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Abstract: In this paper, we studied the geometry of sweeping surfaces generated by the involutes
of spacelike curves with a timelike binormal in Minkowski 3-space E3

1. First, we investigated the
singularity concept, and the mean and Gaussian curvatures of these surfaces. Then, we provided the
requirements for the surface to be developable (flat) and minimal. We also determined the sufficient
and necessary conditions for the parameter curves of these surfaces to be geodesic and asymptotic.
Moreover, we analyzed these surfaces when the parameter curves are lines of curvature on the surface.
Finally, the examples of these surfaces were given and their corresponding figures were drawn.
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1. Introduction

Sweeping surfaces play an important role in both theoretical geometric research and applied fields,
particularly in geometric modeling, kinematics, robotics, and computer graphics. A sweeping surface
is constructed by the movement of a given planar curve, known as the profile curve (generatrix), along a
predetermined path, called the spine (trajectory) curve, where the movement of the plane curve always
occurs in the direction of the normal to the plane [1]. Given a profile curve P(u), and a spine curve
T (v), the parametric representation of a sweeping surface is given as S (u, v) = T (v) + M(v) · P(u),
where M(v) is the so-called transformation matrix. That is, the profile curve can be rotated and scaled
depending on the parameter of the trajectory curve. Due to the nature of this parametric form of
sweeping surfaces, several types of other well-known surfaces, such as ruled (a profile curve of straight
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lines) canal (or specifically pipe), tubular, swung (surface of revolutions), and string surfaces can be
formed by carefully examining the transformation matrix M(v) [2, 3].

However, in most of the cases, the transformation matrix is considered to be an identity matrix for
simplicity, and many researchers use a local orthonormal frame moving along the trajectory curve.
For example, in [4], the possibility of the construction of sweeping surfaces was examined by means
of the Frenet frame and its modified version in Euclidean space. Sweeping surfaces according to the
Darboux frame and rotation minimizing Darboux frame were studied in [5, 6], respectively. Further,
by considering Bishop frames, the characterizations of sweeping surfaces can be found in [7], and the
references therein. By utilizing the modified orthogonal frames, new sweeping surfaces were discussed
in the very recent study [18].

Recent studies show that the concept of sweeping surfaces has been extended to the non-Euclidean
spaces, namely Lorentz-Minkowski spaces, where the theory of curves and surfaces in these spaces
were well-studied in [8,9]. For example, timelike sweeping surfaces were studied in [10], whereas the
devolopable spacelike sweeping surfaces were discussed in [11].

Additionally, researchers also benefited from the theory of associated curves to construct sweeping
surfaces. The involute-evolute curve pair is one of such associated curves where the theory of these
curves can be found in [12,13] for Euclidean space, and in [14,15] for Minkowski space. By combining
the concepts of associated curve and sweeping surfaces, the involutive sweeping surfaces according to
the Frenet frame in Euclidean space were defined and characterized in [16].

Apart from these, geodesic curves, asymptotic curves, and the line of curvature are important
characteristic curves that lie on the surface and have been instrumental in surface analysis. The
geodesic curve is defined as the shortest distance between two points on a surface. An asymptotic
curve is a curve on a surface where its tangent vector at every point lies in the direction where the
normal curvature is zero. Lastly, the line of curvature is a surface curve if all tangent vectors always
points along with a principal direction. The studies on designing the surfaces on which a given specific
curve lies as a characteristic curve can be found in [19–22] for Euclidean space and in [23–25] for
Minkowski 3-space.

Motivated by the given literature, in this study, the sweeping surfaces generated by the involutes
of spacelike curves with a timelike binormal and spacelike Darboux vector in Minkowski 3-space are
examined. The singularity, mean curvature and Gaussian curvature of the surfaces are discussed and
the necessary relations for the new sweeping surfaces to be classified as developable and minimal are
provided. The necessary and sufficient conditions for the parameter curves on these surfaces to be
geodesic and asymptotic are also obtained. In addition, these surfaces are studied when the parameter
curves are lines of curvature. Finally, some illustrative examples of these new types of sweeping
surfaces are studied.

2. Preliminaries

Let R3 be a 3-dimensional real vector space. For any p = (p1, p2, p3) and q = (q1, q2, q3) ∈ R3, the
Lorentzian inner product of p and q is defined by

〈p,q〉L = p1q1 + p2q2 − p3q3. (2.1)
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The Minkowski 3-space denoted by E3
1 =

(
R3, 〈, 〉L

)
is defined as the real vector space R3 with the

Lorentzian metric. The non-zero vector q ∈ E3
1 is spacelike, lightlike, or timelike if 〈q,q〉L > 0,

〈q,q〉L = 0, or 〈q,q〉L < 0, respectively. The norm of the vector q ∈ E3
1 is defined by ‖q‖ =

√∣∣∣〈q,q〉L∣∣∣.
For any two vectors p,q ∈ E3

1, the vector product is defined by

p × q =

∣∣∣∣∣∣∣∣∣
−e1 −e2 e3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣∣∣ = (p3q2 − p2q3, p1q3 − p3q1, p1q2 − p2q1) ,

where e1, e2, e3 is the canonical basis of E3
1 [9, 12, 17].

