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Abstract: In this paper, we propose an explicit spatially fourth-order accurate compact scheme for
the Allen-Cahn equation in one-, two-, and three-dimensional spaces. The proposed method is based
on the explicit Euler time integration scheme and fourth-order compact finite difference method. The
proposed numerical solution algorithm is highly efficient and simple to implement because it is an
explicit scheme. There is no need to solve implicitly a system of discrete equations as in the case
of implicit numerical schemes. Furthermore, when we consider the temporally accurate numerical
solutions, the time step restriction is not severe because the governing equation is a second-order
parabolic partial differential equation. Computational tests are conducted to demonstrate the superior
performance of the proposed spatially fourth-order accurate compact method for the Allen-Cahn
equation.
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1. Introduction

In this article, we present an explicit spatially fourth-order accurate compact method for the Allen-
Cahn (AC) equation [1,2] in one-, two-, and three-dimensional spaces. The AC equation is as follows:

∂ϕ(x, t)
∂t

= −
F′(ϕ(x, t))

ϵ2 + ∆ϕ(x, t), x ∈ Ω, t > 0, (1.1)

where the order parameter ϕ(x, t) is the difference of the local concentrations of the two components in
a domain Ω, F(ϕ) = 0.25(ϕ2 − 1)2 is a double well free energy density, and ϵ is a small parameter. The
homogeneous Neumann boundary condition is assumed:

∂ϕ

∂n
= 0 on ∂Ω,
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where ∂/∂n is the normal derivative on the boundary of domain. The AC equation (1.1) is L2-gradient
flow of the Ginzburg–Landau functional:

E(ϕ) =
∫
Ω

(
F(ϕ)
ϵ2 +

1
2
|∇ϕ|2

)
dx. (1.2)

Developing high-order accurate numerical schemes is important, therefore, it has been widely
studied. In studying high-order accurate numerical schemes in space, wide stencils are required. In
this case, we should eliminate the inefficiency caused by calculating high-order derivatives with
respect to space, such as the Laplace operator. Therefore, the compact scheme has been actively
developed for high-order accurate schemes with relatively less wide stencils.

Abide [3] presented finite difference preconditioning for compact scheme discretizations of the
Poisson equation with variable coefficients. Li and Liao [4] developed an explicit high-order compact
finite difference method (FDM) to solve three-dimensional (3D) acoustic wave equations with
spatially variable acoustic velocity. In [5], based on FDM, a high-order accurate compact method for
the heat equation was studied on the inverse Lax-Wendroff boundary treatment. In [6], the authors
developed a highly accurate local one-dimensional (1D) explicit compact method for the acoustic
wave equation in two-dimensional (2D) space. Patel and Mehra [7] studied the fourth-order compact
method for space fractional advection-diffusion reaction equations using the alternating direction
implicit scheme. An explicit fourth-order compact scheme was developed for heat transfer of
boundary layer flow [8], which has the advantage of finding solutions of nonlinear and linear
convection-diffusion type equations that cannot be solved with the existing implicit compact scheme.
Qiu et al. [9] developed a general conservative eighth-order compact finite difference method to solve
the coupled Schrödinger-KdV equations, this method is decoupled and preserves several physical
invariants in a discrete sense. Elmahdi and Huang [10] presented linearized finite difference and
fourth-order compact finite difference schemes for the time fractional nonlinear diffusion-wave
equations based on their equivalent partial integro-differential equations. Abdi et al. [11] presented
high-order compact finite difference schemes for the fractional Black-Scholes equation in the case of
European option pricing. Using implicit-type schemes, spatially fourth-order accurate compact
schemes were presented in [12–14]. There are some studies for solving partial differential
equation (PDE), including the Laplace terms using a fourth-order accurate method on hexagonal
grids [15–18]. Zhai et al. [12] presented a linearized, temporally second-order, spatially fourth-order
accurate compact method for the 3D AC equations with different boundary conditions. Long et
al. [13] described the unconditional stable linear FDM for the 3D AC equation, combined with
backward differentiation and fourth-order compact schemes. Bo et al. [14] theoretically proved the
discrete maximum principle and energy stability of the compact difference scheme for AC equation in
the 2D space and presented numerical examples. In [19], the authors presented a fourth-order FDM
for the AC equation with a stabilized term which has an effect on structure-preserving.

