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Abstract: Let G be a graph with the vertex set V(G). A set D ⊆ V(G) is a total k-dominating set
if every vertex v ∈ V(G) has at least k neighbours in D. The total k-domination number γkt(G) is the
cardinality of the smallest total k-dominating set. For k = 2 the total 2-dominating set is called double
total dominating set. In this paper we determine the upper and lower bounds and some exact values
for double total domination number on pyrene network PY(n), n ≥ 1 and hexabenzocoronene XC(n)
n ≥ 2, where pyrene network and hexabenzocoronene are composed of congruent hexagons.
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1. Introduction

Graph dominations are important since they occur in various applications such as dominating
queens, computer network, school bus routing, social networks problems and in chemistry [1–9].
Chemical structures can be represented by graphs. Vertices represent atoms, while edges represent
chemical bonds. Because of such similarity, many physical and chemical properties of molecules
are connected with graph theoretical invariants. One such invariant is the total (double) domination
number [1–3, 5, 6, 10–16].

We explore double total dominations on pyrene network and hexabenzocoronene, and we give upper
bounds for double total dominating number on pyrene network and upper and lower bounds for double
total dominating number on hexabenzocoronene. Also, we give some exact values for the double total
domination number on these graphs. This work is connected with our previous work [16] where we
have also studied total and double total dominations, but on the hexagonal grid. At the moment there
are only a few publications on total and double total domination on chemical graphs [1, 2, 5, 6, 16].

Pyrene networks and hexabenzocoronene are benzenoid hydrocarbons [2, 8, 17]. Benzenoid
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hydrocarbons and their derivates are an important class of organic compounds that have, apart from
their chemical importance, big technical and farmaceutical importance as well and belong to the group
of the most serious polluters of the environment. Pyrene has interesting photophysical properties and
it is used to make dyes, plastics and pesticides.

Apart from this introduction, the rest of the paper is organized as follows. Section 2 lists
preliminaries about the total and double domination, dominating sets and hexagonal systems. Section 3
gives an upper bound for the double total domination number γ2t on pyrene network PY(n) dimension
n ≥ 3 and the exact value for the double total domination number on PY(1) and PY(2).

Section 4 gives the upper and lower bound for the double total domination number on
hexabenzocoronene XC(n) dimension n ≥ 3 and the exact value for the double total domination number
on XC(2).

2. Preliminaries

Let G be a graph with the vertex set V(G). A set D ⊂ V(G) is a dominating set of a graph G if
every vertex y in V(G) \ D has neighbour in D. The domination number γ(G) is the cardinality of the
smallest dominating set. Total domination is the stronger version of domination. A set D ⊂ V(G) is a
total dominating set of a graph G if every vertex y in V(G) has a neighbour in D. The total domination
number γt(G) is the cardinality of the smallest total dominating set.

A set D ⊆ V(G) is a k-dominating set, if every vertex v ∈ V(G) \ D has at least k neighbours in D.
The k-domination number γk(G) is the cardinality of the smallest k-dominating set. A set D ⊆ V(G) is
a total k-dominating set if every vertex v ∈ V(G) has at least k neighbours in D. In such case, it must be
k ≤ δ(G) where δ(G) is the minimum degree of vertices on G and |D| ≥ k + 1. The total k-domination
number γkt(G) is the cardinality of the smallest total k-dominating set. For k = 2 the total 2-dominating
set is called double total dominating set.

Each vertex in hexagonal system is either of degree 2 or of degree 3. It follows that on a hexagonal
grid there is no total k-dominating set for k ≥ 3.

3. Double total domination number of pyrene network

Benzenoid graphs are geometric figures that are composed of congruent hexagons. The hexagons
are arranged according to certain rules. We denote by PY(n) pyrene network of dimension n. Pyrene
network PY(n) is a simple connected 2-D planar benzenoid graph. PY(n) has 3n2+4n−1 edges, where
n is the number of rings in the center of the graph. See Figure 1 for n = 3.

