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1. Introduction

Let q > 1 be an integer. For any Dirichlet character χ modulo q, the classical Gauss sums G(m, χ; q)
is defined as follows (see Section 5 of Chapter 8 in [1]).

G(m, χ; q) =
q∑

a=1

χ(a)e
(
ma
q

)
,

where m is any integer, e(y) = e2πiy and i2 = −1.
For convenience, we write τ(χ) = G(1, χ; q). If χ is a primitive character modulo q or (m, q) = 1,

then we have (see [1,2]): G(m, χ; q) = χ(m)τ(χ) and the identity |τ(χ)| =
√

q. The study of the classical
Gauss sums G(m, χ; q) has received considerable attention in past decades. For example, B. C. Berndt
and R. J. Evans [3] studied the properties of some special Gauss sums, and obtained the following
interesting results:

τ3(χ3) + τ3 (χ3) = dp, (1.1)

where p is a prime with p ≡ 1 mod 3, χ3 is any three-order character modulo p, and d is uniquely
determined by 4p = d2 + 27b2 and d ≡ 1 mod 3.
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L. Chen [4] obtained another identity for the six-order character modulo p. That is, she proved the
following conclusion: Let p be a prime with p ≡ 1 mod 6, then for any six-order character χ6 modulo
p, we have

τ3(χ6) + τ3 (χ6) =

 p
1
2 ·

(
d2 − 2p

)
, if p ≡ 1 mod 12;

−i · p
1
2 ·

(
d2 − 2p

)
, if p ≡ 7 mod 12,

(1.2)

where d is the same as defined in (1.1).
As an application of (1.2), L. Chen [4] proved the following conclusion: Let p be a prime with

p ≡ 1 mod 12. Then for any three-order character χ3 modulo p and integer n ≥ 0, one has the identity

Un(p) =
τ3n(χ3)
τ3n (χ3)

+
τ3n (χ3)
τ3n(χ3)

=

d2 − 2p + 3dbi
√

3
2p

n

+

d2 − 2p − 3dbi
√

3
2p

n

;

If p ≡ 7 mod 12, then one has the identity

Un(p) = in

2p − d2 +
√

8p2 − 4d2 p + d4

2p

n

+ in

2p − d2 −
√

8p2 − 4d2 p + d4

2p

n

,

where d and b are the same as defined in (1.1).
Z. Y. Chen and W. P. Zhang [5] studied the case of the four-order character modulo p, and obtained

the following conclusion: Let p be a prime with p ≡ 1 mod 4. Then for any four-order character χ4

modulo p, one has the identity

τ2 (χ4) + τ2 (
χ4

)
= 2
√

p · α and α =
1
2

p−1∑
a=1

(
a + a

p

)
, (1.3)

where
(
∗

p

)
= χ2 denotes the Legendre’s symbol modulo p. It is clear that the constant α = α(p) in (1.3)

is closely related to prime p. In fact, we have the expression (For this see Theorem 4–11 in [8])

p = α2 + β2 ≡

1
2

p−1∑
a=1

(
a + a

p

)
2

+

1
2

p−1∑
a=1

(
a + ra

p

)
2

, (1.4)

where r is any quadratic non-residue modulo p. That is, χ2(r) = −1.
T. T. Wang and G. H. Chen [6] studied the Gauss sums for 12-order character χ12 modulo p, and

proved that
τ6n(χ12)

τ6n
(
χ5

12

) + τ6n (χ12)

τ6n
(
χ12

5
) = δ + √δ2 − 4

2

n

+

δ − √δ2 − 4
2

n

,

where p ≡ 1 mod 12, δ = 2p2−4pd2+d4

p2 , and d is the same as in (1.1).
Some other results related to various Gauss sums and their recursion properties can also be found

in [7,9–15], see the Gauss sums for 8-order character modulo p in [7,12] for instance. The main result
considered in this paper is motivated by these references.
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The main purpose of this paper is to consider the computational problem of the Gauss sums for 24-
order character modulo p. To be exact, for any prime p with p ≡ 1 mod 24, let χ3, χ8 be a three-order
and eight-order character modulo p, respectively. For any integer n ≥ 0, we write

An(p) =
τ4n (

χ8χ3
)

τ4n (χ8χ3)
+
τ4n (χ8χ3)
τ4n (

χ8χ3
) = τ4n (

χ8χ3
)

τ4n (χ8χ3)
+
τ4n (χ8χ3)
τ4n (

χ8χ3
) . (1.5)

Our goal is to give an exact computational formula for (1.5).
As far as this problem is concerned, no one has studied it, at least we have not seen any related

results in the related literature.
In this paper, we will use the analytic methods and the properties of the classical Gauss sums to

give an exact computational formulas for (1.5). That is, we shall prove the following:
Theorem. Let p be an odd prime with p ≡ 1 mod 24. Then for any integer n ≥ 0, we have the

identity

An(p) =
(
2α2 − p + 2αβi

p

)n

+

(
2α2 − p − 2αβi

p

)n

=

(
α2 − β2 + 2αβi

p

)n

+

(
α2 − β2 − 2αβi

p

)n

,

where α and β are the same as defined as in (1.3) and (1.4), and i2 = −1.
From this theorem we may immediate deduce the follow:
Corollary. Let p be an odd prime with p ≡ 1 mod 24, χ8 be any eight-order character and χ3 be

any three-order character modulo p. Then we have the identity

τ4 (
χ8χ3

)
τ4 (χ8χ3)

=
α2 − β2

p
±

2αβ
p
· i.

