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1. Introduction

The function space Cα, α ∈ R (Dimovski [1]) is defined as follows

Definition 1.1. A real function f (x), x > 0 is said to be in space Cα, α ∈ R, if there exist a real number
p(> α), such that f (x) = xp f1(x) where f1(x) ∈ C[0,∞).

Clearly, Cα is a vector space and the set of spaces Cα is ordered by inclusion according to

Cα ⊂ Cδ ⇔ α ≥ δ.

Definition 1.2. A real function f (x), x > 0 is said to be in space Cm
α ,m ∈ N ∪ {0}, if f (m) ∈ Cα.
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The left-sided Riemann-Liouville fractional integral of order α, α > 0 (Kilbas et al. [2]) defined as

Iαt f (x, t) =
1

Γ(α)

t∫
0

(t − τ)α−1 f (x, τ) dτ, t > 0. (1.1)

The left sided Caputo partial fractional derivative of f with respect to t, f ∈ Cm
−1,m ∈ N∪{0} (Kilbas

et al. [2]) defined as

Dα
t f (x, t) =

 ∂m

∂tm f (x, t), (µ = m = 0),
Im−α
t

∂m

∂tm f (x, t) (m − 1 < α < m, m ∈ N).

Note that,

Iαt Dα
t f (x, t) = f (x, t) −

m−1∑
k=0

∂m f
∂tm (x, 0)

tk

k!
, m − 1 < α < m, m ∈ N,

Iαt tν =
Γ(ν + 1)

Γ(α + ν + 1)
tα+ν.

The composite fractional derivative of order α and β (Hilfer [3]) defined as

(D(α,β)y)(x) = (Iβ(n−α) dn

dxn (I(1−β)(n−α)y))(x), (1.2)

where x > 0, α, β ∈ R, n − 1 < α < n ∈ N and 0 ≤ β ≤ 1. The order β allows to interpolate
continuously from the Riemman-Liouville case D(α,0) = Dα to the Liouville-Caputo case D(α,1) = Dα

∗ .
The composite fractional derivative appeared in the theoretical modeling of broadband dielectric

relaxation spectroscopy for glasses (Hilfer [4]). Kachhia and Prajapati [5] used composite fractional
derivative to study heat transfer through diathermanous materials. Saxena et al. ( [6, 7]) obtained
analytical solution of some non-linear equations with composite fractional derivatives. Tomovski et
al. [8] studied fractional diffusion equation with composite fractional derivatives. Ali and Malik [9]
studied Hilfer fractional advection–diffusion using variational iteration method.

The composite fractional derivative (1.2) is not defined on the whole space Cγ (Hilfer et al. [10]).

Definition 1.3. A function y ∈ C−1 is said to be in the space Ω
µ
−1, if D(α,β)y ∈ C−1 for all 0 ≤ α ≤ µ, 0 ≤

β ≤ 1.

The following study (Hilfer et al. [10]) is useful for further study.

Theorem 1.4. If y ∈ Ωα
−1, n − 1 < α ≤ n ∈ N, then Riemann-Liouville fractional integral (1.1) of

composite fractional derivative (1.2) is given by

(Iαx D(α,β)y)(x) = y(x) − yα,β(x), x > 0,

where,

yα,β(x) =

n−1∑
k=0

xk−n+α−βα+βn

Γ(k − n + α − βα + βn + 1)
lim
x→0+

dk

dxk (I(1−β)(n−α)y)(x), x > 0.

The two parameter Mittag-Leffler function (Wiman [11]) defined as

Eα,β(z) =

∞∑
n=0

zn

Γ(αn + β)
, α, β ∈ C, Re(α) > 0 (1.3)

Generalized Mittag-Leffler functions are introduced by Shukla and Prajapati ( [12–14]).
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2. The new iterative method

Daftardar-Gejji and Jafari [15] have considered the following nonlinear functional equation

u(x̄, t) = f (x̄, t) + L(u(x̄, t)) + N(u(x̄, t)), (2.1)

where N is a nonlinear function and L is a linear function of u from a Banach space B → B and f is a
known function, x̄ = (x1, x2, ..., xn). Eq (2.1) is assumed to have a solution of the form

u =

∞∑
i=0

ui (2.2)

since L is linear,

L

 ∞∑
i=0

ui

 =

∞∑
i=0

L(ui)

the nonlinear operator N is decomposed (Daftardar-Gejji and Jafari [15]) as

N

 ∞∑
i=0

ui

 = N(u0) +

∞∑
i=1

N

 i∑
j=0

u j

 − N

 i−1∑
j=0

u j


 .