Pyrene network of dimension 1 has just a single hexagon. In PY(n) any zigzag line not containing
vertical edges is called horizontal zigzag line. The set of horizontal zigzag lines of PY(n) are denoted
by Li, 1 ≤ i ≤ 2n. More precisely, Li is the subgraph of PY(n) formed by the i-th horizontal zigzag line
of PY(n) and V(Li) is its set of vertices, with 1 ≤ i ≤ 2n.

Vertices on Li are

V(Li) =

{vi,1, vi,2, . . . , vi,2i+1} if i ≤ n,

{vi,1, vi,2, . . . , vi,4n−2i+3} if n + 1 ≤ i ≤ 2n.
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|V(Li)| =

2i + 1 if i ≤ n,

4n − 2i + 3 if n + 1 ≤ i ≤ 2n.
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Figure 1. Horizontal zigzag lines and vertices on PY(3).

Lemma 3.1. For pyrene network of dimension 1 and 2 it holds

γ2t(PY(1)) = 6, γ2t(PY(2)) = 14.

Proof. Because we consider double total domination, each vertex adjacent to a vertex with degree 2
must be in any double total dominating set T .

Let T be double total dominating set on PY(n). For n ∈ {1, 2} all boundary vertices from PY(n) must
be in T because each boundary vertex is adjacent to at least one vertex with degree 2. See Figure 2.
There is 8n − 2 boundary vertices on PY(n) (3 on L1, 3 on Ln and 4 on each remaining 2n − 2 zig zag
lines).

Figure 2. Double total dominating set on PY(1) and PY(2).
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It follows that γ2t(PY(1)) ≥ 6, γ2t(PY(2)) ≥ 14. On the other hand, boundary vertices double total
dominate all vertices on PY(1) and PY(2). Then γ2t(PY(1)) ≤ 6, γ2t(PY(2)) ≤ 14. �

Theorem 3.1. For pyrene network PY(n), n ≥ 3 it holds

γ2tPY(n) ≤

3
2 (n + 1)2 if n ≡ 1 mod 2,
3
2n(n + 2) + 4 if n ≡ 0 mod 2.

Proof. First, we will consider case n ≡ 1 mod 2. Graph PY(n) is axially symetric. See Figure 3 for
double total dominating set on PY(5).

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

Figure 3. Double total dominating set on PY(5).

(i) i ≤ n
For i is odd we define

Ti =
{
vi,1+4 j, vi,2+4 j, vi,3+4 j; j = 0, . . . ,

⌊2i + 1
4

⌋}
.

For i is even
Ti =

{
vi,2+4 j, vi,3+4 j, vi,4+4 j; j = 0, . . . ,

⌊2i − 1
4

⌋}
.

(ii) n + 1 ≤ i ≤ 2n
For i is odd we define

Ti =
{
vi,2+4 j, vi,3+4 j, vi,4+4 j; j = 0, . . . ,

⌊4n − 2i + 1
4

⌋}
.
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For i is even
Ti =

{
vi,1+4 j, vi,2+4 j, vi,3+4 j; j = 0, . . . ,

⌊4n − 2i + 3
4

⌋}
.

Ti ⊂ V(Li) and it holds |Ti| = |T2n+1−i|, i ≤ n. Because of symmetry, we will consider lines i ≤ n and
multiply the result by 2.

Hence, for i ≤ n, |Ti| = 3d 2i+1
4 e = 3( i+1

2 ) if i is odd and |Ti| = 3d2i−1
4 e = 3( i

2 ) if i is even. T =
T1 ∪ T2... ∪ Tn... ∪ T2n is double total dominating set on PY(n) and

|T | = 2((|T1| + |T3| + ... + |Tn|) + (|T2| + |T4| + ... + |Tn−1|))

= 2
((

3 + 6 + ... + 3
n + 1

2

)
+

(
3 + 6 + ... + 3

n − 1
2

))
= 2

(
3

(n + 1)(n + 3)
8

+ 3
(n + 1)(n − 1)

8

)
=

3
2

(n + 1)(n + 1).

