn−1dµ1

≤M2

∫
∂Bδ

1
δn−1−(s−1)λ δ

n−1dµ1 = M2

∫
∂Bδ

1
δ−(s−1)λdµ1 ≤ M3δ

(s−1)λ+1 ≤ M3δ
2,

where Mi > 0 are constants, i = 1, 2, 3, then we can conclude that

lim
δ→0

∫
∂Bδ

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)

= 0.
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Hence,∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)

=

∫
Ω∗x0

Es−1(x)
(

f (y0)(Dλ
x)s−1

)
dx +

∫
Ω∗x0

Es(x)
(
(Dλ

x)s f (y0)
)
dx, (3.2)

where s = 2, 3, . . . , p.
For s = 1, by Lemma 2.1 and the equality

(
ρ−n

x H(x)
)
D = 0, we have∫

∂Ω∗x0

Mλ
1 (x)dσx f (y0) − lim

δ→0

∫
∂Bδ

Mλ
1 (x)dσx f (y0)

= lim
δ→0

∫
Ω∗x0\Bδ

(
Mλ

1 (x)Dx

)
f (y0)dx + lim

δ→0

∫
Ω∗x0\Bδ

Mλ
1 (x)

(
Dx f (y0)

)
dx

= lim
δ→0

∫
Ω∗x0\Bδ

[(H(x)
ωnρn

x

)
Dx

]
f (y0)dx + lim

δ→0

∫
Ω∗x0\Bδ

E1(x)
(
Dλ

x f (y0)
)
dx =

∫
Ω∗x0

E1(x)
(
Dλ

x f (y0)
)
dx.

We can calculate that

lim
δ→0

∫
∂Bδ

1
ωnρn−1

x
dµ= lim

δ→0

∫
∂B1

1

ωnδn−1
( n∑

i, j=1
ai jXiX j

) n−1
2

δn−1dµ1=

∫
∂B1

1

ωn

( n∑
i, j=1

ai jXiX j

) n−1
2

dµ1=c1(α j, γi j), (3.3)

we can conclude that c1(α j, γi j) is a Clifford constant, and c1(α j, γi j) does not depend on δ but only on
the values of the parameters α j and γi j; see Remark 2.6 in reference [14].

Hence,

lim
δ→0

∫
∂Bδ

Mλ
1 (x)dσx f (y0) = lim

δ→0

∫
∂Bδ

H(x)
ωnρn

x

H(x)
ρx

f (y0)dµ

= lim
δ→0

∫
∂Bδ

−1
ωnρn−1

x

(
f (y0) − f (x0)

)
dµ + lim

δ→0

∫
∂Bδ

−1
ωnρn−1

x
f (x0)dµ

= −
[

lim
δ→0

∫
∂Bδ

1
ωnρn−1

x
dµ1

]
f (x0) = −c1(α j, γi j) f (x0),

therefore, ∫
∂Ω∗x0

Mλ
1 (x)dσx f (y0) + c1(α j, γi j) f (x0) =

∫
Ω∗x0

E1(x)
(
Dλ

x f (y0)
)
dx. (3.4)

By Equalities (3.2) and (3.4), we have
p∑

s=2

(−1)s
∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)
−

∫
∂Ω∗x0

Mλ
1 (x)dσx f (y0) − c1(α j, γi j) f (x0)

=(−1)p
∫

Ω∗x0

Ep(x)
(
(Dλ

x)p f (y0)
)
dx + (−1)p

∫
Ω∗x0

Ep−1(x)
(
(Dλ

x)p−1 f (y0)
)
dx

+ (−1)p−1
∫

Ω∗x0

Ep−1(x)
(
(Dλ

x)p−1 f (y0)
)
dx + (−1)p−1

∫
Ω∗x0

Ep−2(x)
(
(Dλ

x)p−2 f (y0)
)
dx

+ · · · +

∫
Ω∗x0

E2(x)
(
(Dλ

x)2 f (y0)
)
dx +

∫
Ω∗x0

E1(x)
(
Dλ

x f (y0)
)
dx −

∫
Ω∗x0

E1(x)
(
Dλ

x f (y0)
)
dx

=(−1)p
∫

Ω∗x0

Ep(x)
(
(Dλ

x)p f (y0)
)
dx.
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Consequently, we prove that the conclusion holds. �

Remark 3.1. When c1(α j, γi j) is not required to be invertible, the value of f (x0) is not uniquely
determined by the integral transform.

