In this paper, we are concerned with the study of the existence and uniqueness of fixed points for the class of functions $ f: C\to C $ satisfying the inequality
$ \ell\left(\alpha f(t)+(1-\alpha)f(s)\right)\leq \sigma \ell(\alpha t+(1-\alpha)s) $
for every $ t, s\in C $ with $ f(t)\neq f(s) $, where $ C $ is a closed subset of $ [0, \infty) $, $ \alpha, \sigma\in (0, 1) $ are constants, and $ \ell: [0, \infty)\to [0, \infty) $ is a function satisfying the condition $ \inf_{t > 0} \frac{\ell(t)}{t^\rho} > 0 $ for some constant $ \rho > 0 $. Namely, under a weak continuity condition imposed on $ f $, we show that $ f $ possesses a unique fixed point, and for every $ t_0\in C $, the Picard sequence defined by $ t_{n+1} = f(t_n) $, $ n\geq 0 $, converges to this fixed point. Next, we study the special cases when $ C $ is a closed interval and $ \ell $ is a convex or concave function. Namely, making use of the Hermite-Hadamard inequalities, we obtain several new fixed point theorems. To the best of our knowledge, the considered class of functions was never previously investigated in the literature.
Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. A fixed point theorem for non-negative functions[J]. AIMS Mathematics, 2024, 9(10): 29018-29030. doi: 10.3934/math.20241408
In this paper, we are concerned with the study of the existence and uniqueness of fixed points for the class of functions $ f: C\to C $ satisfying the inequality
$ \ell\left(\alpha f(t)+(1-\alpha)f(s)\right)\leq \sigma \ell(\alpha t+(1-\alpha)s) $
for every $ t, s\in C $ with $ f(t)\neq f(s) $, where $ C $ is a closed subset of $ [0, \infty) $, $ \alpha, \sigma\in (0, 1) $ are constants, and $ \ell: [0, \infty)\to [0, \infty) $ is a function satisfying the condition $ \inf_{t > 0} \frac{\ell(t)}{t^\rho} > 0 $ for some constant $ \rho > 0 $. Namely, under a weak continuity condition imposed on $ f $, we show that $ f $ possesses a unique fixed point, and for every $ t_0\in C $, the Picard sequence defined by $ t_{n+1} = f(t_n) $, $ n\geq 0 $, converges to this fixed point. Next, we study the special cases when $ C $ is a closed interval and $ \ell $ is a convex or concave function. Namely, making use of the Hermite-Hadamard inequalities, we obtain several new fixed point theorems. To the best of our knowledge, the considered class of functions was never previously investigated in the literature.
[1] | H. Aydi, M. Jleli, B. Samet, On positive solutions for a fractional thermostat model with a convex-concave source term via $\psi$-Caputo fractional derivative, Mediterr. J. Math., 17 (2020), 16. https://doi.org/10.1007/s00009-019-1450-7 doi: 10.1007/s00009-019-1450-7 |
[2] | A. Coronel, A. Tello, F. Huancas, M. Rojas-Medar, Application of Tikhonov fixed point theorem to analyze an inverse problem for a bioconvective flow model, J. Fixed Point Theory Appl., 25 (2023), 75. https://doi.org/10.1007/s11784-023-01079-3 doi: 10.1007/s11784-023-01079-3 |
[3] | M. Taleb, V. C. Borkar, Application of fixed point theorems in triple bipolar controlled metric space to solve cantilever beam problem, J. Math. Anal. Appl., 533 (2024), 127998. https://doi.org/10.1016/j.jmaa.2023.127998 doi: 10.1016/j.jmaa.2023.127998 |
[4] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[5] | D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Am. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 |
[6] | S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., 4 (1971), 1–11. |
[7] | S. Reich, Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124. https://doi.org/10.4153/CMB-1971-024-9 doi: 10.4153/CMB-1971-024-9 |
[8] | L. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/S0002-9939-1974-0356011-2 doi: 10.1090/S0002-9939-1974-0356011-2 |
[9] | I. A. Rus, Generalized contractions and applications, Cluj Univ. Press, 2001. |
[10] | J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal., 71 (2009), 3403–3410. https://doi.org/10.1016/j.na.2009.01.240 doi: 10.1016/j.na.2009.01.240 |
[11] | V. Berinde, M. Pǎcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 1–10. https://doi.org/10.1007/s11784-020-0769-9 doi: 10.1007/s11784-020-0769-9 |
[12] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11. |
[13] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math.-Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133 |
[14] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex A., 7 (2006), 289–297. |
[15] | D. Ilić, V. Pavlović, V. Rakočević, Some new extensions of Banach's contraction principle to partial metric space, Appl. Math. Lett., 24 (2011), 1326–1330. https://doi.org/10.1016/j.aml.2011.02.025 doi: 10.1016/j.aml.2011.02.025 |
[16] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fix. Point Theory A., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[17] | M. Berzig, First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022), 1–18. https://doi.org/10.1007/s00009-022-02148-6 doi: 10.1007/s00009-022-02148-6 |
[18] | V. Ozturk, S. Radenović, Hemi metric spaces and Banach fixed point theorem, Appl. Gen. Topol., 25 (2024), 175–181. https://doi.org/10.4995/agt.2024.19780 doi: 10.4995/agt.2024.19780 |
[19] | H. Qawaqneh, H. A. Hammad, H. Aydi, Exploring new geometric contraction mappings and their applications in fractional metric spaces, AIMS Math., 9 (2024), 521–541. https://doi.org/10.3934/math.2024028 doi: 10.3934/math.2024028 |
[20] | D. Guo, Y. J. Cho, J. Zhu, Partial ordering methods in nonlinear problems, Nova Science, New York, 2004. |
[21] | D. Guo, V. Lakshimikantham, Nonlinear problems in abstract cones, Academic Press, New York, 1988. |
[22] | D. Guo, Existence and uniqueness of positive fixed point for mixed monotone operators with applications, Appl. Anal., 46 (1992), 91–100. https://doi.org/10.1080/00036819208840113 doi: 10.1080/00036819208840113 |
[23] | Z. Zhao, X. Du, Fixed points of generalized e-concave generalized e-convex operators and their applications, J. Math. Anal. Appl., 334 (2007), 1426–1438. https://doi.org/10.1016/j.jmaa.2006.09.082 doi: 10.1016/j.jmaa.2006.09.082 |
[24] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities, RGMIA Monographs, Victoria University, 2000. |