In this paper, we propose an explicit spatially fourth-order accurate compact scheme for the Allen-Cahn equation in one-, two-, and three-dimensional spaces. The proposed method is based on the explicit Euler time integration scheme and fourth-order compact finite difference method. The proposed numerical solution algorithm is highly efficient and simple to implement because it is an explicit scheme. There is no need to solve implicitly a system of discrete equations as in the case of implicit numerical schemes. Furthermore, when we consider the temporally accurate numerical solutions, the time step restriction is not severe because the governing equation is a second-order parabolic partial differential equation. Computational tests are conducted to demonstrate the superior performance of the proposed spatially fourth-order accurate compact method for the Allen-Cahn equation.
Citation: Chaeyoung Lee, Seokjun Ham, Youngjin Hwang, Soobin Kwak, Junseok Kim. An explicit fourth-order accurate compact method for the Allen-Cahn equation[J]. AIMS Mathematics, 2024, 9(1): 735-762. doi: 10.3934/math.2024038
In this paper, we propose an explicit spatially fourth-order accurate compact scheme for the Allen-Cahn equation in one-, two-, and three-dimensional spaces. The proposed method is based on the explicit Euler time integration scheme and fourth-order compact finite difference method. The proposed numerical solution algorithm is highly efficient and simple to implement because it is an explicit scheme. There is no need to solve implicitly a system of discrete equations as in the case of implicit numerical schemes. Furthermore, when we consider the temporally accurate numerical solutions, the time step restriction is not severe because the governing equation is a second-order parabolic partial differential equation. Computational tests are conducted to demonstrate the superior performance of the proposed spatially fourth-order accurate compact method for the Allen-Cahn equation.
[1] | S. M. Allen, J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2 |
[2] | N. Takada, J. Matsumoto, S. Matsumoto, K. Kurihara, Phase-field model-based simulation of two-phase fluid motion on partially wetted and textured solid surface, J. Comput. Sci., 17 (2016), 315–324. https://doi.org/10.1016/j.jocs.2016.05.009 doi: 10.1016/j.jocs.2016.05.009 |
[3] | S. Abide, Finite difference preconditioning for compact scheme discretizations of the Poisson equation with variable coefficients, J. Comput. Appl. Math., 379 (2020), 112872. https://doi.org/10.1016/j.cam.2020.112872 doi: 10.1016/j.cam.2020.112872 |
[4] | K. Li, W. Liao, An efficient and high accuracy finite-difference scheme for the acoustic wave equation in 3D heterogeneous media, J. Comput. Sci., 40 (2020), 101063. https://doi.org/10.1016/j.jocs.2019.101063 doi: 10.1016/j.jocs.2019.101063 |
[5] | T. Li, J. Lu, C. W. Shu, Stability analysis of inverse Lax-Wendroff boundary treatment of high order compact difference schemes for parabolic equations, J. Comput. Appl. Math., 400 (2022), 113711. https://doi.org/10.1016/j.cam.2021.113711 doi: 10.1016/j.cam.2021.113711 |
[6] | M. Wu, Y. Jiang, Y. Ge, A high accuracy local one-dimensional explicit compact scheme for the 2D acoustic wave equation, Adv. Math. Phys., 2022 (2022), 9743699. https://doi.org/10.1155/2022/9743699 doi: 10.1155/2022/9743699 |
[7] | K. S. Patel, M. Mehra, Fourth order compact scheme for space fractional advection-diffusion reaction equations with variable coefficients, J. Comput. Appl. Math., 380 (2020), 112963. https://doi.org/10.1016/j.cam.2020.112963 doi: 10.1016/j.cam.2020.112963 |
[8] | Y. Nawaz, M. S. Arif, W. Shatanawi, A. Nazeer, An explicit fourth-order compact numerical scheme for heat transfer of boundary layer flow, Energies, 14 (2021), 3396. https://doi.org/10.3390/en14123396 doi: 10.3390/en14123396 |