Corollary 3.1. Suppose that f ∈ Fp
(
Ω,Bn(2, α j, γi j)

)
is a solution of the equation (Dλ

x)p f (y0) = 0 in
Ω∗x0

, p ≤ n, 0 < λ < 1
p
, p ∈ N∗, for arbitrary x0 ∈ Ω, then we have

c1(α j, γi j) f (x0) =

p∑
s=1

(−1)s
∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)
, (3.5)

where c1(α j, γi j) is a Clifford constant. If c1(α j, γi j) has a single inverse element, this formula is called
the Cauchy integral formula of the p-order λ-weighted monogenic function.

Theorem 3.3. Suppose that f ∈ Fq
(
Ω,Bn(2, α j, γi j)

)
, q ≤ n, 0 < λ < 1

q
, q ∈ N∗, for arbitrary x0 ∈ Ω,

then we have

f (x0)c1(α j, γi j) =

q∑
r=1

(−1)r
∫
∂Ω∗x0

(
f (y0)(Dλ

x)r−1
)
dσxMλ

r (x) − (−1)q
∫

Ω∗x0

Eq(x)
(

f (y0)(Dλ
x)q

)
dx, (3.6)

where c1(α j, γi j) is a Clifford constant. If c1(α j, γi j) has a single inverse element, this formula is called
the Cauchy-Pompeiu integral formula of the function f ∈ Fq

(
Ω,Bn(2, α j, γi j)

)
.

Proof. Similar to the proof of Theorem 3.2, we can prove Theorem 3.3. �

Corollary 3.2. Suppose that f ∈ Fq
(
Ω,Bn(2, α j, γi j)

)
is a solution of right q-order λ-weighted Dirac

equation f (y0)(Dλ
x)q = 0 in Ω∗x0

, q ≤ n, 0 < λ < 1
q
, q ∈ N∗, for arbitrary x0 ∈ Ω, then we have

f (x0)c1(α j, γi j) =

q∑
r=1

(−1)r
∫
∂Ω∗x0

(
f (y0)(Dλ

x)r−1
)
dσxMλ

r (x), (3.7)

where c1(α j, γi j) is a Clifford constant. If c1(α j, γi j) has a single inverse element, this formula is called
the Cauchy integral formula of the right q-order λ-weighted monogenic function.

4. The integral representation for the (p + q)-order λ-weighted monogenic function

In this section, we obtain the integral representation for the (p + q)-order λ-weighted monogenic
function.

Theorem 4.1. Let p, q ∈ N∗, s = 0, 1, . . . , p; r = 0, 1, . . . , q.
Suppose that f ∈ Fp+q(Ω,Bn(2, α j, γi j)), when 0 < λ < 1

p+q
, then for arbitrary x0 ∈ Ω,(

(Dλ
x)s f (y0)

)
(Dλ

x)r is a bounded function in Ω∗x0
.

Proof. (i) For arbitrary x0 ∈ Ω, when s = 0 and r = 0, 1, . . . , q, from Theorem 3.1 and the inequality 0 <
λ < 1

p+q
< 1
q
, it follows that f (y0)(Dλ

x)r is a bounded function in Ω∗x0
.
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(ii) When s = 1, 2, . . . , p, and r = 1, . . . , q, we denote H(x) fs,0(x) by gs,0(x), we denote fs,r(x)H(x)
by g′s,r(x), and let

f1,0(x) = Dx f (y0),
f2,0(x) = −λ f1,0(x) + Dxg1,0(x),
f3,0(x) = −2λ f2,0(x) + Dxg2,0(x),
· · ·

fs,0(x) = −(s − 1)λ fs−1,0(x) + Dxgs−1,0(x),

fs,1(x) = −sλρ−2
x gs,0(x)H(x) + gs,0(x)Dx,

fs,2(x) = −(s + 1)λ fs,1(x) + g′s,1(x)Dx,

fs,3(x) = −(s + 2)λ fs,2(x) + g′s,2(x)Dx,

· · ·

fs,r(x) = −(s + r − 1)λ fs,r−1(x) + g′s,r−1(x)Dx.

