Given a complex simple exceptional Lie algebra $ \mathfrak g $, let $ \mathscr V_\lambda $ be an irreducible finite-dimensional $ \mathfrak g $-module with highest weight $ \lambda $. We provide the precise dimension formula of $ \dim \mathscr V_{\lambda} $.
Citation: Yupei Zhang, Yongzhi Luan. Dimension formulas of the highest weight exceptional Lie algebra-modules[J]. AIMS Mathematics, 2024, 9(4): 10010-10030. doi: 10.3934/math.2024490
Given a complex simple exceptional Lie algebra $ \mathfrak g $, let $ \mathscr V_\lambda $ be an irreducible finite-dimensional $ \mathfrak g $-module with highest weight $ \lambda $. We provide the precise dimension formula of $ \dim \mathscr V_{\lambda} $.
[1] | P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal field theory, New York: Springer-Verlag, 1997. http://dx.doi.org/10.1007/978-1-4612-2256-9 |
[2] | E. Dynkin, Semisimple subalgebras of semisimple Lie algebras (Russian), Mat. Sbornik N. S., 30 (1952), 349–462. Available from: http://mi.mathnet.ru/sm5435. |
[3] | E. Dynkin, Semisimple subalgebras of semisimple Lie algebras (English), In: American Mathematical Society Translations: Series 2, Providence: American Mathematical Society, 6 (1957), 111–244. |
[4] | J.-S. Huang, C.-B. Zhu, Weyl's construction and tensor power decomposition for $G_2$, Proc. Amer. Math. Soc., 127 (1999), 925–934. http://dx.doi.org/10.1090/S0002-9939-99-04583-9 doi: 10.1090/S0002-9939-99-04583-9 |
[5] | A. Knapp, Lie groups beyond an introduction, 2 Eds., Boston: Birkhäuser, 2002. |
[6] | Y. Luan, Dynkin indices, Casimir elements and branching rules, Front. Math., in press. |
[7] | Y. Luan, Nilpotent orbits and Dynkin indices of Lie algebras, Ph.D. thesis, The Hong Kong University of Science and Technology, 2021. |
[8] | Y. Luan, Lie algebra $\mathfrak{e}_{7\frac{1}{2}}$ and Dynkin index, Commun. Algebra, 51 (2023), 3929–3951. http://dx.doi.org/10.1080/00927872.2023.2193633 doi: 10.1080/00927872.2023.2193633 |
[9] | D. Panyushev, On the Dynkin index of a principal $\mathfrak{s l}_2$-subalgebra, Adv. Math., 221 (2009), 1115–1121. http://dx.doi.org/10.1016/j.aim.2009.01.015 doi: 10.1016/j.aim.2009.01.015 |
[10] | D. Panyushev, The Dynkin index and $\mathfrak{sl}_2$-subalgebras of simple Lie algebras, J. Algebra, 430 (2015), 15–25. http://dx.doi.org/10.1016/j.jalgebra.2015.01.033 doi: 10.1016/j.jalgebra.2015.01.033 |