Now, we consider the case n ≡ 0 mod 2. The same as for the previous case, the graph is axially
symetric. So, we will consider lines i ≤ n and multiply the result by 2. See Figure 4 for the double
total dominating set on PY(6).

c

T1

T2

T3

T4

T5

T6

T7
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T9

T10

T11

T12

c

Figure 4. Double total dominating set on PY(6).
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(i) For i is odd we define

Ti =
{
vi,1+4 j, vi,2+4 j, vi,3+4 j; j = 0, . . . ,

⌊2i + 1
4

⌋}
.

It follows that |Ti| = 3( i+1
2 ).

(ii) For i is even and 2 ≤ i < n

Ti =
{
vi,2+4 j, vi,3+4 j, vi,4+4 j; j = 0, . . . ,

⌊2i − 1
4

⌋}
.

Thereby |Ti| = 3( i
2 ). But

Tn =
{
vn,2+4 j, vn,3+4 j, vn,4+4 j; j = 0, . . . ,

⌊2n − 1
4

⌋}
∪

{
vn,1, vn,2n+1

}
.

Therefore |Tn| = 3( n
2 ) + 2.

T = T1 ∪ T2... ∪ Tn... ∪ T2n is the double total dominating set on PY(n) and

|T | = 2((|T1| + |T3| + ... + |Tn−1|) + (|T2| + |T4| + ... + |Tn|))

= 2
((

3 + 6 + ... + 3
n
2

) + (3 + 6 + ... + 3
n
2
+ 2

))
= 2

(
6

n(n + 2)
8

+ 2
)

=
3
2

n(n + 2) + 4.

�

4. Double total domination number of hexabenzocoronene

We denote by XC(n) hexabenzocoronene of dimension n ≥ 2. This graph is also called a ring type
benzenoid graph R(n). XC(n) has 27n2−33n+12 edges, where n is the number of rings from the center
of the graph to the bottom or top. See Figure 5 for n = 2 and Figure 6 for n = 5.

Again, any zigzag line in XC(n) not containing vertical edges is called a horizontal zigzag line.
The horizontal zigzag line of XC(n) are denoted by Li, 1 ≤ i ≤ 4n − 2. More precisely, Li is the
subgraph of XC(n) formed by the i-th horizontal zigzag line of XC(n) and V(Li) is its set of vertices,
with 1 ≤ i ≤ 4n − 2.

From definition of hexabenzocoronenes it follows that

|V(Li)| =


6i − 3 if 1 ≥ i ≥ n,

6n − 3 if n + 1 ≥ i ≥ 3n − 2,
3 + 6((4n − 2) − i) if 3n − 1 ≥ i ≥ 4n − 2.
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Figure 5. Double total dominating set on XC(2).
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Figure 6. Double total dominating set on XC(5).
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Theorem 4.1. For hexabenzocoronene of dimension n ≥ 2 it holds

γ2t(XC(n)) > 24n − 18.

Proof. Because we consider the double total domination, each vertex adjacent to a vertex with degree 2
must be in any double total dominating set D. From this follows that all boundary vertices on XC(n)
must be in D.

On XC(n) there are two lines with 3 boundary vertices (L1 and L4n−2), 2n − 2 lines with 8 boundary
vertices (L2,...,Ln and L4n−3,..., L4n−n−1) and on all remaining 2n − 2 lines there are 4 boundary vertices
on each. Therefore at least

6 + 8(2n − 2) + 4(2n − 2) = 24n − 18

vertices must be in D. If there were only 24n − 18 boundary vertices in the double total dominating
set D on XC(n), inner vertices on this graph distance ≥ 2 from boundary would not be double total
dominated. Thus

γ2t(XC(n)) > 24n − 18.