Equation (2.2) can be written as

∞∑
i=1

ui = f +

∞∑
i=0

L(ui) + N(u0) +

∞∑
i=1

N

 i∑
j=0

u j

 − N

 i−1∑
j=0

u j


 .

The recurrence relation is defined as
u0 = f

u1 = L(u0) + N(u0)

um+1 = L(um) + N(u0 + u1 + ... + um) − N(u0 + u1 + ... + um−1),m = 1, 2, ...

hence,
m+1∑
i=1

ui = L

 m∑
i=0

ui

 + N

 m∑
i=0

ui


and

∞∑
i=0

ui = L

 ∞∑
i=0

ui

 + N

 ∞∑
i=0

ui

 .
The k-term approximate solution of (2.1) is given by u = u0 + u1 + ... + uk−1.
Many applications of the iterative method are given by Bhalekar and Daftardar-Gejji [16] and

Daftardar-Gejji and Bhalekar [17].
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3. The generalized iterative method for fractional initial value problem with composite
fractional derivatives

We consider the following fractional initial value problem, for x̄ ∈ Rn

D(α,β)
t u(x̄, t) =

n∑
i=1

aiD
βi
x̄i

u(x̄, t) + A(u(x̄, t)), t > 0, m − 1 < α ≤ m, (3.1)

∂k

∂tk (I(1−β)(m−α)
t u(x̄, 0)) = hk(x̄), 0 ≤ k ≤ m − 1, m = 1, 2, ..., 1 < βi ≤ 2, (3.2)

where ai are constants, A(u) is non-linear function of u and hk are functions of x̄. Applying Iαt on (3.1)
and using (3.2) in the light of Theorem 1.4, we get

u(x̄, t) =

m−1∑
k=0

hk(x̄)
tk−m+α−βα+βm

Γ(k − m + α − βα + βm + 1)
+ Iαt

 n∑
i=1

aiD
βi
x̄i

u(x̄, t)

 + Iαt (A(u)). (3.3)

Equation (3.3) can be written as in the form (2.1) with

f =

m−1∑
k=0

hk(x̄)
tk−m+α−βα+βm

Γ(k − m + α − βα + βm + 1)
, L(u) = Iαt

 n∑
i=1

aiD
βi
x̄i

u(x̄, t)

 and N(u) = Iαt (A(u))

Now, the recurrence relation can be defined as

u0 = f

u1 = L(u0) + N(u0)

um+1 = L(um) + N(u0 + u1 + ... + um) − N(u0 + u1 + ... + um−1),m = 1, 2, ...

hence,
m+1∑
i=1

ui = L

 m∑
i=0

ui

 + N

 m∑
i=0

ui


and

∞∑
i=0

ui = L

 ∞∑
i=0

ui

 + N

 ∞∑
i=0

ui

 .
The k-term approximate solution of (2.1) is given by u = u0 + u1 + ... + uk−1.

Remark 3.1. Observed that by taking β = 1 in the modified iterative method, it reduces to the iterative
method given by Daftardar-Gejji and Jafari [15].

4. Concrete examples

Example 4.1. (Figure 1) Consider the time-fractional diffusion equation with composite fractional
derivative,

D(α,β)
t u(x, t) =

∂2u
∂x2 , t > 0, x ∈ R, 0 < α ≤ 1, 0 ≤ β ≤ 1, (4.1)

I(1−β)(1−α)
t u(x, 0) = e−x (4.2)
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This system of equations gives,

u(x, t) = e−x tα+β−αβ−1

Γ(α + β − αβ)
+ Iαt

(
∂2u
∂x2

)
.

In view of the new iterative method, we have

L(u) = Iαt

(
∂2u
∂x2

)
and N(u) = 0.

We get a recurrence relation

u0 = e−x tα+β−αβ−1

Γ(α + β − αβ)
,

u1 = L(u0) + N(u0) = e−x t2α+β−αβ−1

Γ(2α + β − αβ)
, ...

finally, we get

uk = e−x tkα+α+β−αβ−1

Γ(kα + α + β − αβ)
, k = 0, 1, 2, ...

