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1. Introduction

A distance function or a metric on a set Q is a mapping δ : Q × Q→ [0,∞) satisfying the axioms:

(i) δ(u, v) = 0 if and only if u = v,
(ii) δ(u, v) = δ(v, u),

(iii) δ(u, v) ≤ δ(u,w) + δ(w, v) (triangle inequality)

for every u, v,w ∈ Q. If δ is a metric on Q, then the pair (Q, δ) is called a metric space. Metric spaces
constitute a fundamental notion in various mathematical disciplines such as geometry, topology, and
analysis. Moreover, metric spaces are used in many applications such as the design of approximation
algorithms, neuroscience, image restoration, and medical image classification (see, e.g., [1–3]).
However, in some applications, one of the axioms (i)–(iii) is not appropriate. For instance, in
denotational semantic, the metric space topology is not appropriate (see, e.g., [4]). This fact motivated
many researchers to propose various concepts generalizing the notion of metric spaces. For instance,
Smyth [5] generalized the metric notion by dropping the symmetry condition (ii). Matthews [4]
introduced the notion of partial metric spaces, where the distance of an element to itself may not
be zero. Mustafa and Sims [6] introduced the notion of G-metric spaces, where G : Z×Z×Z → [0,∞)
is a mapping satisfying certain axioms. The literature includes many other interesting extensions of
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the notion of metric spaces such as almost metric spaces [9], rectangular metric spaces [8], b-metric
spaces [9, 10], suprametric spaces [11], F-metric spaces [12], and hemi metric spaces [13]. We also
refer to the monograph [14] that contains several fixed point results in various generalized metric
spaces.

Fixed point theory is one of the most important topics in pure and applied mathematics. Indeed,
the question of existence of solutions to a nonlinear problem is often reduced to a fixed point problem.
For some recent applications of fixed point theory, see, e.g., [15–17]. One of the widely used theorems
in the study of existence results for nonlinear problems is the Banach contraction principle [18]. This
theorem can be stated as follows: Let (Q, δ) be a complete metric space and F : Q→ Q be a mapping
such that

δ(Fu, Fv) ≤ κδ(u, v) (1.1)

for every u, v ∈ Q, where κ ∈ (0, 1) is a constant. Then, F admits one and only one fixed
point. Moreover, for every w0 ∈ Q, the Picard sequence {Fnw0} converges to this unique fixed
point. A mapping F satisfying (1.1) is called a contraction. The literature includes several
generalizations and extensions of Banach’s contraction principle. We can classify these generalizations
and extensions into two major categories. The first one is concerned with weakening the contractive
nature of the mapping such as Kannan’s contraction [19], quasi-contractions [20], Meir-Keeler-type
contractions [21,22], contractions involving simulation functions [23,24], (α, ψ)-contractions [25,26],
(ψ, ϕ)-weak contractions [27, 28], (CAB) contractions [29], and mappings contracting the perimeter
of a triangle [30]. We also refer to [31] for various types of contractions. The second category is
concerned with the study of fixed points when the underlying space is equipped with a generalized
metric, see, e.g., the above mentioned references related to generalized metric spaces and [32].

Hyperbolic functions arise in many applications of mathematics, physics, chemistry, and
engineering. Motivated by this fact and the above cited contributions, we introduce in this paper the
notion of θ-hyperbolic sine distance functions associated to a certain metric, where θ : [0,∞)→ [0,∞)
satisfies the condition

θ(r) ≥ crτ (1.2)

for all r ≥ 0, for some constants c, τ > 0. Namely, given a metric space (Q, δ), the mapping δθ :
Q × Q → [0,∞) defined by δθ(u, v) = θ(sinh(δ(u, v))) for all u, v ∈ Q, is called the θ-hyperbolic sine
distance function associated to the metric δ. In this work, we establish several properties of δθ and new
fixed point results for mappings F : Q → Q satisfying contractions involving the θ-hyperbolic sine
distance function.