[9] | J. Qiu, D. Han, H. Zhou, A general conservative eighth-order compact finite difference scheme for the coupled Schrödinger-KdV equations, AIMS Math., 8 (2023), 10596–10618. https://doi.org/10.3934/math.2023538 doi: 10.3934/math.2023538 |
[10] | E. G. M. Elmahdi, J. Huang, Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative, AIMS Math., 6 (2021), 6356–6376. https://doi.org/10.3934/math.2021373 doi: 10.3934/math.2021373 |
[11] | N. Abdi, H. Aminikhah, A. R. Sheikhani, High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options, Chaos Soliton. Fract., 162 (2022), 112423. https://doi.org/10.1016/j.chaos.2022.112423 doi: 10.1016/j.chaos.2022.112423 |
[12] | S. Zhai, X. Feng, Y. He, Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method, Comput. Phys. Commun., 185 (2014), 2449–2455. https://doi.org/10.1016/j.cpc.2014.05.017 doi: 10.1016/j.cpc.2014.05.017 |
[13] | J. Long, C. Luo, Q. Yu, Y. Li, An unconditional stable compact fourth-order finite difference scheme for three dimensional Allen-Cahn equation, Comput. Math. Appl., 77 (2019), 1042–1054. https://doi.org/10.1016/j.camwa.2018.10.028 doi: 10.1016/j.camwa.2018.10.028 |
[14] | Y. Bo, D. Tian, X. Liu, Y. Jin, Discrete maximum principle and energy stability of the compact difference scheme for two-dimensional Allen-Cahn equation, J. Funct. Space., 2022 (2022), 8522231. https://doi.org/10.1155/2022/8522231 doi: 10.1155/2022/8522231 |
[15] | S. C. Buranay, N. Arshad, A. H. Matan, Hexagonal grid computation of the derivatives of the solution to the heat equation by using fourth-order accurate two-stage implicit methods, Fractal Fract., 5 (2021), 203. https://doi.org/10.3390/fractalfract5040203 doi: 10.3390/fractalfract5040203 |
[16] | S. C. Buranay, N. Arshad, Hexagonal grid approximation of the solution of the heat equation on special polygons, Adv. Differ. Equ., 2020 (2020), 309. https://doi.org/10.1186/s13662-020-02749-z doi: 10.1186/s13662-020-02749-z |
[17] | A. A. Dosiyev, S. C. Buranay, On solving the cracked‐beam problem by block method, Commun. Numer. Meth. En., 24 (2008), 1277–1289. https://doi.org/10.1002/cnm.1032 doi: 10.1002/cnm.1032 |
[18] | A. A. Dosiyev, S. C. Buranay, D. Subasi, The block-grid method for solving Laplace's equation on polygons with nonanalytic boundary conditions, Bound. Value Probl., 2010 (2010), 468594. https://doi.org/10.1155/2010/468594 doi: 10.1155/2010/468594 |
[19] | K. Poochinapan, B. Wongsaijai, Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme, Appl. Math. Comput., 434 (2022), 127374. https://doi.org/10.1016/j.amc.2022.127374 doi: 10.1016/j.amc.2022.127374 |
[20] | J. W. Cahn, J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102 |
[21] | Y. Li, R. Liu, Q. Xia, C. He, Z. Li, First-and second-order unconditionally stable direct discretization methods for multi-component Cahn-Hilliard system on surfaces, J. Comput. Appl. Math., 401 (2022), 113778. https://doi.org/10.1016/j.cam.2021.113778 doi: 10.1016/j.cam.2021.113778 |
[22] | J. Li, Z. Sun, X. Zhao, A three level linearized compact difference scheme for the Cahn-Hilliard equation, Sci. China Math., 55 (2012), 805–826. https://doi.org/10.1007/s11425-011-4290-x doi: 10.1007/s11425-011-4290-x |
[23] | L. Ju, J. Zhang, Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations, Comp. Mater. Sci., 108 (2015), 272–282. https://doi.org/10.1016/j.commatsci.2015.04.046 doi: 10.1016/j.commatsci.2015.04.046 |
[24] | S. Lee, Fourth-order spatial and second-order temporal accurate compact scheme for Cahn-Hilliard equation, Int. J. Nonlin. Sci. Num., 20 (2019), 137–143. https://doi.org/10.1515/ijnsns-2017-0278 doi: 10.1515/ijnsns-2017-0278 |
[25] | S. Lee, J. Shin, Energy stable compact scheme for Cahn-Hilliard equation with periodic boundary condition, Comput. Math. Appl., 77 (2019), 189–198. https://doi.org/10.1016/j.camwa.2018.09.021 doi: 10.1016/j.camwa.2018.09.021 |