Using definition of Mittag-Leffler function (1.3), the solution of (4.1) and (4.2) can be written as

u(x, t) = u0 + u1 + u2 + ... = e−xtα+β−αβ−1Eα,α+β−αβ(tα).

Figure 1. Example 4.1 with α = 0.932, β = 0.125.

Example 4.2. (Figure 2) Consider the time-fractional wave equation with composite fractional
derivative

D(α,β)
t u(x, t) = k

∂2u
∂x2 , t > 0, x ∈ R, 1 < α ≤ 2, 0 ≤ β ≤ 1, (4.3)

I(1−β)(2−α)
t u(x, 0) = x2 (4.4)
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and
d
dt

(I(1−β)(2−α)
t u(x, 0)) = 1 (4.5)

The above system of Eqs (4.3)–(4.5), leads to

u(x, t) = x2 tα+2β−αβ−2

Γ(α + 2β − αβ − 1)
+

tα+2β−αβ−1

Γ(α + 2β − αβ)
+ Iαt

(
k
∂2u
∂x2

)
Applying the new iterative method, we have

L(u) = Iαt

(
k
∂2u
∂x2

)
and N(u) = 0.

u0 = x2 tα+2β−αβ−2

Γ(α + 2β − αβ − 1)
+

tα+2β−αβ−1

Γ(α + 2β − αβ)

u1 = L(u0) + N(u0) = 2k
t2α+2β−αβ−1

Γ(2α + 2β − αβ − 1)
,

u2 = L(u1) + N(u0 + u1) − N(u0) = 0, u3 = 0, ...

We arrived at

u(x, t) = u0 + u1 + u2 + ... = x2 tα+2β−αβ−2

Γ(α + 2β − αβ − 1)
+

tα+2β−αβ−1

Γ(α + 2β − αβ)
+ 2k

t2α+2β−αβ−1

Γ(2α + 2β − αβ − 1)

Figure 2. Example 4.2 with α = 1.733, β = 0.259 and k = 3.

Example 4.3. (Figure 3) Consider the following time fractional Navier-Stokes equation (Chaurasia
and Kumar [18])

D(α,β)
t u(r, t) = 1 + µ

(
∂2u
∂r2 +

1
r
∂u
∂r

)
, t > 0, r ∈ R, 0 < α ≤ 1, 0 ≤ β ≤ 1, (4.6)

I(1−β)(1−α)
t u(x, 0) = R2 − r2 (4.7)
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This initial value problem can be written as

u(r, t) = (R2 − r2)
tα+β−αβ−1

Γ(α + β − αβ)
+ Iαt

(
µ

(
∂2u
∂r2 +

1
r
∂u
∂r

))
+

tα

Γ(α + 1)

The new iterative method algorithm gives,

L(u) = Iαt

(
µ

(
∂2u
∂r2 +

1
r
∂u
∂r

))
and N(u) = 0,

from which, we get

u0 = (R2 − r2)
tα+β−αβ−1

Γ(α + β − αβ)
+

tα

Γ(α + 1)
,

u1 = L(u0) + N(u0) = −4µ
t2α+β−αβ−1

Γ(2α + β − αβ)
+

tα

Γ(α + 1)
,

u2 = L(u1) + N(u0 + u1) − N(u0) = 0, u3 = 0, ....

here,

u(r, t) = u0 + u1 + u2 + .... = (R2 − r2)
tα+β−αβ−1

Γ(α + β − αβ)
− 4µ

t2α+β−αβ−1

Γ(2α + β − αβ)
+

tα

Γ(α + 1)

Figure 3. Example 4.3 with α = 0.657, β = 0.743, r = 2, R = 4 and µ = 3.

Example 4.4. (Figure 4) Consider the time-fractional diffusion equation with composite fractional
derivative

D(α,β)
t u(x, t) =

∂2u
∂x2 + 2u(x̄, t), t > 0, x ∈ R, 0 < α ≤ 1, 0 ≤ β ≤ 1, (4.8)

I(1−β)(1−α)
t u(x, 0) = sin x (4.9)

This system of equations reduces to

u(x, t) = sin x
tα+β−αβ−1

Γ(α + β − αβ)
+ Iαt

(
∂2u
∂x2

)
+ Iαt (2u). (4.10)

AIMS Mathematics Volume 5, Issue 4, 2888–2898.