In Section 2, we introduce the concept of θ-hyperbolic sine distance functions and establish several
properties. In Section 3, we consider two classes of mappings F : Q → Q, where (Q, δ) is a complete
metric space. Namely, we first consider the class of mappings F satisfying

δθ(Fu, Fv) ≤ κδθ(u, v)

for all u, v ∈ Q with Fu , Fv, where κ ∈ (0, 1) is a constant. We next consider the class of mappings
F satisfying

δθ(Fu, Fv) ≤ η(δθ(u, v))

for all u, v ∈ Q with Fu , Fv, where η : [0,∞) → [0,∞) is a (c)-comparison function and θ

satisfies (1.2) with τ = 1. For both classes, we investigate the existence and uniqueness of fixed
points. In Section 4, an application to integral equations is provided.
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Throughout this paper, the following notations will be used. By Q, we mean an arbitrary nonempty
set. For a mapping F : Q→ Q, we denote by {Fn} the sequence of mappings Fn : Q→ Q defined by

F0 = IQ (the identity mapping), Fn+1 = F ◦ Fn, n ≥ 0.

We denote by Fix(F) the set of fixed points of F, that is,

Fix(F) = {u ∈ Q : Fu = u}.

Similarly, for η : [0,∞)→ [0,∞), we denote by {ηn} the sequence of functions ηn : Q→ Q defined by

η0 = I[0,∞), η
n+1 = η ◦ ηn, n ≥ 0.

2. θ-hyperbolic sine distance functions

In this section, we introduce the notion of θ-hyperbolic sine distance functions.
For all τ > 0, we denote by Θτ the set of functions θ : [0,∞)→ [0,∞) satisfying the condition

θ(r) ≥ crτ, (2.1)

for all r ≥ 0, where c > 0 is a constant.

Definition 2.1. Let (Q, δ) be a metric space. For all τ > 0 and θ ∈ Θτ, we define the mapping
δθ : Q × Q→ [0,∞) by

δθ(u, v) = θ(sinh(δ(u, v))), u, v ∈ Q,

where sinh is the hyperbolic sine function defined by

sinh r =
er − e−r

2
, r ∈ R.

The mapping δθ is called the θ-hyperbolic sine distance function associated to the metric δ.

Some properties of the θ-hyperbolic sine distance function are provided below.

Proposition 2.1. Let (Q, δ) be a metric space and θ ∈ Θτ for some τ > 0. Then, for all u, v ∈ Q, we
have

(i) δθ(u, v) = 0 =⇒ u = v.
(ii) If θ(0) = 0, then δθ(u, u) = 0.

(iii) δθ(u, v) = δθ(v, u).

Proof. (i) Let u, v ∈ Q be such that δθ(u, v) = 0, that is, θ(sinh(δ(u, v)) = 0. Then, by (2.1), we have

0 = θ(sinh(δ(u, v))) ≥ c[sinh(δ(u, v))]τ,

which implies that sinh(δ(u, v)) = 0, that is, δ(u, v) = 0. Since δ is a metric on Q, it holds that u = v,
which proves (i).
(ii) If θ(0) = 0, then

δθ(u, u) = θ(sinh(δ(u, u)))
= θ(sinh(0))
= θ(0)
= 0,
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which shows (ii).
(iii) is obvious. �

We point out that a θ-hyperbolic sine distance function is not necessarily a metric, even if θ(0) = 0.
The following example shows this fact.

Example 2.1. Let Q = R and δ(u, v) = |u − v| for all u, v ∈ Q. Let θ(r) = r for all r ≥ 0. Then, θ ∈ Θ1.
The θ-hyperbolic sine distance function associated to the metric δ is defined by

δθ(u, v) = θ(sinh(|u − v|))

for all u, v ∈ Q. On the other hand, for all n ≥ 0, we have

δθ(0, 2n)
δθ(0, n) + δθ(n, 2n)

=
θ(sinh(2n))

θ(sinh(n)) + θ(sinh(n))

=
sinh(2n)
2 sinh n

=
en + e−n

2
→ ∞ as n→ ∞,

which shows that δθ does not satisfy the triangle inequality. Consequently, δθ is not a metric on Q.

Proposition 2.2. Let (Q, δ) be a metric space.