Let ϕ(s), s ∈ I = [0, I], be a unit speed 3D spacelike curve with a timelike binormal in E3
1 with

curvature κ(s) and torsion τ(s). Consider the Serret-Frenet frame {h1(s),h2(s),h3(s)} associated with
the curve ϕ(s), and then the Serret-Frenet formulae is given by

h′1(s)
h′2(s)
h′3(s)

 =


0 κ(s) 0
−κ(s) 0 τ(s)

0 τ(s) 0




h1(s)
h2(s)
h3(s)

 = ω(s) ×


h1(s)
h2(s)
h3(s)

 ,
where ω(s) = τ(s)h1(s) − κ(s)h3(s) defines the Darboux vector of the Serret-Frenet frame.

The vectors h1(s) = ϕ′(s), h2(s) = ϕ′′(s)/ ‖ϕ′′(s)‖, and h3(s) = h1(s) × h2(s) are called the unit
tangent vector, the principal normal vector, and the binormal vector, respectively. The Serret-Frenet
vector fields satisfy the following relations [17]:

〈h1,h1〉L = 1, 〈h2,h2〉L = 1, 〈h3,h3〉L = −1,
h1 × h2 = h3, h2 × h3 = −h1, h3 × h1 = −h2.

Also, we have:
a) If |τ| > |κ|, then ω is a spacelike vector and we can write

κ = ‖ω‖ sinh φ
τ = ‖ω‖ cosh φ

, 〈ω, ω〉L = ‖ω‖2 = τ2 − κ2. (2.2)

b) If |τ| < |κ|, then ω is a timelike vector and we can write

κ = ‖ω‖ cosh φ
τ = ‖ω‖ sinh φ

, 〈ω,ω〉L = ‖ω‖2 = κ2 − τ2, (2.3)

where φ = ∠(ω,h3) [14].
Let ϕ(s) and ϕ̄(s), s ∈ I, be two curves such that ϕ̄ intersects the tangents of ϕ orthogonally. Then ϕ̄

is called an involute of ϕ. An involute of a curve ϕ(s) with arc length s is given by

ϕ̄(s) = ϕ(s) + λh1(s), (2.4)

where λ = c − s , 0 and c is a real constant [12, 13].
If ϕ(s) is a unit speed spacelike curve with a timelike binormal, then the involute curve ϕ̄(s) must

be a spacelike curve with a spacelike or timelike binormal. On the other hand, the relations between
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the Frenet frames of involute curve ϕ̄ and evolute curve ϕ are given as follows [14]:
a) If ω is a spacelike vector:

h∗1
h∗2
h∗3

 =


0 1 0

sinh φ 0 − cosh φ
− cosh φ 0 sinh φ




h1

h2

h3

 . (2.5)

b) If ω is a timelike vector: 
h∗1
h∗2
h∗3

 =


0 1 0

− cosh φ 0 sinh φ
− sinh φ 0 cosh φ




h1

h2

h3

 . (2.6)

The parametric equation of the sweeping surface along the spine curve ϕ(s) can be given as follows:

η(s, t) = ϕ(s) + H(s)x(t), (2.7)

where x(t) = (0, x1(t), x2(t))T is called the planar profile (cross section); and T represents transposition,
with another parameter t ∈ I ⊂ R. The semiorthogonal matrix H(s) = {h1(s),h2(s),h3(s)} represents a
moving frame along ϕ(s) [4].

Let η(s, t) be a sweeping surface in E3
1. Then the various definitions and fundamental concepts

relevant to sweeping surfaces can be presented as follows:

The normal vector is U(s, t) =
ηs × ηt

‖ηs × ηt‖
, where ηs =

∂η

∂s
and ηt =

∂η

∂t
.

The Gaussian and mean curvatures of η(s, t) are defined by, respectively,

K = ε
eg − f 2

EG − F2 , H = ε
Eg − 2F f + Ge

2(EG − F2)
, (2.8)

where
E = 〈ηs, ηs〉L , F = 〈ηs, ηt〉L , G = 〈ηt, ηt〉L ,

e = 〈ηss,U〉L , f = 〈ηst,U〉L , g = 〈ηtt,U〉L ,

and 〈U(s, t),U(s, t)〉L = ε = ±1 [8, 9].
A surface in Minkowski 3-space E3

1 is called a spacelike (resp. timelike) surface if the induced
metric on the surface is a positive (resp. negative) definite Riemannian metric, which means the normal
vector on the spacelike surface is timelike and the normal vector on the timelike surface is a spacelike
vector. The surface is spacelike if EG − F2 > 0 and it is timelike if EG − F2 < 0 [8, 9].

3. Sweeping surfaces generated by involutes of a spacelike curve with a timelike binormal

Let ϕ̄(s) be the involute of a regular 3D spacelike curve ϕ(s) with a timelike binormal
and

{
h∗1(s),h∗2(s),h∗3(s)

}
is its Frenet frame in Minkowski 3-space E3

1. Also, consider the spacelike
Darboux vector ω and the non-null planar profile curve. For the involute curve ϕ̄(s) as a spine curve
and a unit speed planar profile curve x(t) = (0, x1(t), x2(t))T , the sweeping surface can be given as

η̄(s, t) = ϕ̄(s) + H∗(s)x(t) = ϕ̄(s) + h∗2(s)x1(t) + h∗3x2(t), (3.1)
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where H∗(s) =
{
h∗1(s),h∗2(s),h∗3(s)

}
is an orthogonal matrix representing a moving frame along the

involute curve ϕ̄(s). Then using Eqs (2.4) and (2.5), the equation of the sweeping surface η̄(s, t) can be
rearranged as follows:

η̄(s, t) = ϕ̄(s) + H∗(s)x(t) = ϕ̄(s) + h∗2(s)x1(t) + h∗3(s)x2(t)
= ϕ(s) + λh1(s) + x1(t)(sinh φh1(s) − cosh φh3(s))

+ x2(t)(− cosh φh1(s) + sinh φh3(s)).