As f ∈ Fp+q(Ω,Bn(2, α j, γi j)), f1,0, . . . , fs,0, fs,1, . . . , fs,r are bounded functions in Ω∗x0
.

(a) When s = 1 and r = 0, by directly calculating, we can obtain

Dλ
x f (y0) = ρ−λx H(x)

(
Dx f (y0)

)
= ρ−λx g1,0(x).

When s = 2, . . . , p and r = 0, we suppose that s = t, where t < p, t ∈ N∗, and

(Dλ
x)t f (y0) = ρ−tλ

x gt,0(x),

then

(Dλ
x)t+1 f (y0) = Dλ

x

(
ρ−tλ

x gt,0(x)
)

= ρ−λx H(x)
[
Dx

(
ρ−tλ

x gt,0(x)
)]

=ρ−λx H(x)
[(
− tλρ−tλ−2

x H(x)
)
H(x) ft,0(x) + ρ−tλ

x

(
Dxgt,0(x)

)]
=ρ−(t+1)λ

x H(x)
(
− tλ ft,0(x) + Dxgt,0(x)

)
= ρ−(t+1)λ

x gt+1,0(x).

According to the mathematical induction, we have

(Dλ
x)s f (y0) = ρ−sλ

x gs,0(x). (4.1)

For any x0 ∈ Ω, when 0 < λ < 1
p+q

, we conclude that 0 < λ ≤ 1
s , so (Dλ)s f (y0) is a bounded function

in Ω∗x0
.

(b) When s = 1, . . . , p and r = 1, by Equality (4.1), we have(
(Dλ

x)s f (y0)
)
Dλ

x =
[(
ρ−sλ

x gs,0(x)
)
Dx

]
ρ−λx H(x) =

[
− sλρ−sλ−2

x gs,0(x)H(x) + ρ−sλ
x

(
gs,0(x)Dx

)]
ρ−λx H(x)

=
(
− sλρ−2

x gs,0(x)H(x) + gs,0(x)Dx

)
ρ−(s+1)λ

x H(x) = fs,1(x)ρ−(s+1)λ
x H(x) = g′s,1(x)ρ−(s+1)λ

x .

When s = 1, . . . , p and r = 2, . . . , q, we suppose that r = l, where l < q, l ∈ N∗, and(
(Dλ

x)s f (y0)
)
(Dλ

x)l = g′s,l(x)ρ−(s+l)λ
x ,
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then (
(Dλ

x)s f (y0)
)
(Dλ

x)l+1 =
[(

g′s,l(x)ρ−(s+l)λ
x

)
Dx

]
ρ−λx H(x)

=
[
− (s + l)λg′s,l(x)ρ−(s+l)λ−2

x H(x) + ρ−(s+l)λ
x

(
g′s,l(x)Dx

)]
ρ−λx H(x)

=
(
− (s + l)λ fs,l(x) + g′s,l(x)Dx

)
ρ−(s+l+1)λ

x H(x) = fs,l+1(x)ρ−(s+l+1)λ
x H(x) = g′s,l+1(x)ρ−(s+l+1)λ

x .

According to the mathematical induction, we have(
(Dλ

x)s f (y0)
)
(Dλ

x)r = g′s,r(x)ρ−(s+r)λ
x .

For arbitrary x0 ∈ Ω, when 0 < λ < 1
p+q

, we conclude that 0 < λ < 1
s+r , so

(
(Dλ

x)s f (y0)
)
(Dλ

x)r is a

bounded function in Ω∗x0
, where s = 1, 2, . . . , p; r = 1, . . . , q.

From the above, for any x0 ∈ Ω, when 0 < λ < 1
p+q

, we conclude that 0 < λ < 1
s+r , it can be

concluded that
(
(Dλ

x)s f (y0)
)
(Dλ

x)r is a bounded function in Ω∗x0
, where s = 0, 1, . . . , p; r = 0, 1, . . . , q.