Moreover, the compact finite difference scheme has been applied for solving the Cahn-Hilliard (CH)
equation [20, 21]:

∂ϕ(x, t)
∂t

= ∆
(
F′(ϕ) − ϵ2∆ϕ

)
, (1.3)

which is a phase-field model, H−1-gradient flow of the energy functional (1.2), modeling the phase
separation of spinodal decomposition in a binary alloy. Li et al. [22] analyzed a three-level linearized
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compact method for the CH equation as proving the unique solvability and unconditional convergence
of the numerical solution. Ju et al. [23] proposed a fast and stabilized compact exponential time
differencing multi-step method for the CH equation. Lee [24] presented a fourth-order spatial and
second-order temporal accurate, unconditionally stable compact FDM for the CH equation. Lee and
Shin [25] presented a compact scheme for solving the CH equation with a periodic boundary
condition. In [26], a fourth-order compact method for the pure stream function formulation of 3D
unsteady incompressible Navier-Stokes equation was presented using the Crank-Nicolson method for
time discretization.

Many studies for the compact scheme have adopted implicit-type schemes to numerically solve
various equations. Implicit-type schemes have the advantage that they can solve the equations
efficiently by using large time-step sizes compared to explicit-type schemes. On the other hand, in the
case of a nonlinear partial differential equation, we need to use efficient numerical solvers such as
multigrid methods. In addition, highly accurate results require small time-step sizes. For example,
when we solve the CH equation which is a fourth-order nonlinear PDE, an explicit method imposes a
severe constraint on time-step size for stability. A very small time-step size makes it almost
impossible to compute the fine-grid solution. In this case, the multigrid method is useful. However, in
this study, we focus on the fourth-order accurate compact method for the AC equation, which is a
second-order nonlinear parabolic PDE. When we solve the AC equation using an explicit scheme, the
linear term restricts the time-step size as ∆t < 0.5h2/d, where h is a mesh size and d is the spatial
dimension [27–29]. The constraint on the time-step size is not too severe, therefore, the fourth-order
compact explicit scheme increases the accuracy without greatly losing efficiency.

The main purpose of this study is to present a fully explicit spatially fourth-order accurate compact
scheme for the AC equation in 1D, 2D, and 3D spaces. To the authors’ knowledge, this is the first
study of a fully explicit spatially fourth-order accurate compact scheme for the AC equation. The
advantages of this study focusing on space are the accuracy and efficiency of the numerical solution,
and the simplicity of implementation. In the follow-up study, we will improve the proposed scheme to
be higher-order accuracy in time.

The layout of this paper is as follows. In Section 2, it is presented that the description of the fourth-
order compact FDM for the AC equation. In Section 3, we perform various computational experiments
to demonstrate the basic properties and advantages of the proposed method. Conclusions are made in
Section 4.

2. Numerical method

2.1. Discretization

Let Nx, Ny, and Nz be the number of grid points in the x, y, and z direction, respectively, ∆t = T/Nt

be the time-step size, T be the final time, and Nt be the total number of time steps.

2.1.1. One-dimensional space

In a 1D domain Ω = (ax, bx), let h = (bx − ax)/Nx be the uniform mesh size. A discrete numerical
domain is denoted by Ωh = {xi : xi = ax + (i − 0.5)h, 1 ≤ i ≤ Nx}. Let ϕn

i be the approximation of
ϕ(xi, n∆t). The homogeneous Neumann boundary conditions for ϕ are given as follows: ϕ0 = ϕ1, ϕ−1 =
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ϕ2, ϕNx+1 = ϕNx , ϕNx+2 = ϕNx−1. The discrete differentiation operator is Dxϕi+ 1
2
= (ϕi+1 − ϕi)/h.