�

Lemma 4.1.
γ2t(XC(2)) = 36

Proof. Let set T contain all marked vertices from Figure 5. T is double total dominating set and
|T | = 36. It follows

γ2t(XC(2)) ≤ 36.

From the previous theorem it follows that all boundary vertices must be in T and |T | > 30. If we
take only boundary vertices in T , all vertices on XC(2) are double total dominated except vertices
{v3,4, v3,5, v3,6, v4,6, v4,5, v4,4}. These vertices make one hexagon PY(1) and none of them is adjacent to
vertices from T . To double total dominate them from Lemma 3.1 we need at least 6 more vertices.
Hence

γ2t(XC(2)) ≥ 36.

�

Theorem 4.2. For hexabenzocoronene of dimension n ≥ 3 it holds

γ2t(XC(n)) ≤

(n − 1)(9n − 3) + n
2 (9n + 10) − 11

2 if n ≡ 1 mod 2,
(n − 1)(9n − 2) + n

2 (9n + 10) − 6 if n ≡ 0 mod 2.

Proof. First, we will consider the case n ≡ 1 mod 2, n ≥ 3. The graph XC(n) is axially symmetric. So
we will consider the lines i ≤ 2n − 1 and multiply the result by 2 as there are 4n − 2 zigzag lines.

By Ti we denote the subset of the double total dominating set T on the Li. See Figure 6 for the
double total dominating set on XC(5).

T1 = {v1,1, v1,2, v1,3}, |T1| = 3,
T2 = {v2,1, v2,2, v2,3, v2,4, v2,6, v2,7, v2,8, v2,9}, |T2| = 8,
T3 = {v3,1, v3,2, v3,3, v3,4, v3,5, v3,6, v3,7, v3,9, v3,10, v3,11, v3,12, v3,13, v3,14, v3,15}, |T3| = 14.

For 4 ≤ i ≤ n we consider 2 subcases, i is even and i is odd.

AIMS Mathematics Volume 7, Issue 11, 19629–19640.
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(i) i is even
Because n is odd it follows that 4 ≤ i ≤ (n − 1). We define

Ti =
{
vi,1, vi,2, vi,3, vi,4, vi,5, vi,6, vi,6i−8, vi,6i−7, vi,6i−6, vi,6i−5, vi,6i−4, vi,6i−3

}
∪

{
vi,8+4 j, vi,9+4 j, vi,10+4 j; j = 0, . . . ,

⌊6i − 17
4

⌋}
.

Then

|Ti| = 12 + 3
(⌊6i − 17

4

⌋
+ 1

)
= 12 + 3

(6i
4
−

⌈17
4

⌉
+ 1

)
= 12 + 3

(3i
2
− 5 + 1

)
=

9i
2
.

(ii) i is odd
Because n is odd we have 5 ≤ i ≤ n. We define

Ti =
{
vi,1, vi,2, vi,3, vi,4, vi,5, vi,6, vi,7, vi,6i−9, vi,6i−8, vi,6i−7, vi,6i−6, vi,6i−5, vi,6i−4, vi,6i−3

}
∪

{
vi,9+4 j, vi,10+4 j, vi,11+4 j; j = 0, . . . ,

⌊6i − 19
4

⌋}
.

Then

|Ti| = 14 + 3
(⌊6i − 19

4

⌋
+ 1

)
= 14 + 3

(6i − 2
4
−

⌈17
4

⌉
+ 1

)
= 14 + 3

(3i
2
−

1
2
− 5 + 1

)
=

9i
2
+

1
2
.

For n + 1 ≤ i ≤ 2n − 1 we define

Ti =
{
vi,1+4 j, vi,2+4 j, vi,3+4 j; j = 0, . . . ,

⌊6n − 3
4

⌋}
.

Then
|Ti| = 3

⌈6n − 3
4

⌉
= 3

3n − 1
2
=

9n − 3
2

.