If we take the partial derivatives of ϕ̄(s) with respect to s and t, respectively, and using Eq (2.2), we
obtain the partial differentiation with respect to s and t as follows:

η̄s = (x1φ
′ cosh θ − x2φ

′ sinh φ)h1 + ρh2 + (−x1φ
′ sinh φ + x2φ

′ cosh φ)h3,

η̄t = (x′1 sinh φ − x′2 cosh φ)h1 + (−x′1 cosh φ + x′2 sinh φ)h3,
(3.2)

where ρ(s, t) = λκ − x1 ‖ω‖.
The second-order partial derivatives of η̄(s, t) are found by

η̄ss = ((x1φ
′ cosh φ − x2φ

′ sinh φ)′ − ρκ)h1 + (x2φ
′ ‖ω‖ + ρs)h2

+((−x1φ
′ sinh φ + x2φ

′ cosh φ)′ + ρτ)h3,

η̄st = (x′1φ
′ cosh φ − x′2φ

′ sinh φ)h1 + ρth2

+(−x′1φ
′ sinh φ + x′2φ

′ cosh φ)h3,

η̄tt = (x′′1 sinh φ − x′′2 cosh φ)h1 + (x′′2 sinh φ − x′′1 cosh φ)h3,

(3.3)

where ρs = −κ + λκ′ and ρt = −x′1 ‖ω‖.
By taking the vector product of η̄s and η̄t, we get

η̄s × η̄t = ρ(x′1 cosh φ − x′2 sinh φ)h1 + mh2 − ρ(x′1 sinh φ − x′2 cosh φ)h3, (3.4)

where
m(s, t) = φ′(x2x′2 − x1x′1). (3.5)

Remark 3.1. If φ = arctan h
(
κ

τ

)
is a constant angle, then the spacelike curve ϕ(s) with a timelike

binormal is a helix and Eq (3.5) gives m(s, t) = 0.

Now, consider the cases when the planar profile curve is timelike and spacelike.
Case 1. Let the planar profile curve x(t) = (0, x1(t), x2(t))T be a timelike curve, which means that
x′1

2
− x′2

2 = −1.
Hence, Eq (3.4) gives

‖η̄s × η̄t‖ =

√∣∣∣ρ2(x′1
2 − x′2

2) + m2
∣∣∣

=

√∣∣∣m2 − ρ2
∣∣∣. (3.6)

From Eqs (3.4) and (3.6), we can get the unit normal vector of η̄(s, t) as follows:

U(s, t) =
ρ(x′1 cosh φ − x′2 sinh φ)h1 + mh2 − ρ(x′1 sinh φ − x′2 cosh φ)h3√∣∣∣m2 − ρ2

∣∣∣ . (3.7)
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By using the equations in (3.2), the components of the first fundamental form are obtained by

E = (x2
1 − x2

2)φ′2 + ρ2,

F = φ′(x′1x2 − x1x′2),

G = −x′1
2

+ x′2
2

= 1.

(3.8)

Then by the aid of Eq (3.8), we obtain EG−F2 = ρ2−m2. Hence, the surface is spacelike if ρ2−m2 > 0
and the surface is timelike if ρ2 − m2 < 0.

Thus, we can give the following theorem.

Theorem 3.2. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The sweeping surface η̄(s, t) generated by the Frenet frame of
ϕ̄(s) has singularity on the point p = (s0, t0) if

m(s0, t0) = ±ρ(s0, t0). (3.9)

Proof. Equation (3.6) shows that η̄(s, t) has a singularity at p = (s0, t0) if it satisfies

‖η̄s × η̄t‖ =

√∣∣∣m2(s0, t0) − ρ2(s0, t0)
∣∣∣.

Using this equation, we get
m2(s0, t0) − ρ2(s0, t0) = 0,

which implies that m(s0, t0) = ±ρ(s0, t0). �

Theorem 3.3. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The Gaussian and mean curvatures of the sweeping surface
η̄(s, t) generated by the Frenet frame of ϕ̄(s) are, respectively,

K =
ε∣∣∣m2 − ρ2
∣∣∣ (ρ2 − m2)

ρ

ρ
(
x1x′1 − x2x′2

)
φ′′

+ρ
(
x1x′2 − x2x′1

)
φ′2

−ρ2x′2 ‖ω‖ + m
(
x2φ

′ ‖ω‖ + ρs
)
 (x′′1 x′2 − x′1x′′2

)
−

(
ρtm − ρφ′

)2

 ,

H =
ε

2
√∣∣∣m2 − ρ2

∣∣∣ (ρ2 − m2)