(i) Let δθ be the θ-hyperbolic sine distance function associated to δ, where θ ∈ Θτ for some τ > 0.
Then, for all ι > 0, we have

ιδθ = δθι ,

where θι = ιθ.
(ii) Let θ1, θ2 ∈ Θτ for some τ > 0. Then,

δθ1 + δθ2 = δθ,

where θ = θ1 + θ2.

Proof. (i) Let ι > 0. Since θ ∈ Θτ, then θι ∈ Θτ, and

ιδθ(u, v) = ιθ(sinh(δ(u, v)))
= θι(sinh(δ(u, v)))
= δθι(u, v)

for all u, v ∈ Q, which proves (i).
(ii) Notice that since θ1, θ2 ∈ Θτ, then for all r ≥ 0, we have

θ(r) = θ1(r) + θ2(r)
≥ c1rτ + c2rτ

= (c1 + c2)rτ,
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where c1, c2 > 0 are constants, which shows that θ ∈ Θτ. Then, for all u, v ∈ Q, we have(
δθ1 + δθ2

)
(u, v) = δθ1(u, v) + δθ2(u, v)

= θ1(sinh(δ(u, v))) + θ2(sinh(δ(u, v)))
= (θ1 + θ2)(sinh(δ(u, v)))
= θ(sinh(δ(u, v)))
= δθ(u, v),

which proves (ii). �

Proposition 2.3. Let θ ∈ Θτ for some τ > 0. Assume that the following conditions hold:

(i) θ(0) = 0.
(ii) There exists r∗ > 0 such that

θ(sinh r∗) = r∗.

Then, for every nonempty set Q, there exists a metric δ on Q such that the θ-hyperbolic sine distance
function associated to δ coincides with δ, i.e., δθ = δ.

Proof. Let Q be an arbitrary nonempty set. We introduce the mapping δ : Q × Q→ [0,∞) defined by

δ(u, v) =

 r∗ if u , v,

0 if u = v

for all u, v ∈ Q. Since r∗ > 0, then δ is a metric on Q. Furthermore, using (i) and (ii), we obtain that
for all u, v ∈ Q,

δθ(u, v) =θ(sinh(δ(u, v)))

=

 θ(sinh r∗) if u , v,

θ(sinh 0) if u = v

=

 r∗ if u , v,

θ(0) if u = v

=

 r∗ if u , v,

0 if u = v

= δ(u, v),

which proves that δθ = δ. �

Example 2.2. Let us consider the function θ : [0,∞)→ [0,∞) defined by

θ(r) = r2, r ≥ 0.

Then, θ ∈ Θ2 and θ(0) = 0. On the other hand, we have

θ

(
sinh

1
2

)
−

1
2

= sinh2 1
2
−

1
2
≈ −0.22845968259
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and
θ (sinh 1) − 1 = sinh2 1 − 1 ≈ 0.3810.

Since θ
(
sinh 1

2

)
− 1

2 < 0, θ (sinh 1)−1 > 0, and the function r 7→ θ(sinh r)−r is continuous on [1
2 , 1], we

deduce from the intermediate value theorem that there exists r∗ ∈ ( 1
2 , 1) such that θ(sinh r∗) − r∗ = 0.

Then, Proposition 2.3 applies.

3. Fixed point results

In this section, we study the existence and uniqueness of fixed points for some classes of single-
valued mappings defined on (Q, δθ), where δθ is a θ-hyperbolic sine distance function associated to a
metric δ.

3.1. The class of θ-hyperbolic contractions

In this subsection, we are concerned with the following class of mappings.

Definition 3.1. Let (Q, δ) be a metric space and θ ∈ Θτ for some τ > 0. A mapping F : Q → Q is
called a θ-hyperbolic contraction on Q, if there exists κ ∈ (0, 1) such that

δθ(Fu, Fv) ≤ κδθ(u, v) (3.1)

for all u, v ∈ Q with Fu , Fv.

Our first main result is the following fixed point theorem.