2895

The new iterative method algorithm gives,

L(u) = Iαt

(
∂2u
∂x2 + 2u

)
and N(u) = 0.

In view of new iterative method, we get recurrence relation

u0 = sin x
tα+β−αβ−1

Γ(α + β − αβ)
,

u1 = L(u0) + N(u0) = sin x
t2α+β−αβ−1

Γ(2α + β − αβ)
,

u2 = L(u1) + N(u0 + u1) − N(u0) = sin x
t3α+β−αβ−1

Γ(3α + β − αβ)
, ...

this leads to

uk = sin x
tkα+α+β−αβ−1

Γ(kα + α + β − αβ)
, k = 0, 1, 2, ...

Using definition of Mittag-Leffler function (1.3), the solution of (4.8) is

u(x, t) = u0 + u1 + u2 + ... = sin x tα+β−αβ−1Eα,α+β−αβ(tα). (4.11)

Figure 4. Example 4.4 with α = 0.357, β = 0.715.

Example 4.5. (Figure 5) Consider the non-linear time-fractional wave equation with composite
fractional derivative

D(α,β)
t u(x, t) =

∂2u
∂x2 + 2(u(x, t))2, t > 0, x ∈ R, 1 < α ≤ 2, 0 ≤ β ≤ 1, (4.12)

I(1−β)(1−α)
t u(x, 0) = 0,

d
dt

(I(1−β)(1−α)
t u(x, 0)) = x2 (4.13)
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This system of equations reduces to

u(x, t) = x2 tα+2β−αβ−1

Γ(α + 2β − αβ)
+ Iαt

(
∂2u
∂x2

)
+ Iαt (2u2). (4.14)

In view of new iterative method, we have

L(u) = Iαt

(
∂2u
∂x2

)
and N(u) = Iαt (2u2).

We get recurrence relation

u0 = x2 tα+2β−αβ−1

Γ(α + 2β − αβ)
,

L(u0) = Iαt

(
x2 tα+2β−αβ−1

Γ(α + 2β − αβ)

)
= 2

t2α+2β−αβ−1

Γ(2α + 2β − αβ)
,

N(u0) = Iαt (2u2
0) = Iαt

(
2x4 t2α+4β−2αβ−2

(Γ(α + 2β − αβ))2

)
=

2x4Γ(2α + 4β − 2αβ − 1)t3α+4β−2αβ−2

(Γ(α + 2β − αβ))2Γ(3α + 4β − 2αβ − 1)
,

we get

u1 = L(u0) + N(u0) =
2t2α+2β−αβ−1

Γ(2α + 2β − αβ)
+

2x4Γ(2α + 4β − 2αβ − 1)t3α+4β−2αβ−2

(Γ(α + 2β − αβ))2Γ(3α + 4β − 2αβ − 1)
,

this leads to

u(x, t) = u0 + u1

=
x2tα+2β−αβ−1

Γ(α + 2β − αβ)
+

2t2α+2β−αβ−1

Γ(2α + 2β − αβ)
+

2x4Γ(2α + 4β − 2αβ − 1)t3α+4β−2αβ−2

(Γ(α + 2β − αβ))2Γ(3α + 4β − 2αβ − 1)

is a two term solution of (4.12)–(4.13).

Figure 5. Example 4.5 with α = 1.57, β = 0.65.
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5. Conclusions

The generalized iterative method for solving functional equations with composite fractional
derivatives has been derived. Examples deal with linear and nonlinear fractional differential equations
with composite fractional derivative operator viz. heat equation, wave equation and Navier-Stokes
equation. This method is also applicable for computer algorithms. We obtained the solution of linear
and non linear differential equations in form of convergent series without any type of conventions.
This method is also works well when the solution for integer order is not known. The behavior of
solutions of the fractional differential equation were provided graphically as well. MATLAB is useful
too for computations in this paper. Hence we ensured that present algorithm is reliable and powerful
for obtaining solutions for different classes of linear and nonlinear fractional differential equations
with composite fractional derivatives.
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