[26] | Z. Xiao, P. Yu, H. Ouyang, J. Zhang, A parallel high-order compact scheme for the pure streamfunction formulation of the 3D unsteady incompressible Navier-Stokes equation, Commun. Nonlinear Sci., 95 (2021), 105631. https://doi.org/10.1016/j.cnsns.2020.105631 doi: 10.1016/j.cnsns.2020.105631 |
[27] | D. Jeong, J. Kim, An explicit hybrid finite difference scheme for the Allen-Cahn equation, J. Comput. Appl. Math., 340 (2018), 247–255. https://doi.org/10.1016/j.cam.2018.02.026 doi: 10.1016/j.cam.2018.02.026 |
[28] | C. Lee, J. Park, S. Kwak, S. Kim, Y. Choi, S. Ham, et al., An adaptive time-stepping algorithm for the Allen-Cahn equation, J. Funct. Space., 2022 (2022), 2731593. https://doi.org/10.1155/2022/2731593 doi: 10.1155/2022/2731593 |
[29] | D. Jeong, S. Lee, D. Lee, J. Shin, J. Kim, Comparison study of numerical methods for solving the Allen-Cahn equation, Comp. Mater. Sci., 111 (2016), 131–136. https://doi.org/10.1016/j.commatsci.2015.09.005 doi: 10.1016/j.commatsci.2015.09.005 |
[30] | C. Lee, D. Jeong, J. Shin, Y. Li, J. Kim, A fourth-order spatial accurate and practically stable compact scheme for the Cahn-Hilliard equation, Physica A, 409 (2014), 17–28. https://doi.org/10.1016/j.physa.2014.04.038 doi: 10.1016/j.physa.2014.04.038 |
[31] | Y. Li, H. G. Lee, B. Xia, J. Kim, A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation, Comput. Phys Commun., 200 (2016), 108–116. https://doi.org/10.1016/j.cpc.2015.11.006 doi: 10.1016/j.cpc.2015.11.006 |
[32] | J. W. Choi, H. G. Lee, D. Jeong, J. Kim, An unconditionally gradient stable numerical method for solving the Allen-Cahn equation, Physica A, 388 (2009), 1791–1803. https://doi.org/10.1016/j.physa.2009.01.026 doi: 10.1016/j.physa.2009.01.026 |
[33] | C. Lee, H. Kim, S. Yoon, S. Kim, D. Lee, J. Park, et al., An unconditionally stable scheme for the Allen-Cahn equation with high-order polynomial free energy, Commun. Nonlinear Sci., 95 (2021), 105658. https://doi.org/10.1016/j.cnsns.2020.105658 doi: 10.1016/j.cnsns.2020.105658 |
[34] | U. Trottenberg, C. Oosterlee, A. Sch uller, Multigrid, Elsevier, 2000. |
[35] | W. L. Briggs, V. E. Henson, S. F. McCormick, A multigrid tutorial, Society for Industrial and Applied Mathematics, 2000. |
[36] | J. Yang, C. Lee, S. Kwak, Y. Choi, J. Kim, A conservative and stable explicit finite difference scheme for the diffusion equation, J. Comput. Sci., 56 (2021), 101491. https://doi.org/10.1016/j.jocs.2021.101491 doi: 10.1016/j.jocs.2021.101491 |
[37] | D. Lee, J. Kim, Mean curvature flow by the Allen-Cahn equation, Eur. J. Appl. Math., 26 (2015), 535–559. https://doi.org/10.1017/S0956792515000200 doi: 10.1017/S0956792515000200 |
[38] | C. Lee, Y. Choi, J. Kim, An explicit stable finite difference method for the Allen-Cahn equation, Appl. Numer. Math., 182 (2022), 87–99. https://doi.org/10.1016/j.apnum.2022.08.006 doi: 10.1016/j.apnum.2022.08.006 |
[39] | V. Cristini, J. Lowengrub, Three-dimensional crystal growth-Ⅰ: Linear analysis and self-similar evolution, J. Cryst. Growth, 240 (2022), 267–276. https://doi.org/10.1016/S0022-0248(02)00831-X doi: 10.1016/S0022-0248(02)00831-X |
[40] | M. A. Wieczorek, M. Meschede, SHTools: Tools for working with spherical harmonics, Geochem. Geophy. Geosy., 19 (2018), 2574–2592. https://doi.org/10.1029/2018GC007529 doi: 10.1029/2018GC007529 |
[41] | S. Ham, J. Kim, Stability analysis for a maximum principle preserving explicit scheme of the Allen-Cahn equation, Math. Comput. Simulat., 207 (2023), 453–465. https://doi.org/10.1016/j.matcom.2023.01.016 doi: 10.1016/j.matcom.2023.01.016 |
[42] | Q. Du, L. Ju, X. Li, Z. Qiao, Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes, SIAM Rev., 63 (2021), 317–359. https://doi.org/10.1137/19M1243750 doi: 10.1137/19M1243750 |
[43] | Y. Gong, B. Ji, H. L. Liao, A maximum bound principle preserving iteration technique for a class of semilinear parabolic equations, Appl. Numer. Math., 184 (2023), 482–495. https://doi.org/10.1016/j.apnum.2022.11.002 doi: 10.1016/j.apnum.2022.11.002 |