Theorem 3.1. Let (Q, δ) be a complete metric space and θ ∈ Θτ for some τ > 0. Let F : Q → Q be a
mapping such that

(I) F is a θ-hyperbolic contraction on Q.
(II) For all u, v ∈ Q, if lim

n→∞
δ(Fnu, v) = 0, then there exists a subsequence {Fnku} of {Fnu} such that

lim
k→∞

δ(F(Fnku), Fv) = 0.

Then, F possesses one and only one fixed point. Moreover, for all w0 ∈ Q, the sequence {Fnw0}

converges to this unique fixed point.

Proof. We first prove that Fix(F) , ∅. For an arbitrary w0 ∈ Q, let {wn} ⊂ Q be the Picard sequence
defined by

wn = Fnw0, n ≥ 0.

If wm = wm+1 for some m ≥ 0, then wm ∈ Fix(F). So, we may assume that wn , wn+1 for all n ≥ 0.
Then, using (3.1) with (u, v) = (w0,w1) (since Fw0 , Fw1), we get

δθ(Fw0, Fw1) ≤ κδθ(w0,w1),

that is,
δθ(w1,w2) ≤ κδθ(w0,w1). (3.2)

Using again (3.1) with (u, v) = (w1,w2), we obtain

δθ(Fw1, Fw2) ≤ κδθ(w1,w2),
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that is,
δθ(w2,w3) ≤ κδθ(w1,w2). (3.3)

Then, it follows from (3.2) and (3.3) that

δθ(w2,w3) ≤ κ2δθ(w0,w1).

Continuing in the same way, we obtain by induction that

δθ(wn,wn+1) ≤ κnδθ(w0,w1), n ≥ 0,

which is equivalent to
θ(sinh(δ(wn,wn+1))) ≤ κnδθ(w0,w1), n ≥ 0. (3.4)

On the other hand, by (2.1), we have

θ(sinh(δ(wn,wn+1))) ≥ c[sinh(δ(wn,wn+1))]τ, n ≥ 0. (3.5)

Furthermore, making use of the elementary inequality

sinh r
r

> 1, r > 0,

we get
c[sinh(δ(wn,wn+1))]τ > cδτ(wn,wn+1), n ≥ 0. (3.6)

Thus, in view of (3.4)–(3.6), we obtain

δ(wn,wn+1) ≤
[
δθ(w0,w1)

c

] 1
τ (
κ

1
τ

)n
, n ≥ 0. (3.7)

Then, using (3.7) and the triangle inequality, we obtain that for all n ≥ 0 and m ≥ 1,

δ(wn,wn+m) ≤ δ(wn,wn+1) + · · · + δ(wn+m−1,wn+m)

≤

[
δθ(w0,w1)

c

] 1
τ ((

κ
1
τ

)n
+ · · · +

(
κ

1
τ

)n+m−1
)

=

[
δθ(w0,w1)

c

] 1
τ 1 −

(
κ

1
τ

)m

1 − κ
1
τ

(
κ

1
τ

)n

≤

[
δθ(w0,w1)

c

] 1
τ 1

1 − κ
1
τ

(
κ

1
τ

)n
→ 0 as n→ ∞.

Consequently, {wn} is a Cauchy sequence in the complete metric space (Q, δ). Thus, there exists w̄ ∈ Q
such that

lim
n→∞

δ(Fnw0, w̄) = lim
n→∞

δ(wn, w̄) = 0. (3.8)

Hence, by (II), there exists a subsequence {Fnkw0} of {Fnw0} such that

lim
k→∞

δ(F(Fnkw0), Fw̄) = 0,
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that is,
lim
k→∞

δ(Fnk+1w0, Fw̄) = 0. (3.9)

Then, in view of (3.8) and (3.9), it holds that w̄ ∈ Fix(F).
We now show that Fix(F) = {w̄}. Indeed, if z̄ ∈ Fix(F) and w̄ , z̄ (or, equivalently, Fw̄ , Fz̄), then,

using (3.1) with (u, v) = (w̄, z̄), we get

δθ(Fw̄, Fz̄) ≤ κδθ(w̄, z̄),

that is,
δθ(w̄, z̄) ≤ κδθ(w̄, z̄).