Some notes. In fact, the sequence An(p) satisfies the second-order linear recurrence formula:

An+1(p) =
2(α2 − β2)

p
· An(p) − An−1(p), n ≥ 1

with the initial values A0(p) = 2 and A1(p) = 2(α2−β2)
p .

For general positive integer k, let p be a prime with p ≡ 1 mod 3 ·2k, then for integer n ≥ 0, whether
there exists an exact computational formula for the sums

Bn(p) =
τ4n (

χ2kχ3
)

τ4n (χ2kχ3)
+
τ4n (χ2kχ3)
τ4n (

χ2kχ3
) ?

where χ2k is a 2k-order character modulo p, χ3 is a three-order character modulo p.
This is an open problem. It remains to be further studied.
Of course, how to determine the plus or minus signs in the corollary is also a meaningful problem.

Interested readers may consider it.
Notation. Before proceeding, we fixed some notation used throughout the paper. p is always

reserved for a prime number. We use χ, χk to denote any non-principal character of modulo p and the
k-order character of modulo p, respectively. τ(χ) = G(1, χ; q) means the classical Gauss sum, and
τh(χ) denotes (τ(χ))h. As is usual, we abbreviate e2πiy to e(y), where i2 = −1.
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2. Several lemmas

In this section, we give several simple but necessary lemmas. Many of the statement in this section
are standard, and the readers can refer to many classical monographs, such as [1, 2, 8].

Lemma 1. Let p be an odd prime. Then for any non-principal character χ modulo p, we have the
identity

τ
(
χ2

)
=
χ2(2)χ2(−1)χ(−1) · τ(χ2) · τ (χχ2)

τ (χ)
.

Proof. From the properties of the classical Gauss sums we infer

p−1∑
a=0

χ
(
a2 − 1

)
=

p−1∑
a=0

χ
(
(a + 1)2 − 1

)
=

p−1∑
a=1

χ(a)χ (a + 2)

=
1

τ (χ)

p−1∑
b=1

χ(b)
p−1∑
a=1

χ(a)e
(
b(a + 2)

p

)
=
τ (χ)
τ (χ)

p−1∑
b=1

χ(b)χ(b)e
(
2b
p

)

=
τ (χ)
τ (χ)

p−1∑
b=1

χ2(b)e
(
2b
p

)
=
χ2(2) · τ (χ) · τ

(
χ2

)
τ (χ)

. (2.1)

On the other hand, for any integer b with (b, p) = 1, note that the identity

p−1∑
a=0

e
(
ba2

p

)
= 1 +

p−1∑
a=1

(1 + χ2(a)) e
(
ba
p

)
=

p−1∑
a=1

χ2(a)e
(
ba
p

)
= χ2(b) · τ(χ2),

we also have
p−1∑
a=0

χ
(
a2 − 1

)
=

1
τ (χ)

p−1∑
a=0

p−1∑
b=1

χ(b)e
(
b(a2 − 1)

p

)

=
1

τ (χ)

p−1∑
b=1

χ(b)e
(
−b
p

) p−1∑
a=0

e
(
ba2

p

)
=
τ(χ2)
τ (χ)

p−1∑
b=1

χ(b)χ2(b)e
(
−b
p

)
=

χ2(−1)χ(−1)τ(χ2) · τ (χχ2)
τ (χ)

. (2.2)

Formulas (2.1) and (2.2) yield

τ
(
χ2

)
=
χ2(2)χ2(−1)χ(−1) · τ(χ2) · τ (χχ2)

τ (χ)
.