ρ
((

x2
1 − x2

2)φ′2 + ρ2
)) (

x′′1 x′2 − x′1x′′2
)

+ρ
(
x1x′1 − x2x′2

)
φ′′ + ρ

(
x1x′2 − x2x′1

)
φ′2

−ρ2x′2 ‖ω‖ + m
(
x2φ

′ ‖ω‖ + ρs
)

−2φ′
(
x2x′1 − x1x′2

) (
ρtm − ρφ′

)

 .
(3.10)

Proof. From Eq (3.3), we can compute the components of the second fundamental form as

e =
1√∣∣∣m2 − ρ2

∣∣∣
(
ρ
(
x1x′1 − x2x′2

)
φ′′ + ρ

(
x1x′2 − x2x′1

)
φ′2 − ρ2x′2 ‖ω‖ + m

(
x2φ

′ ‖ω‖ + ρs
))
,

f =
1√∣∣∣m2 − ρ2

∣∣∣ (mρt − ρφ
′) ,

g =
ρ√∣∣∣m2 − ρ2

∣∣∣ (x′′1 x′2 − x′′2 x′1
)
,

(3.11)
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where ρs = λκ′ − κ and ρt = −x′1 ‖ω‖. Thus, by substituting (3.8) and (3.11) into (2.8), the Gaussian
curvature and the mean curvature of the sweeping surface η̄(s, t) can be obtained as in (3.10). �

Theorem 3.4. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The parameter curves of the sweeping surface η̄(s, t) generated
by the Frenet frame of ϕ̄(s) are lines of curvature if and only if

φ = constant or
x1

x2
= constant,

φ′ =
mρt

ρ
.

(3.12)

Proof. The parameter curves of the sweeping surface η̄(s, t) are lines of curvature if F = f = 0. Then,
from Eqs (3.8) and (3.11), we get

φ′
(
x2x′1 − x1x′2

)
= 0, and mρt − ρφ

′ = 0. (3.13)

Let the angle φ = arctan h
(
κ

τ

)
be constant. Then, the equations in (3.13) are satisfied. In this case, as

κ

τ

is a constant, ϕ(s) is a helix. If
x1

x2
is a constant, then the first equality in (3.13) is provided. If φ′ =

mρt

ρ
,

then the second equality in (3.13) is provided. These results show that the conditions in (3.12) must be
supplied in order to satisfy the two equations in (3.13). It is obvious that the converse is true. �

Theorem 3.5. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and η̄(s, t) is a regular sweeping surface generated by the Frenet frame of ϕ̄(s) in E3

1.

i) The s parameter curve of η̄(s, t) is an asymptotic curve if

ρx′1
(
x1φ

′′ − x2φ
′2
)

+ ρx′2
(
x1φ

′2 − x2φ
′′ − ρ ‖ω‖

)
+ m

(
x2φ

′ ‖ω‖ + ρs
)

= 0. (3.14)

ii) The t parameter curve of η̄(s, t) is an asymptotic curve if

ρ = 0, or x′2x′′1 − x′1x′′2 = 0. (3.15)

Proof. i) The s parameter curve of η̄(s, t) is an asymptotic curve if 〈ηss,U〉L = 0. Then, by using (3.3)
and (3.7), we obtain (3.14).
ii) The t parameter curve of η̄(s, t) is an asymptotic curve if 〈ηtt,U〉L = 0. Then, by using (3.3) and (3.7),
equation ρ

(
x′′1 x′2 − x′1x′′2

)
= 0 gives (3.15). �

Theorem 3.6. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and η̄(s, t) is a regular sweeping surface generated by the Frenet frame of ϕ̄(s) in E3

1.

i) The s parameter curve of η̄(s, t) is a geodesic curve if

m
((

x2φ
′ cosh φ − x1φ

′ sinh φ
)′

+ ρτ
)

+ ρ
(
x2φ

′ ‖ω‖ + ρs
) (

x′1 sinh φ − x′2 cosh φ
)

= 0,

ρx′1
(
x1φ

′2 − x2φ
′′
)

+ ρx′2
(
x1φ

′′ − x2φ
′2
)
− ρ2x′1 ‖ω‖ = 0,

ρ
(
x2φ

′ ‖ω‖ + ρs
) (

x′1 cosh φ − x′2 sinh φ
)
− m

((
x1φ

′ cosh φ − x2φ
′ sinh φ

)′
− ρκ

)
= 0.

(3.16)
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ii) The t parameter curve of η̄(s, t) is a geodesic curve if

m = 0 or x′′1 cosh φ − x′′2 sinh φ = 0,
ρ = 0 or x′′2 x′2 − x′′1 x′1 = 0,
x′′2 cosh φ − x′′1 sinh φ = 0.