2.1.2. Two-dimensional space

We discretize the AC equation in a 2D domain Ω = (ax, bx) × (ay, by). Let h = (bx − ax)/Nx =

(by−ay)/Ny be the uniform mesh size. Let Ωh = {(xi, y j) : xi = ax+ (i−0.5)h, y j = ay+ ( j−0.5)h, 1 ≤
i ≤ Nx, 1 ≤ j ≤ Ny} be a discrete numerical domain. Let ϕn

i j be the approximation of ϕ(xi, y j, n∆t). The
homogeneous Neumann boundary conditions for ϕ are given as follows:

for 1 ≤ j ≤ Ny,

ϕ0, j = ϕ1, j, ϕ−1, j = ϕ2, j, ϕNx+1, j = ϕNx, j, ϕNx+2, j = ϕNx−1, j,

for − 1 ≤ i ≤ Nx + 2,
ϕi,0 = ϕi,1, ϕi,−1 = ϕi,2, ϕi,Ny+1 = ϕi,Ny , ϕi,Ny+2 = ϕi,Ny−1.

The discrete differentiation, gradient, and divergence operators are

Dxϕi+ 1
2 , j
=

1
12
ϕi+1, j+1 − ϕi, j+1

h
+

5
6
ϕi+1, j − ϕi j

h
+

1
12
ϕi+1, j−1 − ϕi, j−1

h
,

Dyϕi, j+ 1
2
=

1
12
ϕi+1, j+1 − ϕi+1, j

h
+

5
6
ϕi, j+1 − ϕi j

h
+

1
12
ϕi−1, j+1 − ϕi−1, j

h
,

∇cϕi j =
(
Dxϕi+ 1

2 , j
,Dyϕi, j+ 1

2

)
, and ∇d · (u, v)i j = (ui+ 1

2 , j
− ui− 1

2 , j
)/h + (vi, j+ 1

2
− vi, j− 1

2
)/h, respectively. The

discrete l2-inner products and norms are defined as

(ϕ, ψ)h := h2
Nx∑
i=1

Ny∑
j=1

ϕi jψi j, (2.1)

(∇cϕ,∇cψ)e := h2
Nx∑
i=1

Ny∑
j=1

(Dxϕi+ 1
2 , j

Dxψi+ 1
2 , j
+ Dyϕi, j+ 1

2
Dyψi, j+ 1

2
), (2.2)

∥ϕ∥2 = (ϕ, ϕ)h, and ∥∇ϕ∥2e = (∇cϕ,∇cϕ)e . (2.3)

We define the discrete total energy functional by

Eh(ϕn) = (F(ϕn), 1)h +
ϵ2

2
∥∇ϕn∥2e , (2.4)

where 1 is a vector with all entries are 1.

2.1.3. Three-dimensional space

We discretize the AC equation in a 3D domainΩ = (ax, bx)×(ay, by)×(az, bz). Let h = (bx−ax)/Nx =

(by − ay)/Ny = (bz − az)/Nz and Ωh = {(xi, y j, zk) : xi = ax + (i − 0.5)h, y j = ay + ( j − 0.5)h, zk =

az + (k − 0.5)h, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz}. Let ϕn
i jk be the approximation of ϕ(xi, y j, zk, n∆t).

The homogeneous Neumann boundary conditions for ϕ are given as follows:

for 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz,
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ϕ0 jk = ϕ1 jk, ϕ−1, jk = ϕ2 jk, ϕNx+1, jk = ϕNx, jk, ϕNx+2, jk = ϕNx−1, jk,

for − 1 ≤ i ≤ Nx + 2, 1 ≤ k ≤ Nz,

ϕi0k = ϕi1k, ϕi,−1,k = ϕi2k, ϕi,Ny+1,k = ϕi,Ny,k, ϕi,Ny+2,k = ϕi,Ny−1,k,

for − 1 ≤ i ≤ Nx + 2, − 1 ≤ j ≤ Ny + 2,
ϕi j0 = ϕi j1, ϕi j,−1 = ϕi j2, ϕi j,Nz+1 = ϕi jNz , ϕi j,Nz+2 = ϕi j,Nz−1.