�

Theorem 4.2. Suppose that f ∈ Fp+q
(
Ω,Bn(2, α j, γi j)

)
, p + q ≤ n, 0 < λ < 1

p+q
, p, q ∈ N∗, for arbitrary

x0 ∈ Ω, then we have

c1(α j, γi j) f (x0) =

q∑
r=1

(−1)p+r
∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x)

+

p∑
s=1

(−1)s
∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)
− (−1)p+q

∫
Ω∗x0

Ep+q(x)
[(

(Dλ
x)p f (y0)

)
(Dλ

x)q
]
dx,

(4.2)

where c1(α j, γi j) is a Clifford constant. If c1(α j, γi j) has a single inverse element, this formula is called
the Cauchy-Pompeiu integral formula of the function f ∈ Fp+q

(
Ω,Bn(2, α j, γi j)

)
.

Proof. We can conclude that Theorem 4.2 holds by applying Theorem 3.2, once we prove that the
following equality holds, that is,

q∑
r=1

(−1)p+r
∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x) − (−1)p+q
∫

Ω∗x0

Ep+q(x)
[(

(Dλ
x)p f (y0)

)
(Dλ

x)q
]
dx

= − (−1)p
∫

Ω∗x0

Ep(x)
(
(Dλ

x)p f (y0)
)
dx.

For any x0 ∈ Ω, we know that 0 + x0 ∈ Ω, so 0 ∈ Ω
∗

x0
. We can choose an arbitrarily small positive

number δ and make a small ball Bδ = {x : |x| < δ} such that Bδ is a subset of Ω∗x0
.

When r = 1, 2, 3, . . . , q, by Lemma 2.1 and Proposition 2.1, we have∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x) − lim
δ→0

∫
∂Bδ

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x)

= lim
δ→0

∫
Ω∗x0\Bδ

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r
]
Ep+r(x)dx + lim

δ→0

∫
Ω∗x0\Bδ

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
Ep+r−1(x)dx

=

∫
Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r
]
Ep+r(x)dx +

∫
Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
Ep+r−1(x)dx.
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By Theorem 4.1, it follows that
(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1 is a bounded function in Ω∗x0
, then∣∣∣((Dλ

x)p f (y0)
)
(Dλ

x)r−1
∣∣∣ ≤ M4, hence,∣∣∣∣∣ ∫

∂Bδ

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x)
∣∣∣∣∣

≤M4

∫
∂Bδ
|Ep+r(x)|ρ1−λ

x |dσx| = M4

∫
∂Bδ

|Cp+r|

ρn−(p+r)λ
x

ρ1−λ
x dµ

≤M5

∫
∂Bδ

1
δ−(p+r−1)λdµ1 ≤ M6δ

(p+r−1)λ+1 ≤ M6δ
2,

where Mi > 0 are positive constants, i = 4, 5, 6, and we can conclude that

lim
δ→0

∫
∂Bδ

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x) = 0.

Hence, ∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x)

=

∫
Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r
]
Ep+r(x)dx +

∫
Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
Ep+r−1(x)dx.

(4.3)

By Equality (4.3), we can deduce that
q∑

r=1

(−1)p+r
∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x)

=(−1)p+q
∫

Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)q
]
Ep+q(x)dx + (−1)p+q

∫
Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)q−1
]
Ep+q−1(x)dx

+ (−1)p+q−1
∫

Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)q−1
]
Ep+q−1(x)dx + (−1)p+q−1

∫
Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)q−2
]
Ep+q−2(x)dx

+ · · · + (−1)p+1
∫

Ω∗x0

[(
(Dλ

x)p f (y0)
)
Dλ

x

]
Ep+1(x)dx + (−1)p+1

∫
Ω∗x0

(
(Dλ

x)p f (y0)
)
Ep(x)dx

=(−1)p+q
∫

Ω∗x0

Ep+q(x)
[(

(Dλ
x)p f (y0)

)
(Dλ

x)q
]
dx − (−1)p

∫
Ω∗x0

Ep(x)
(
(Dλ

x)p f (y0)
)
dx.