(3.17)

Proof. i) The s parameter curve of η̄(s, t) is a geodesic curve if U × η̄ss = 0. Then, by using (3.3)
and (3.7),{

m
((

x2φ
′ cosh φ − x1φ

′ sinh φ
)′

+ ρτ
)

+ ρ
(
x2φ

′ ‖ω‖ + ρs
) (

x′1 sinh φ − x′2 cosh φ
)}

h1

+
{
ρx′1

(
x1φ

′2 − x2φ
′′
)

+ ρx′2
(
x1φ

′′ − x2φ
′2
)
− ρ2x′1 ‖ω‖

}
h2

+
{
ρ
(
x2φ

′ ‖ω‖ + ρs
) (

x′1 cosh φ − x′2 sinh φ
)
− m

((
x1φ

′ cosh φ − x2φ
′ sinh φ

)′
− ρκ

)}
h3 = 0,

satisfying the equations in (3.16).
ii) The t parameter curve of η̄(s, t) is a geodesic curve if U × η̄tt = 0. Then, by using (3.3) and (3.7),

U × η̄tt =
(
m

(
x′′1 cosh φ − x′′2 sinh φ

))
h1 +

(
ρ
(
x′′2 x′2 − x′′1 x′1

))
h2 +

(
m

(
x′′2 cosh φ − x′′1 sinh φ

))
h3 = 0,

satisfying the equations in (3.17). �

Now, we assume that the parameter curves of the sweeping surface η̄(s, t) are its lines of curvature.

For simplicity, we suppose that ρ = λκ − x1 ‖ω‖ > 0. In this case, ‖η̄s × η̄t‖ =

√∣∣∣−ρ2
∣∣∣ = ρ , 0, which

means that η̄(s, t) is a regular surface. Let us begin by examining the singular points of the sweeping
surface η̄(s, t).

Theorem 3.7. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. η̄(s, t) has singularity on the point p = (s0, t0) if

x1(s0, t0) =
(c − s0)κ(s0)√
τ2(s0) − κ2(s0)

.

Proof. η̄(s, t) has singularity on the point p = (s0, t0) if ‖η̄s × η̄t‖ (s0, t0) = 0. Then, from Remark 3.1
and (3.9), the equation can be expressed as follows:

‖η̄s × η̄t‖ (s0, t0) = ρ(s0, t0) = 0

⇒ (c − s0) κ(s0) − x1(t0)
√
τ(s0) − κ(s0) = 0

⇒ x1(t0) =
(c − s0) κ(s0)
√
τ(s0) − κ(s0)

.

�

Theorem 3.8. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, the Gaussian and mean curvatures of η̄(s, t) are, respectively,
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K = ε
x′2 ‖ω‖ (x′′2 x′1 − x′′1 x′2)

ρ
,

H = ε
ρ(x′′1 x′2 − x′1x′′2 ) − x′2 ‖ω‖

2ρ
.

(3.18)

Proof. By utilizing Eqs (3.8), (3.11), and (3.12), we can determine the fundamental coefficients of the
surface of η̄(s, t) as

E = ρ2, F = 0, G = 1,
e = −ρx′2 ‖ω‖ , f = 0, g = x′′1 x′2 − x′1x′′2 .

(3.19)

By substituting these equations into Eq (2.8), the equations can be acquired. �

Theorem 3.9. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, the principal curvatures of η̄(s, t) are

k1 = −
x′2 ‖ω‖
ρ

,

k2 = x′′1 x′2 − x′′2 x′1.
(3.20)

Proof. Let the parameter curves of the sweeping surface η̄(s, t) be lines of curvature. Then, the principal
curvatures of η̄(s, t) can be obtained as follows:

k1 =
e
E

= −
x′2 ‖ω‖
ρ

,

k2 =
g
G

= x′′1 x′2 − x′′2 x′1.
(3.21)

�

Theorem 3.10. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, the relation between the Gaussian curvature K and the mean curvature
H of η̄(s, t) is given by

H =
1
2

(
εg +

K
g

)
. (3.22)

Proof. By utilizing Eqs (3.18) and (3.19), Eq (3.22) is obtained. �

Theorem 3.11. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, η̄(s, t) is a flat surface if

x2 = constant, or k2 = 0. (3.23)

Proof. The surface η̄(s, t) is a flat surface when the Gaussian curvature vanishes. Hence, Eq (3.18)
gives

x′2 ‖ω‖ (x′′2 x′1 − x′′1 x′2) = 0.

Since ‖ω‖ , 0, by using Eq (3.20), we obtain the equations in (3.23). �
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Theorem 3.12. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then η̄(s, t) is a minimal surface if

x′2 =
ρg
‖ω‖

. (3.24)

Proof. The surface η̄(s, t) is a flat surface when the mean curvature vanishes. Hence, Eq (3.18) gives

ρ(x′′1 x′2 − x′1x′′2 ) − x′2 ‖ω‖ = 0.

By using Eq (3.19), we obtain Eq (3.24). �

In the next part of this study, we examine the sweeping surfaces for a spacelike profile curve.
Case 2. Let the planar profile curve x(t) = (0, x1(t), x2(t))T be a spacelike curve which means that
x′21 − x′22 = 1.
By using Eq (3.4), we get

‖η̄s × η̄t‖ =

√∣∣∣ρ2(x′1
2 − x′2

2) + m2
∣∣∣

=
√
ρ2 + m2.

(3.25)

From Eqs (3.4) and (3.25), we can get the unit normal vector of η̄(s, t) as

U(s, t) =
ρ(x′1 cosh φ − x′2 sinh φ)h1 + mh2 − ρ(x′1 sinh φ − x′2 cosh φ)h3√

m2 + ρ2
. (3.26)

By using Eq (3.2), the components of the fundamental forms are obtained by

E = (x2
1 − x2

2)φ′2 + ρ2,

F = φ′(x′1x2 − x1x′2),

G = −x′1
2

+ x′2
2

= −1.