On the other hand, since w̄ , z̄, then by Proposition 2.1 (i), we have δθ(w̄, z̄) > 0. Thus, dividing the
above inequality by δθ(w̄, z̄), we reach a contradiction with κ ∈ (0, 1). Consequently, w̄ is the unique
fixed point of F. This completes the proof of Theorem 3.1. �

Clearly, if F is continuous, then condition (II) of Theorem 3.1 is satisfied. Hence, we deduce from
Theorem 3.1 the following result.

Corollary 3.1. Let (Q, δ) be a complete metric space and θ ∈ Θτ for some τ > 0. Let F : Q→ Q be a
mapping such that

(I) F is a θ-hyperbolic contraction on Q.
(II) F is continuous.

Then, F possesses one and only one fixed point. Moreover, for all w0 ∈ Q, the sequence {Fnw0}

converges to this unique fixed point.

3.2. The class of (θ, η)-hyperbolic contractions

We recall below the notion of (c)-comparison functions, see, e.g., [31].

Definition 3.2. A (c)-comparison function is a function η : [0,∞)→ [0,∞) satisfying the properties:

(C1) η is nondecreasing.
(C2) For all t > 0, we have

∑
n≥0

ηn(t) < ∞.

Remark 3.1. It can be easily seen that, if η is a (c)-comparison function, then

(i) For all t > 0, we have lim
n→∞

ηn(t) = 0.
(ii) For all t > 0, we have η(t) < t.

(iii) η(0) = 0.

Example 3.1. A standard example of (c)-comparison functions, is the function

η(t) = `t, t ≥ 0,

where ` ∈ (0, 1) is a constant.
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Example 3.2. Let η be the function defined by

η(t) = a arctan t, t ≥ 0,

where a ∈ (0, 1) is a constant. Then, η is a (c)-comparison function.

We now consider the following class of mappings.

Definition 3.3. Let (Q, δ) be a metric space, θ ∈ Θ1, and η be a (c)-comparison function. A mapping
F : Q→ Q is called a (θ, η)-hyperbolic contraction on Q, if

δθ(Fu, Fv) ≤ η(δθ(u, v)) (3.10)

for all u, v ∈ Q with Fu , Fv.

We have the following fixed point result.

Theorem 3.2. Let (Q, δ) be a complete metric space, θ ∈ Θ1, and η be a (c)-comparison function. Let
F : Q→ Q be a mapping such that

(I) F is a (θ, η)-hyperbolic contraction on Q.
(II) For all u, v ∈ Q, if lim

n→∞
δ(Fnu, v) = 0, then there exists a subsequence {Fnku} of {Fnu} such that

lim
k→∞

δ(F(Fnku), Fv) = 0.

Then, F possesses one and only one fixed point. Moreover, for all w0 ∈ Q, the sequence {Fnw0}

converges to this unique fixed point.

Proof. Let us show that Fix(F) , ∅. For an arbitrary w0 ∈ Q, let {wn} ⊂ Q be the Picard sequence
defined by

wn = Fnw0, n ≥ 0.

Without restriction of the generality, we may assume that wn , wn+1 for all n ≥ 0 (otherwise, there
exists m ≥ 0 such that wm ∈ Fix(F)). Then, using (3.10) with (u, v) = (w0,w1), we get

δθ(Fw0, Fw1) ≤ η (δθ(w0,w1)) ,

that is,
δθ(w1,w2) ≤ η (δθ(w0,w1)) .

Since η is a nondecreasing function, the above inequality yields

η (δθ(w1,w2)) ≤ η2 (δθ(w0,w1)) . (3.11)

Using again (3.10) with (u, v) = (w1,w2), we obtain

δθ(Fw1, Fw2) ≤ η (δθ(w1,w2)) ,

that is,
δθ(w2,w3) ≤ η (δθ(w1,w2)) . (3.12)
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Then, it follows from (3.11) and (3.12) that

δθ(w2,w3) ≤ η2 (δθ(w0,w1)) .

Continuing in the same way, it holds by induction that

δθ(wn,wn+1) ≤ ηn (δθ(w0,w1)) , n ≥ 0,

which is equivalent to
θ(sinh(δ(wn,wn+1))) ≤ ηn (δθ(w0,w1)) , n ≥ 0. (3.13)

On the other hand, since θ ∈ Θ1, by (2.1) (with τ = 1), we have

θ(sinh(δ(wn,wn+1))) ≥ c sinh(δ(wn,wn+1)), n ≥ 0. (3.14)

Then, it follows from (3.6) (with τ = 1), (3.13), and (3.14) that

δ(wn,wn+1) ≤
1
c
ηn (δθ(w0,w1)) , n ≥ 0. (3.15)

Then, by (3.15) and using the triangle inequality, for all n ≥ 0 and m ≥ 1, we get

δ(wn,wn+m) ≤
n+m−1∑

i=n

δ(wi,wi+1)

≤
1
c

n+m−1∑
i=n

ηi (δθ(w0,w1))

≤
1
c

∞∑
i=n

ηi (δθ(w0,w1)) .

(3.16)

On the other hand, since
∑
i≥0

ηi (δθ(w0,w1)) < ∞, it holds that

lim
n→∞

∞∑
i=n

ηi (δθ(w0,w1)) = 0. (3.17)

Hence, in view of (3.16) and (3.17), we obtain that {wn} is a Cauchy sequence in the complete metric
space (Q, δ). Thus, there exists w̄ such that

lim
n→∞

δ(wn, w̄) = 0.

Proceeding as in the proof of Theorem 3.1, we obtain by (II) that w̄ ∈ Fix(F).
Suppose now that z̄ ∈ Fix(F) and z̄ , w̄. Then, using (3.10) with (u, v) = (w̄, z̄), we get

δθ(Fw̄, Fz̄) ≤ η(δθ(w̄, z̄)),

that is,
δθ(w̄, z̄) ≤ η(δθ(w̄, z̄)). (3.18)
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Notice that form Proposition 2.1 (i), one has (since z̄ , w̄) δθ(w̄, z̄) > 0. Then, by Remark 3.1 (ii), we
get

η(δθ(w̄, z̄)) < δθ(w̄, z̄),

which contradicts (3.18). Consequently, w̄ is the unique fixed point of F. The proof of Theorem 3.2 is
then completed. �

From Theorem 3.2, we deduce the following result.

Corollary 3.2. Let (Q, δ) be a complete metric space, θ ∈ Θ1, and η be a (c)-comparison function. Let
F : Q→ Q be a mapping such that

(I) F is a (θ, η)-hyperbolic contraction on Q.
(II) F is continuous.

Then, F possesses one and only one fixed point. Moreover, for all w0 ∈ Q, the sequence {Fnw0}

converges to this unique fixed point.

Example 3.3. Let Q = {q1, q2, q3} and δ be the metric on Q defined by

δ(qi, qi) = 0, δ(qi, q j) = δ(q j, qi), i, j ∈ {1, 2, 3}

and
δ(q1, q2) = 1, δ(q1, q3) = 4, δ(q2, q3) = 5.

Notice that δ satisfies the triangle inequality. Indeed, we have

δ(q1, q2) = 1 < 4 = δ(q1, q3) < δ(q1, q3) + δ(q3, q2),

δ(q1, q3) = 4 < 5 = δ(q2, q3) < δ(q1, q2) + δ(q2, q3),

and
δ(q2, q3) = 5 = δ(q2, q1) + δ(q1, q3).

Consequently, (Q, δ) is a metric space.
Consider the mapping F : Q→ Q defined by

Fq1 = q1, Fq2 = q3, Fq3 = q1.

We point out that F is not a contraction in the sense of Banach. Indeed, we have

δ(Fq1, Fq2) = δ(q1, q3) = 4 > 1 = δ(q1, q2).

We now introduce the mapping θ : [0,∞)→ [0,∞) defined by

θ(r) =



7r
sinh 1

if 0 ≤ r ≤ sinh 1,

2r
sinh 4

if sinh 1 < r ≤ sinh 4,

5r
sinh 5

if r > sinh 4.
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It can be easily seen that

θ(r) ≥
5

sinh 5
r, r ≥ 0,

which shows that θ ∈ Θ1. Furthermore, we have

δθ(Fq1, Fq2) = δθ(q1, q3) = θ(sinh(δ(q1, q3))) = θ(sinh 4) = 2

and
δθ(q1, q2) = θ(sinh(δ(q1, q2))) = θ(sinh 1) = 7,

which shows that
δθ(Fq1, Fq2)
δθ(q1, q2)

=
2
7
. (3.19)

We also have
δθ(Fq2, Fq3) = δθ(q3, q1) = θ(sinh(δ(q1, q3))) = θ(sinh 4) = 2

and
δθ(q2, q3) = θ(sinh(δ(q2, q3))) = θ(sinh 5) = 5,

which shows that
δθ(Fq2, Fq3)
δθ(q2, q3)

=
2
5
. (3.20)

Thus, from (3.19) and (3.20), we deduce that

δθ(Fqi, Fq j) ≤ κδθ(qi, Fq j), (i, j) ∈ {(1, 2), (2, 1), (2, 3), (3, 2)},

for all κ ∈
[

2
5 , 1

)
. This shows that F is a θ-hyperbolic contraction on Q. Then, condition (I) of

Theorem 3.1 is satisfied. Notice also that for all n ≥ 2, we have

Fnqi = q1, i ∈ {1, 2, 3},

which shows that condition (II) of Theorem 3.1 is satisfied. Consequently, Theorem 3.1 applies. On
the other hand, we have Fix(F) = {q1}, which confirms Theorem 3.1.

4. An application to integral equations

In this section, making use of Theorem 3.1, we study the existence and uniqueness of solutions to
the nonlinear integral equation

u(t) =

∫ 1

0
ξ(t, u(s)) ds, 0 ≤ t ≤ 1, (4.1)

where ξ : [0, 1] × R→ R is a given function.
The following lemma will be used later (see, e.g., [33]).

Lemma 4.1. (Jensen’s inequality) Let h : [a, b] → R be continuous and f : [c, d] → R be a convex
function such that h([a, b]) ⊂ [c, d]. Then,

f
(

1
b − a

∫ b

a
h(t) dt

)
≤

1
b − a

∫ b

a
f (h(t)) dt.
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We denote by C([0, 1]) the space of real-valued continuous functions on [0, 1]. We have the
following result.

Theorem 4.1. Assume that the following conditions hold:

(i) The function ξ is continuous on [0, 1] × R.
(ii) There exists a constant κ ∈ (0, 1) such that

sinh (|ξ(t, z) − ξ(t,w)|) ≤ κ sinh (|z − w|)

for all t ∈ [0, 1] and z,w ∈ R.

Then,

(I) Equation (4.1) admits one and only one solution u∗ ∈ C([0, 1]).
(II) For every u0 ∈ C([0, 1]), the sequence {un} ⊂ C([0, 1]) defined by

un+1(t) =

∫ 1

0
ξ(t, un(s)) ds, 0 ≤ t ≤ 1,

converges uniformly to u∗.

Proof. Let Q = C([0, 1]) and δ be the metric on Q defined by

δ(u, v) = max
0≤t≤1
|u(t) − v(t)|, u, v ∈ Q.

It is well known that (Q, δ) is a complete metric space. We introduce the mapping F : Q→ Q defined
by

(Fu)(t) =

∫ 1

0
ξ(t, u(s)) ds, 0 ≤ t ≤ 1

for all u ∈ Q. Notice that due to (i), we have FQ ⊂ Q. On the other hand, u ∈ Q is a solution to
Eq (4.1) if and only if u is a fixed point of F.

We first show that F is continuous on (Q, δ). Indeed, for all u, v ∈ Q and t ∈ [0, 1], we have

|(Fu)(t) − (Fv)(t)| ≤
∫ 1

0
|ξ(t, u(s)) − ξ(t, v(s))| ds. (4.2)

On the other hand, by (ii), for all t ∈ [0, 1] and z,w ∈ R, we have (since κ ∈ (0, 1))

sinh (|ξ(t, z) − ξ(t,w)|) ≤ sinh (|z − w|) ,

which yields
sinh−1 [

sinh (|ξ(t, z) − ξ(t,w)|)
]
≤ sinh−1 [sinh (|z − w|)] ,

that is,
|ξ(t, z) − ξ(t,w)| ≤ |z − w|, t ∈ [0, 1], z,w ∈ R. (4.3)

Here, sinh−1 is the inverse hyperbolic sine function. We recall that sinh−1 is a nondecreasing function
on [0,∞). Next, in view of (4.2) and (4.3), for all u, v ∈ Q and t ∈ [0, 1], we obtain

|(Fu)(t) − (Fv)(t)| ≤
∫ 1

0
|u(s) − v(s)| ds

≤ δ(u, v),
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which yields
δ(Fu, Fv) ≤ δ(u, v), u, v ∈ Q.

This shows that F is continuous on (Q, δ).
We now show that F is a θ-hyperbolic contraction for some θ ∈ Θτ, τ > 0. Indeed, for all u, v ∈ Q

and t ∈ [0, 1], by (4.2), we have

sinh (|(Fu)(t) − (Fv)(t)|) ≤ sinh
[∫ 1

0
|ξ(t, u(s)) − ξ(t, v(s))| ds

]
. (4.4)

On the other hand, since sinh is a convex function on [0,∞), then by (ii) and Lemma 4.1, we obtain

sinh
[∫ 1

0
|ξ(t, u(s)) − ξ(t, v(s))| ds

]
≤

∫ 1

0
sinh (|ξ(t, u(s)) − ξ(t, v(s))|) ds

≤ κ

∫ 1

0
sinh (|u(s) − v(s)|) ds

≤ κ sinh(δ(u, v)),

which implies by (4.4) that

sinh (|(Fu)(t) − (Fv)(t)|) ≤ κ sinh(δ(u, v)), t ∈ [0, 1].

Then, taking the maximum over t ∈ [0, 1] in the above inequality, we obtain

sinh(δ(Fu, Fv)) ≤ κ sinh(δ(u, v)), u, v ∈ Q.

This shows that F is a θ-hyperbolic contraction with θ(t) = t for all t ≥ 0. Finally, applying
Theorem 3.1, we obtain (I) and (II). �

5. Conclusions

We introduced the notion of θ-hyperbolic sine distance function associated to a certain metric on Q,
where θ : [0,∞)→ [0,∞) is a function that belongs to the set of functions Θτ for some τ > 0. As it was
shown in Example 2.1, a θ-hyperbolic sine distance function on Q is not necessarily a metric on Q, even
if θ(0) = 0. We considered two classes of mappings F : Q → Q satisfying contractions involving the
θ-hyperbolic sine distance function; namely, the class of θ-hyperbolic contractions (see Definition 3.1)
and the class of (θ, η)-hyperbolic contractions (see Definition 3.3), where η : [0,∞) → [0,∞) is a
(c)-comparison function (see Definition 3.2). For each class of mappings, we established the existence
and uniqueness of fixed points (see Theorems 3.1 and 3.2).

Inspired from the existing fixed point results from the literature, it would be interesting to investigate
other classes of mappings F : Q → Q satisfying contractions involving θ-hyperbolic sine distance
functions. For instance, one can consider contractions of the forms

δθ(Fu, Fv) ≤ κ [δθ(u, Fu) + δθ(v, Fv)] ,
δθ(Fu, Fv) ≤ κ [δθ(u, Fv) + δθ(v, Fu)] ,
δθ(Fu, Fv) ≤ κ1δθ(u, v) + κ2δ(v, Fu),
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and many others forms of contractions. The case of multi-valued mappings F : Q → P(Q), where
P(Q) denotes the set of nonempty subsets of Q, also deserves to be studied.

It would be also interesting to study the possibility of weakening condition (II) of Theorem 3.1 (or
Theorem 3.2) using the concepts introduced in [34].
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