This proves Lemma 1.
Lemma 2. Let p be an odd prime with p ≡ 1 mod 8. Then for any eight-order character χ8 modulo

p, we have the identity

τ4
(
χ3

8

)
τ4 (χ8)

+
τ4 (χ8)

τ4
(
χ3

8

) = 2
(
2α2 − p

)
p

=
2
(
α2 − β2

)
p

,
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where α is the same as defined as in (1.3).
Proof. Taking χ = χ8 in Lemma 1, note that χ8χ2 = χ

3
8, τ (χ8) τ

(
χ8

)
= χ8(−1) · p and τ (χ2) =

√
p,

from Lemma 1 we derive that

τ
(
χ4

)
=
χ4(2)χ8(−1) ·

√
p · τ

(
χ3

8

)
τ (χ8)

(2.3)

and

τ (χ4) =
χ4(2)χ8(−1) ·

√
p · τ

(
χ3

8

)
τ
(
χ8

) =
χ4(2)χ8(−1) ·

√
p · τ (χ8)

τ
(
χ3

8

) . (2.4)

Combining formulae (1.3), (2.3) and (2.4), we obtain

p2 ·

τ4
(
χ3

8

)
τ4 (χ8)

+
τ4 (χ8)

τ4
(
χ3

8

) = τ4 (χ4) + τ4 (
χ4

)
=

(
τ2 (χ4) + τ2 (

χ4
))2
− 2p2 = 4pα2 − 2p2,

which completes the proof readily in view of τ2(χ4) · τ2 (
χ4

)
= p2.

Lemma 3. Let p be an odd prime with p ≡ 1 mod 3. Then for any character χ modulo p, we have
the identity

τ
(
χ3

)
=

1
p
· χ3(3) · τ(χ) · τ (χχ3) · τ (χχ3) ,

where χ3 is a three-order character modulo p.
Proof. For this see [16, 17]. The general result can also be found in [18].
Lemma 4. Let p be a prime with p ≡ 1 mod 24, χ8 be any eight-order character and χ3 be any

three-order character modulo p. Then we have the identity

τ4 (
χ8χ3

)
τ4 (χ8χ3)

+
τ4 (χ8χ3)
τ4 (

χ8χ3
) = 2

(
2α2 − p

)
p

=
2
(
α2 − β2

)
p

.

Proof. We consider χ = χ8 in Lemma 3, so that

τ
(
χ3

8

)
=
χ3

8(3)
p
· τ (χ8) · τ (χ8χ3) · τ (χ8χ3) . (2.5)

We can derive by adjusting both sides of the equation above that

τ4
(
χ3

8

)
τ4 (χ8)

=
τ4 (χ8χ3)
τ4 (

χ8χ3
) (2.6)

and

τ4 (χ8)

τ4
(
χ3

8

) = τ4 (
χ8χ3

)
τ4 (χ8χ3)

. (2.7)
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These two formulae follow by noting that τ (χ8χ3) τ
(
χ8χ3

)
= χ8(−1) · p and χ2(3) = 1.

Combining (2.6), (2.7) and Lemma 2 we can get

τ4 (
χ8χ3

)
τ4 (χ8χ3)

+
τ4 (χ8χ3)
τ4 (

χ8χ3
) = τ4

(
χ3

8

)
τ4 (χ8)

+
τ4 (χ8)

τ4
(
χ3

8

) = 2
(
2α2 − p

)
p

=
2
(
α2 − β2

)
p

.

This completes the proof of Lemma 4.

3. Proof of the theorem

In this section we will use the lemmas from Section 2 to prove the theorem. From Lemma 4 we
know that A0(p) = 2 and A1(p) = 2(2α2−p)

p . If n ≥ 1, then from the definition of An(p) we have the
identity

A1(p) · An(p) =
(
τ4 (

χ8χ3
)

τ4 (χ8χ3)
+
τ4 (χ8χ3)
τ4 (

χ8χ3
)) · (τ4n (

χ8χ3
)

τ4n (χ8χ3)
+
τ4n (χ8χ3)
τ4n (

χ8χ3
))

=
τ4(n+1) (χ8χ3

)
τ4(n+1) (χ8χ3)

+
τ4(n+1) (χ8χ3)
τ4(n+1) (χ8χ3

) + τ4(n−1) (χ8χ3)
τ4(n−1) (χ8χ3

) + τ4(n−1) (χ8χ3
)

τ4(n−1) (χ8χ3)
= An+1(p) + An−1(p)

or

An+1(p) =
2 ·

(
2α2 − p

)
p

· An(p) − An−1(p), n ≥ 1. (3.1)

Let x1 and x2 be two roots of the equation x2 −
2(2α2−p)

p · x + 1 = 0. Then from (1.4) we obtain

x1 =
2α2 − p + 2αβi

p
, x2 =

2α2 − p − 2αβi
p

,

where α and β are the same as defined as in (1.3) and (1.4), and i2 = −1.
From (3.1) and the properties of the second order linear recursive sequence we derive that

An(p) =
(
2α2 − p + 2αβi

p

)n

+

(
2α2 − p − 2αβi

p

)n

, n ≥ 0.

Note that p = α2 + β2, this completes the proof of our theorem.

4. Conclusions

The main result of this paper is the theorem, an exact computational formula for one kind of Gauss
sums is obtained. The result is not only closely related to the second order linear recursive sequence,
but also makes a new contribution to the research in related fields.
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