(3.27)

Then by the aid of Eq (3.27), we obtain EG − F2 = −(ρ2 + m2) < 0. Hence, the surface is timelike.
Hence, we can give the following theorem.

Theorem 3.13. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The sweeping surface η̄(s, t) generated by the Frenet frame of
ϕ̄(s) has singularity on the point p = (s0, t0) if

m(s0, t0) = ρ(s0, t0) = 0. (3.28)

Proof. Equation (3.25) gives that η̄(s, t) has a singularity at p = (s0, t0) if it satisfies

‖η̄s × η̄t‖ =
√
ρ2(s0, t0) + m2(s0, t0) = 0.

Using this equation, we get

ρ2(s0, t0) + m2(s0, t0) = 0⇒ m(s0, t0) = ρ(s0, t0) = 0.

�
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Theorem 3.14. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The Gaussian and mean curvatures of the sweeping surface
η̄(s, t) generated by the Frenet frame of ϕ̄(s) are, respectively,

K =
1(

m2 + ρ2)2

ρ

−ρ(x1x′1 − x2x′2)φ′′

−ρ(x1x′2 − x2x′1)φ′2

+ρ2x′2 ‖ω‖ − m(x2φ
′ ‖ω‖ + ρs)

 (x′′1 x′2 − x′1x′′2 )

+
(
ρtm + ρφ′

)2

 ,

H =
1

2
(
m2 + ρ2)3/2


−ρ

(
(x2

1 − x2
2)φ′2 + ρ2

)
(x′′1 x′2 − x′1x′′2 )

+ρ(x1x′1 − x2x′2)φ′′ + ρ(x1x′2 − x2x′1)φ′2

−ρ2x′2 ‖ω‖ + m
(
x2φ

′ ‖ω‖ + ρs
)

+2φ′(x2x′1 − x1x′2)
(
ρtm + ρφ′

)

 .
(3.29)

Proof. From Eqs (3.3) and (3.26), we can compute the components of the second fundamental form as

e =
1√

m2 + ρ2

(
ρ(x1x′1 − x2x′2)φ′′ + ρ(x1x′2 − x2x′1)φ′2 − ρ2x′2 ‖ω‖ + m

(
x2φ

′ ‖ω‖ + ρs
))
,

f =
1√

m2 + ρ2

(
mρt + ρφ′

)
,

g =
ρ√

m2 + ρ2

(
x′′1 x′2 − x′′2 x′1

)
.

(3.30)

Thus, by substituting (3.27) and (3.30) into (2.8), the Gaussian curvature and the mean curvature of
sweeping surface η̄(s, t) can be obtained as in (3.29). �

Theorem 3.15. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The parameter curves of the sweeping surface η̄(s, t) generated
by the Frenet frame of ϕ̄(s) are lines of curvature if and only if

φ = constant or
x1

x2
= constant,

φ′ = −
mρt

ρ
.

(3.31)

Proof. The parameter curves of the sweeping surface η̄(s, t) are lines of curvature if F = f = 0. Then,
using the same computations as in the proof of Theorem 3.4, from Eqs (3.27) and (3.30), we obtain the
equations in (3.31). �

Theorem 3.16. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and η̄(s, t) is a regular sweeping surface generated by the Frenet frame of ϕ̄(s) in E3

1.

i) The s parameter curve of η̄(s, t) is an asymptotic curve if

ρx′1
(
x1φ

′′ − x2φ
′2
)

+ ρx′2
(
x1φ

′2 − x2φ
′′ − ρ ‖ω‖

)
+ m

(
x2φ

′ ‖ω‖ + ρs
)

= 0. (3.32)

ii) The t parameter curve of η̄(s, t) is an asymptotic curve if

ρ = 0, or x′′1 x′2 − x′1x′′2 = 0. (3.33)
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Proof. Using the same computations as in the proof of Theorem 3.5, by using (3.3) and (3.26), the
equations in (3.32) and (3.33) are obtained. �

Theorem 3.17. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and η̄(s, t) is a regular sweeping surface generated by the Frenet frame of ϕ̄(s) in E3

1.

i) The s parameter curve of η̄(s, t) is a geodesic curve if

m
((

x2φ
′ cosh φ − x1φ

′ sinh φ
)′

+ ρτ
)

+ ρ
(
x2φ

′ ‖ω‖ + ρs
) (

x′1 sinh φ − x′2 cosh φ
)

= 0,

ρx′1
(
x1φ

′2 − x2φ
′′
)

+ ρx′2
(
x1φ

′′ − x2φ
′2
)
− ρ2x′1 ‖ω‖ = 0,

+ρ
(
x2φ

′ ‖ω‖ + ρs
) (

x′1 cosh φ − x′2 sinh φ
)
− m

((
x1φ

′ cosh φ − x2φ
′ sinh φ

)′
− ρκ

)
= 0.

(3.34)

ii) The t parameter curve of η̄(s, t) is a geodesic curve if

m = 0 or x′′1 cosh φ − x′′2 sinh φ = 0,
ρ = 0 or x′′2 x′2 − x′′1 x′1 = 0,
x′′2 cosh φ − x′′1 sinh φ = 0.

