Research article Special Issues

Dimension formulas of the highest weight exceptional Lie algebra-modules

  • Received: 11 December 2023 Revised: 18 February 2024 Accepted: 26 February 2024 Published: 13 March 2024
  • MSC : 17-04, 17B10, 17B25

  • Given a complex simple exceptional Lie algebra $ \mathfrak g $, let $ \mathscr V_\lambda $ be an irreducible finite-dimensional $ \mathfrak g $-module with highest weight $ \lambda $. We provide the precise dimension formula of $ \dim \mathscr V_{\lambda} $.

    Citation: Yupei Zhang, Yongzhi Luan. Dimension formulas of the highest weight exceptional Lie algebra-modules[J]. AIMS Mathematics, 2024, 9(4): 10010-10030. doi: 10.3934/math.2024490

    Related Papers:

  • Given a complex simple exceptional Lie algebra $ \mathfrak g $, let $ \mathscr V_\lambda $ be an irreducible finite-dimensional $ \mathfrak g $-module with highest weight $ \lambda $. We provide the precise dimension formula of $ \dim \mathscr V_{\lambda} $.



    加载中


    [1] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal field theory, New York: Springer-Verlag, 1997. http://dx.doi.org/10.1007/978-1-4612-2256-9
    [2] E. Dynkin, Semisimple subalgebras of semisimple Lie algebras (Russian), Mat. Sbornik N. S., 30 (1952), 349–462. Available from: http://mi.mathnet.ru/sm5435.
    [3] E. Dynkin, Semisimple subalgebras of semisimple Lie algebras (English), In: American Mathematical Society Translations: Series 2, Providence: American Mathematical Society, 6 (1957), 111–244.
    [4] J.-S. Huang, C.-B. Zhu, Weyl's construction and tensor power decomposition for $G_2$, Proc. Amer. Math. Soc., 127 (1999), 925–934. http://dx.doi.org/10.1090/S0002-9939-99-04583-9 doi: 10.1090/S0002-9939-99-04583-9
    [5] A. Knapp, Lie groups beyond an introduction, 2 Eds., Boston: Birkhäuser, 2002.
    [6] Y. Luan, Dynkin indices, Casimir elements and branching rules, Front. Math., in press.
    [7] Y. Luan, Nilpotent orbits and Dynkin indices of Lie algebras, Ph.D. thesis, The Hong Kong University of Science and Technology, 2021.
    [8] Y. Luan, Lie algebra $\mathfrak{e}_{7\frac{1}{2}}$ and Dynkin index, Commun. Algebra, 51 (2023), 3929–3951. http://dx.doi.org/10.1080/00927872.2023.2193633 doi: 10.1080/00927872.2023.2193633
    [9] D. Panyushev, On the Dynkin index of a principal $\mathfrak{s l}_2$-subalgebra, Adv. Math., 221 (2009), 1115–1121. http://dx.doi.org/10.1016/j.aim.2009.01.015 doi: 10.1016/j.aim.2009.01.015
    [10] D. Panyushev, The Dynkin index and $\mathfrak{sl}_2$-subalgebras of simple Lie algebras, J. Algebra, 430 (2015), 15–25. http://dx.doi.org/10.1016/j.jalgebra.2015.01.033 doi: 10.1016/j.jalgebra.2015.01.033
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(641) PDF downloads(37) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog