In this paper, we present a comprehensive analysis of the lower and upper bounds of solutions for a nonlinear second-order ordinary differential equation governing the electrohydrodynamic flow of a conducting fluid in cylindrical conduits. The equation describes the radial distribution of the flow velocity in an "ion drag" configuration, which is affected by an externally applied electric field. Our study involves the establishment of rigorous analytical bounds on the radial distribution, taking into account the Hartmann number $ H $ and a parameter $ \alpha. $ An analytic approximate solution is obtained as an improvement of the a priori estimates and it is found to exhibit strong agreement with numerical solutions, particularly when considering small Hartmann numbers. Further, estimates for the central velocity $ w(0) $ of the fluid occurring at the center of the cylindrical conduit were also established, and some interesting relationships were found between $ H $ and $ \alpha. $ These findings establish a framework that illuminates the potential range of values for the physical parameter within the conduit.
Citation: Lazhar Bougoffa, Ammar Khanfer, Smail Bougouffa. Qualitative analysis on the electrohydrodynamic flow equation[J]. AIMS Mathematics, 2024, 9(1): 775-791. doi: 10.3934/math.2024040
In this paper, we present a comprehensive analysis of the lower and upper bounds of solutions for a nonlinear second-order ordinary differential equation governing the electrohydrodynamic flow of a conducting fluid in cylindrical conduits. The equation describes the radial distribution of the flow velocity in an "ion drag" configuration, which is affected by an externally applied electric field. Our study involves the establishment of rigorous analytical bounds on the radial distribution, taking into account the Hartmann number $ H $ and a parameter $ \alpha. $ An analytic approximate solution is obtained as an improvement of the a priori estimates and it is found to exhibit strong agreement with numerical solutions, particularly when considering small Hartmann numbers. Further, estimates for the central velocity $ w(0) $ of the fluid occurring at the center of the cylindrical conduit were also established, and some interesting relationships were found between $ H $ and $ \alpha. $ These findings establish a framework that illuminates the potential range of values for the physical parameter within the conduit.
[1] | P. A. Davidson, Introduction to Magnetohydrodynamics, Cambridge University Press; 2nd edition, 2016. https://doi.org/10.1017/9781316672853 |
[2] | Y. Peng, D. Li, X. Yang, Z. Ma, Z. Mao, A review on electrohydrodynamic (EHD) pump, Micromachines, 14 (2023), 321. https://doi.org/10.3390/mi14020321 doi: 10.3390/mi14020321 |
[3] | L. Wang, Z. Wei, T. Li, Z. Chai, B. Shi, A lattice Boltzmann modeling of electrohydrodynamic conduction phenomenon in dielectric liquids, Appl. Math. Model., 95 (2021), 361–378. https://doi.org/10.1016/j.apm.2021.01.054 doi: 10.1016/j.apm.2021.01.054 |
[4] | S. Mckee, R. Watson, J. A. Cuminato, J. Caldwell, M. S. Chen, Calculation of Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Zeitschrift für Angewandte Mathematik und Mechanik, 77 (1997), 457–465. https://doi.org/10.1002/zamm.19970770612 doi: 10.1002/zamm.19970770612 |
[5] | J. E. Paullet, On the Solution of Electrohydrodynamic Flow in a Circular Cylindrical Conduit, Zeitschrift für Angewandte Mathematik und Mechanik, 79 (1999), 357–360. https://doi.org/10.1002/(SICI)1521-4001(199905)79:5<357::AID-ZAMM357>3.0.CO;2-B doi: 10.1002/(SICI)1521-4001(199905)79:5<357::AID-ZAMM357>3.0.CO;2-B |
[6] | A. Mastroberardino, Homotopy Analysis Method Applied to Electrohydrodynamic Flow, Commun. Nonlinear Sci., 16 (2011), 2730–2736. https://doi.org/10.1016/j.cnsns.2010.10.004 doi: 10.1016/j.cnsns.2010.10.004 |
[7] | R. K. Pandey, V. K. Baranwal, C. S. Singh, Semi-Analytic Algorithms for the Electrohydrodynamic Flow Equation, J. Theor. Appl. Phys., 6 (2012), 1–10. https://doi.org/10.1186/2251-7235-6-45 doi: 10.1186/2251-7235-6-45 |
[8] | N. A. Khan, M. Jamil, A. Mahmood, A. Ara, Approximate Solution for the Electrohydrodynamic Flow in a Circular Cylindrical Conduit, International Scholarly Research Notices, 2012 (2012), Article ID: 341069. https://doi.org/10.5402/2012/341069 doi: 10.5402/2012/341069 |
[9] | S. E. Ghasemi, M. Hatami, G. R. M. Ahangar, D. D. Ganji, Electrohydrodynamic Flow Analysis in a Circular Cylindrical Conduit Using Least Square Method, J. Electrostat., 72 (2014), 47–52. https://doi.org/10.1016/j.elstat.2013.11.005 doi: 10.1016/j.elstat.2013.11.005 |
[10] | J. H. Seo, M. S. Patil, S. Panchal, M. Y. Lee, Numerical Investigations on Magnetohydrodynamic Pump Based Microchannel Cooling System for Heat Dissipating Element, Symmetry, 12 (2020), 1713. https://doi.org/10.3390/sym12101713 doi: 10.3390/sym12101713 |
[11] | D. C. Moynihan, S. G. Bankoff, Magnetohydrodynamic circulation of a liquid of finite conductivity in an annulus, Appl. Sci. Res., 12 (1965), 165–202. https://doi.org/10.1007/BF02923404 doi: 10.1007/BF02923404 |
[12] | R. K. Gupta, Unsteady hydromagnetic pipe flow at small Hartmann number, Appl. Sci. Res., 12 (1965), 33–47. https://doi.org/10.1007/BF00382105 doi: 10.1007/BF00382105 |
[13] | T. Tagawa, K. Song, Stability of an Axisymmetric Liquid Metal Flow Driven by a Multi-Pole Rotating Magnetic Field, Fluids, 4 (2019), 77. https://doi.org/10.3390/fluids4020077 doi: 10.3390/fluids4020077 |
[14] | L. Leboucher, Monotone Scheme, and Boundary Conditions for Finite Volume Simulation of Magnetohydrodynamic Internal Flows at High Hartmann Number, J. Comput. Phys., 150 (1999), 181–198. https://doi.org/10.1006/jcph.1998.6170 doi: 10.1006/jcph.1998.6170 |
[15] | U. Ascher, L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, SIAM, Philadelphia, 1998. |
[16] | S. Bougouffa, A. Khanfer, L. Bougoffa, On the approximation of the modified error function, Math. Method. Appl. Sci., 46 (2023), 11657–11665. https://doi.org/10.1002/mma.8480 doi: 10.1002/mma.8480 |
[17] | L. Bougoffa, S. Bougouffa, A. Khanfer, An Analysis of the One-Phase Stefan Problem with Variable Thermal Coefficients of Order p, Axioms, 12 (2023), 497. https://doi.org/10.3390/axioms12050497 doi: 10.3390/axioms12050497 |
[18] | L. Bougoffa, S. Bougouffa, A. Khanfer, Generalized Thomas-Fermi equation: existence, uniqueness, and analytic approximation solutions, AIMS Math., 8 (2023), 10529–10546. https://doi.org/10.3934/math.2023534 doi: 10.3934/math.2023534 |
[19] | A. Khanfer, L. Bougoffa, S. Bougouffa, Analytic Approximate Solution of the Extended Blasius Equation with Temperature-Dependent Viscosity, J. Nonlinear Math. Phys., 30 (2023), 287–302. https://doi.org/10.1007/s44198-022-00084-3 doi: 10.1007/s44198-022-00084-3 |