(3.35)

Proof. Using the same computations as the proof of Theorem 3.6, by using (3.3) and (3.26), the
equations in (3.34) and (3.35) are obtained. �

Now, assume that the parameter curves of the sweeping surface η̄(s, t) are its lines of curvature. For
simplicity, we take ρ = λκ− x1 ‖ω‖ > 0. In this case, ‖η̄s × η̄t‖ =

√
ρ2 = ρ , 0, which means that η̄(s, t)

is a regular surface.

Theorem 3.18. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. η̄(s, t) has singularity on the point p = (s0, t0) if

x1(s0, t0) =
(c − s0)κ(s0)√
τ2(s0) − κ2(s0)

. (3.36)

Proof. η̄(s, t) has singularity on the point p = (s0, t0) if ‖η̄s × η̄t‖ (s0, t0) = 0. Then, from Remark 3.1
and Eq (3.28), ρ(s0, t0) = 0 satisfies (3.36). �

Theorem 3.19. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and spacelike ω Darboux vector in E3

1. The Gaussian and mean curvatures of the sweeping surface
η̄(s, t) generated by the Frenet frame of ϕ̄(s) are, respectively,

K =
x′2 ‖ω‖ (x′′1 x′2 − x′1x′′2 )

ρ
,

H =
−ρ(x′′1 x′2 − x′1x′′2 ) − x′2 ‖ω‖

2ρ
.

(3.37)

Proof. By utilizing Eqs (3.27), (3.30), and (3.31), we can determine the fundamental coefficients of
the surface of η̄(s, t) as

E = ρ2, F = 0, G = −1,
e = −ρx′2 ‖ω‖ , f = 0, g = x′′1 x′2 − x′1x′′2 .

(3.38)

By substituting these equations into Eq (2.8), the equations can be acquired. �
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Theorem 3.20. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, the principal curvatures of η̄(s, t) are

k1 = −
x′2 ‖ω‖
ρ

,

k2 = x′1x′′2 − x′′1 x′2.
(3.39)

Proof. Let the parameter curves of the sweeping surface η̄(s, t) be lines of curvature. Then, the principal
curvatures of η̄(s, t) are

k1 =
e
E

= −
x′2 ‖ω‖
ρ

,

k2 =
g
G

= x′1x′′2 − x′′1 x′2.
(3.40)

�

Theorem 3.21. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, the relation between the Gaussian curvature K and the mean curvature
H of η̄(s, t) is given by

H =
1
2

(
g −

K
g

)
. (3.41)

Proof. By utilizing Eqs (3.37) and (3.38), Eq (3.41) is obtained. �

Theorem 3.22. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then η̄(s, t) is a flat surface if

x2 = constant, or k2 = 0. (3.42)

Proof. The surface η̄(s, t) is a flat surface when the Gaussian curvature vanishes. Hence, Eq (3.37)
gives

x′2 ‖ω‖ (x′′2 x′1 − x′′1 x′2) = 0.

Since ‖ω‖ , 0, by using Eq (3.39), the equations in (3.42) are obtained. �

Theorem 3.23. Let ϕ̄(s) be the involute of a unit speed spacelike curve ϕ(s) with a timelike binormal
and the parameter curves of the sweeping surface η̄(s, t) generated by the Frenet frame of ϕ̄(s) are its
lines of curvature in E3

1. Then, η̄(s, t) is a minimal surface if

x′2 = −
ρg
‖ω‖

. (3.43)

Proof. The surface η̄(s, t) is a flat surface when the mean curvature vanishes. Hence, Eq (3.37) gives

ρ(x′′1 x′2 − x′1x′′2 ) + x′2 ‖ω‖ = 0.

By using Eq (3.38), we obtain Eq (3.43). �
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Example 3.24. Let us consider a spacelike curve with a timelike binormal parametrized as

ϕ(s) =

(
5
3

s,
4
9

cosh 3s,
4
9

sinh 3s
)
. (3.44)

Then, the Frenet vectors of ϕ(s) are given by

h1(s) =

(
5
3
,

4
3

sinh 3s,
4
3

cosh 3s
)
,

h2(s) = (0, cosh 3s, sinh 3s) ,

h3(s) =

(
4
3
,

5
3

sinh 3s,
5
3

cosh 3s
)
,

κ(s) = 4, τ(s) = 5,
ω(s) = τ(s)h1(s) − κ(s)h3(s) = (3, 0, 0).

(3.45)

Hence, using (2.2), we obtain sinh φ(s) =
4
3

and cosh φ(s) =
5
3
. By putting c = 0 in (2.4), we get the

involute curve of ϕ(s) as

ϕ̄(s) =

(
0,

4
9

cosh 3s −
4
3

s sinh 3s,
4
9

sinh 3s −
4
3

s cosh 3s
)
, (3.46)

with the Frenet vectors based on Eqs (2.7) and (3.1), the sweeping surfaces η1(s, t), and the η̄1(s, t)
generated by moving a timelike profile curve along ϕ(s) and ϕ̄(s) expressed by the following equations:

η1(s, t) =

(
5
3

s,
4
9

cosh 3s,
4
9

sinh 3s
)

+ (0, sinh t, cosh t)