We complete the proof. �

Corollary 4.1. Suppose that f ∈ Fp+q
(
Ω,Bn(2, α j, γi j)

)
is a solution of the equation(

(Dλ)p f (y0)
)
(Dλ)q=0 in Ω∗x0

, p + q ≤ n, 0 < λ < 1
p+q
, p, q ∈ N∗, for arbitrary x0 ∈ Ω, then we

have

c1(α j, γi j) f (x0)

=

q∑
r=1

(−1)p+r
∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x) +

p∑
s=1

(−1)s
∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)
,

(4.4)

where c1(α j, γi j) is a Clifford constant. If c1(α j, γi j) has a single inverse element, this formula is called
the Cauchy integral formula of the (p + q)-order λ-weighted monogenic function.
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Remark 4.1. Theorem 4.1 is used to prove Theorem 4.2. As p ∈ N∗, where N∗ is a set of positive
integers, there is no direct relationship between Theorems 3.3 and 4.2. However, when p = 0 in

Theorem 4.2, if
p∑

s=1
(−1)s

∫
∂Ω∗x0

Mλ
s (x)dσx

(
(Dλ

x)s−1 f (y0)
)

= 0 in Equality (4.2), then the right end of the

equality in Theorem 4.2 is reduced to the right end of the equality in Theorem 3.3. When q = 0

in Theorem 4.2, if
q∑

r=1
(−1)p+r

∫
∂Ω∗x0

[(
(Dλ

x)p f (y0)
)
(Dλ

x)r−1
]
dσxMλ

p+r(x) = 0 in Equality (4.2), then the

equality in Theorem 4.2 is reduced to the equality in Theorem 3.2.

5. Conclusions

In recent years, the integral representations for the solution to the higher order Dirac equation in
Bn(2, α j, γi j) have been studied, which generalize the integral representation in the classical Clifford
algebra. In this paper, we not only prove three Cauchy-Pompeiu integral formulae for functions valued
in the dependent parameter Clifford algebra, but also obtain integral representations for three different
higher order λ-weighted monogenic functions.

IfBn(2, α j, γi j) = Bn(2, 1, 0), then Corollary 3.1 in this paper is reduced to one result of Theorem 3.7
in reference [5], that is,

Theorem 5.1. [5] Suppose that Ω ⊆ Rn is a domain, Ω∗ := {x|y0 = x + x0 ∈ Ω}, H j(x) =
A j

|x|n− jα ,

A j =
(−1) j−1

ωnα j−1( j−1)! , 0 < α < 1
k . If f (x + x0) is a k-monogenic function with α-weight in Ω∗, for arbitrary

x0 ∈ Ω, then we have

f (x0) =

k∑
j=1

(−1) j−1
∫
∂Ω∗

H j(x)|x|−αxdσx

(
(Dα

x ) j−1 f (x + x0)
)
. (5.1)

If Bn(2, α j, γi j) = Bn(2, 1, 0), Corollary 4.1 in this paper is reduced to Corollary 3.5 in [9], that is,

Theorem 5.2. [9] Suppose f ∈ Cr(Ω,Cl0,n(R)), where r ≥ p + q, n ≥ p + q, Ω ⊆ Rn is a domain,
Ω∗ := {x|y0 = x + x0 ∈ Ω}, Hp+ j(x) =

Ap+ j

|x|n−(p+ j)α , Ap+ j =
(−1)p+ j−1

ωnαp+ j−1(p+ j−1)! , 0 < α < 1
p+q . If f (x + x0) is a

(p, q)-monogenic function with α-weight in Ω∗, then for any x0 ∈ Ω, we have

f (x0) =

q∑
j=1

(−1)p+ j
∫
∂Ω∗

(
(Dα

x )p f (x + x0)
)
(Dα

x ) j−1dσx

(
x|x|−αHp+ j(x)

)
+

p∑
j=1

(−1) j
∫
∂Ω∗

H j(x)|x|−αxdσx

(
(Dα

x ) j−1 f (x + x0)
)
.

(5.2)

With the method of the Clifford analytic approach and Newton embedding method, reference [10]
proved the existence and uniqueness of solutions of the nonlinear Riemann-Hilbert problems. For a k-
vector field Fk, reference [11] obtained the solution of boundary value problems for the associated with
the equations (Dx)2s−1(Fk)Dx = fk, where fk ∈ F

(
Ω,B(k)

m (2, 1, 0)
)
, B(k)

m (2, 1, 0) is the space of pseudo-
scalars in the classical Clifford algebra Bm(2, 1, 0). We hope to solve the boundary value problem
related to the equation (Dx)2s−1(Fk)Dx = fk in the dependent parameter Clifford algebra in our future
work.
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