T1 ∪ T2 ∪ T3 ∪ ...∪ T2n−1 double total dominates all vertices on L1 ∪ L2 ∪ L3 ∪ ...∪ L2n−1. Therefore
for n ≡ 1 mod 2, n ≥ 3 follows

γ2t(XC(n)) ≤ 2(|T1| ∪ |T2| ∪ |T3| ∪ ... ∪ |T2n−1|) = |T |.

For n ≡ 1 mod 2, n ≥ 5

|T | = 2((|T1| + |T2| + |T3|) + (|T4| + |T6| + ... + |Tn−1|) + (|T5| + |T7| + ... + |Tn|) + (|Tn+1| + ... + |T2n−1|))

= 2
(
25 +

(9 · 4
2
+ ... +

9(n − 1)
2

)
+

((9 · 5
2
+

1
2

)
+ ... +

(9n
2
+

1
2

))
+

(n − 1)(9n − 3)
2

)
= 50 + 9(4 + ... + n) +

n − 3
2
+ (n − 1)(9n − 3)

= 50 + 9((1 + ... + n) − 6) +
n − 3

2
+ (n − 1)(9n − 3)

= (n − 1)(9n − 3) +
n
2

(9n + 10) −
11
2
.
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And for n = 3

|T | = 2(|T1| + |T2| + |T3| + (|T4| + ... + |T2n−1|))

= 2
(
3 + 8 + 14 +

(n − 1)(9n − 3)
2

)
= (n − 1)(9n − 3) +

n
2

(9n + 10) −
11
2

= 98.

Now we consider the case n ≡ 0 mod 2, n ≥ 4. Again, the graph XC(n) is axially symmetric. So we
will consider the case i ≤ 2n − 1 and multiply the result by 2.

By Ti we denote the subset of the double total dominating set T on the Li. We define T1, ...Tn the
same as for n is odd. Then |T1| = 3, |T2| = 8, |T3| = 14 and for 4 ≤ i ≤ n, if i is even |Ti| =

9i
2 , and if i is

odd |Ti| =
9i
2 +

1
2 . For n + 1 ≤ i ≤ 2n − 1 we define

Ti =
{
vi,1, vi,2, vi,3, vi,4, vi,6i−6, vi,6i−5, vi,6i−4, vi,6i−3

}
∪

{
vi,6+4 j, vi,7+4 j, vi,8+4 j; j = 0, . . . ,

⌊6n − 13
4

⌋}
.

Then

|Ti| = 8 + 3
(⌊6n − 13

4

⌋
+ 1

)
= 8 + 3

(6n
4
−

⌈13
4

⌉
+ 1

)
= 8 + 3

(3n
2
− 4 + 1

)
=

9n
2
− 1.

T1 ∪ T2 ∪ T3 ∪ ... ∪ T2n−1 double total dominate all vertices on L1 ∪ L2 ∪ L3 ∪ ... ∪ L2n−1. Therefore for
n ≡ 0 mod 2, n ≥ 4 it follows

γ2t(XC(n)) ≤ 2(|T1| ∪ |T2| ∪ |T3| ∪ ... ∪ |T2n−1|) = |T |,

|T | = 2((|T1| + |T2| + |T3|) + (|T4| + |T6| + ... + |Tn|) + (|T5| + |T7| + ... + |Tn−1|) + (|Tn+1| + ... + |T2n−1|))

= 2
(
25 +

(9 · 4
2
+ ... +

9n
2

)
+

((9 · 5
2
+

1
2

)
+ ... +

(9(n − 1)
2

+
1
2

))
+

(n − 1)(9n − 2)
2

)
= 50 + 9(4 + ... + n) +

n − 4
2
+ (n − 1)(9n − 2)

= 50 + 9((1 + ... + n) − 6) +
n − 4

2
+ (n − 1)(9n − 2)

= (n − 1)(9n − 2) +
n
2

(9n + 10) − 6.

�
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