5
3

4
3 sinh 3s 4

3 cosh 3s
0 cosh 3s sinh 3s
4
3

5
3 sinh 3s 5

3 cosh 3s


=


5
3

s +
4
3

cosh t,
4
9

cosh 3s + sinh t cosh 3s +
5
3

cosh t sinh 3s,

4
9

sinh 3s + sinh t sinh 3s +
5
3

cosh t cosh 3s

 ,
(3.47)

and

η̄1(s, t) =

(
0,

4
9

cosh 3s −
4
3

s sinh 3s,
4
9

sinh 3s −
4
3

s cosh 3s
)

+ (0, sinh t, cosh t)


0 ∓ cosh 3s ∓ sinh 3s
0 ∓ sinh 3s ∓ cosh 3s
−1 0 0


=


− cosh t,

4
9

cosh 3s −
4
3

s sinh 3s ∓ sinh t sinh 3s,

4
9

sinh 3s −
4
3

s cosh 3s ∓ sinh t cosh 3s

 ,
(3.48)

respectively. The curve ϕ(s), its involute ϕ̄(s) as the trajectory curve, and a planar timelike profile
curve are shown in Figure 1, whereas the surface η1(s, t) is shown in Figure 2, and the surface η̄1(s, t) is
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shown in Figure 3. Finally, both surfaces η1(s, t) and η̄1(s, t) are shown in Figure 4 where −1 6 s 6 1
and −3 6 t 6 3.

Figure 1. Timelike profile curve (dark green), the curve ϕ(s) (red), and its involute curve
ϕ̄(s) as the spine (trajectory) curve (blue).

Figure 2. Sweeping surface η1(s, t) generated by ϕ(s) (red) with the timelike profile
curve (dark green).
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Figure 3. Sweeping surface η̄1(s, t) generated by ϕ̄(s) (blue) with the timelike profile
curve (dark green).

Figure 4. Sweeping surface η1(s, t) generated by ϕ(s) (on the left) and the surface η̄1(s, t)
generated by ϕ̄(s) (on the right) with the timelike profile curve.

The sweeping surfaces η2(s, t) and η̄2(s, t) generated by moving a spacelike profile curve along ϕ(s)
and ϕ̄(s) are expressed by the following equations:

η2(s, t) =

(
5
3

s,
4
9

cosh 3s,
4
9

sinh 3s
)

+ (0, cosh t, sinh t)


5
3

4
3 sinh 3s 4

3 cosh 3s
0 cosh 3s sinh 3s
4
3

5
3 sinh 3s 5

3 cosh 3s


=


5
3

s +
4
3

sinh t,
4
9

cosh 3s + cosh t cosh 3s +
5
3

sinh t sinh 3s,

4
9

sinh 3s + cosh t sinh 3s +
5
3

sinh t cosh 3s

 ,
(3.49)

and
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η̄2(s, t) =

(
0,

4
9

cosh 3s −
4
3

s sinh 3s,
4
9

sinh 3s −
4
3

s cosh 3s
)

+ (0, cosh t, sinh t)


0 ∓ cosh 3s ∓ sinh 3s
0 ∓ sinh 3s ∓ cosh 3s
−1 0 0


=


− sinh t,

4
9

cosh 3s −
4
3

s sinh 3s ∓ cosh t sinh 3s,

4
9

sinh 3s −
4
3

s cosh 3s ∓ cosh t cosh 3s

 .
(3.50)

The curve ϕ(s), its involute ϕ̄(s) as the trajectory curve, and a planar spacelike profile curve are shown
in Figure 5, whereas the surface η2(s, t) is shown in Figure 6, and the surface η̄2(s, t) is given in Figure 7.
Lastly, both of the two surfaces η2(s, t) and η̄2(s, t) are shown in Figure 8 where −1 6 s 6 1 and
−3 6 t 6 3.

Figure 5. Spacelike profile curve (turquoise), the curve ϕ(s) (red), and its involute ϕ̄(s) as
the spine (trajectory) curve (blue).

Figure 6. Sweeping surface η2(s, t) generated by ϕ(s) (red) with the spacelike profile
curve (turquoise).
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Figure 7. Sweeping surface η̄2(s, t) generated by ϕ̄(s) (blue) with the spacelike profile
curve (turquoise).

Figure 8. Sweeping surface η2(s, t) generated by ϕ(s) and the surface η̄2(s, t) generated by
ϕ̄(s) with the spacelike profile curve.

4. Conclusions

This study analyzes the construction of sweeping surfaces generated by moving a non-null planar
profile curve along the involute curve ϕ̄(s) of the main curve ϕ(s) considered in Euclidean 3-space
and now defined in Minkowski 3-space, taking into account the causal character of the curves. First,
the sweeping surfaces generated by the involutes of spacelike curves with a timelike binormal and
spacelike Darboux vector are defined in Minkowski 3-space E3

1. Then, the singularity, and the mean
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and Gaussian curvatures of these surfaces are calculated and the conditions for these surfaces to be
flat and minimal are examined. Also, the conditions for the parameter curves on the surface to be
asymptotic and geodesic are investigated. Finally, the cases where the parameter curves are lines of
curvature on the surface are obtained. Additionally, the examples of these surfaces are presented and
their graphics are illustrated. Therefore, new surfaces are contributed to the literature of surface theory
in Minkowski 3-space.
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