The discrete differentiation operators are

Dxϕi+ 1
2 , jk
=

[
128(ϕi+1, jk − ϕi jk) + 11(ϕi+1, j+1,k + ϕi+1, j−1,k + ϕi+1, j,k+1

+ϕi+1, j,k−1 − ϕi, j+1,k − ϕi, j−1,k − ϕi j,k+1 − ϕi j,k−1)
+2(ϕi+1, j+1,k+1 + ϕi+1, j−1,k+1 + ϕi+1, j+1,k−1 + ϕi+1, j−1,k−1

−ϕi, j+1,k+1 − ϕi, j−1,k+1 − ϕi, j+1,k−1 − ϕi, j−1,k−1)
]/

(180h),

and then Dyϕi, j+ 1
2 ,k

and Dzϕi j,k+ 1
2

are similarly defined above. We then define the discrete l2-inner
products as

(ϕ, ψ)h := h3
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

ϕi jkψi jk, (2.5)

(∇cϕ,∇cψ)e := h3
Nx∑
i=1

Ny∑
j=1

Nz∑
k=1

(
Dxϕi+ 1

2 , jk
Dxψi+ 1

2 , jk

+Dyϕi, j+ 1
2 ,k

Dyψi, j+ 1
2 ,k
+ Dzϕi j,k+ 1

2
Dzψi j,k+ 1

2

)
. (2.6)

2.2. Compact finite difference scheme

2.2.1. One-dimensional space

In a 1D space, a compact Laplace operator ∆c is defined as follows:

∆cϕi = ∆ϕi =
1
h2 (ϕi+1 − 2ϕi + ϕi−1). (2.7)

By the Taylor expansion, we can obtain

ϕ(x + ∆x, t) =
5∑

k=0

(∆x)k

k!

(
∂

∂x

)k

ϕ(x, t) + O((∆x)6). (2.8)

Then, we can derive the following equation from Eq (2.8) by replacing ∆x with ±h.

ϕ(x + h, t) − 2ϕ(x, t) + ϕ(x − h, t) = h2ϕxx +
h4

12
ϕxxxx + O(h6). (2.9)

By dividing both sides of Eq (2.9) by h2, we obtain

∆cϕ
n
i = ∆ϕ(xi, tn) +

h2

12
∆2ϕ(xi, tn) + O(h4), (2.10)
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where ∆2ϕ = ∆(∆ϕ) is the biharmonic operator. Note that the standard fourth-order 5-point Laplace
operator ∆s is defined as

∆sϕ
n
i =

1
12h2

(
−ϕn

i−2 + 16ϕn
i−1 − 30ϕn

i + 16ϕn
i+1 − ϕ

n
i+2

)
.

From Eq (2.8), we can derive ∆sϕi = ∆ϕ(xi) + O(h4) in the similar manner. Using Eq (2.10), we
discretize the governing Eq (1.1) in a 1D domain as follows:

ϕn+1
i − ϕn

i

∆t
+ O(∆t) = −

F′(ϕn
i )

ϵ2 + ∆ϕ(xi, tn)

= −
F′(ϕn

i )
ϵ2 + ∆cϕ

n
i −

h2

12
∆2ϕ(xi, tn) + O(h4)

= −
F′(ϕn

i )
ϵ2 + ∆cϕ

n
i −

h2

12
∆

(
∂ϕ(xi, tn)

∂t
+

F′(ϕ(xi, tn))
ϵ2

)
+ O(h4)

= −
F′(ϕn

i )
ϵ2 + ∆cϕ

n
i −

h2

12

(
∂∆ϕ(xi, tn)

∂t
+ ∆

F′(ϕ(xi, tn))
ϵ2

)
+ O(h4)

= −
F′(ϕn

i )
ϵ2 + ∆cϕ

n
i −

h2

12

(
∂∆cϕ(xi, tn)

∂t
+ ∆c

F′(ϕ(xi, tn))
ϵ2 + O(h2)

)
+ O(h4)

= −
F′(ϕn

i )
ϵ2 + ∆cϕ

n
i −

h2

12

(
∆cϕ

n
i − ∆cϕ

n−1
i

∆t
+ O(∆t) + ∆c

F′(ϕ(xi, tn))
ϵ2

)
+ O(h4). (2.11)

Therefore, up to O(∆t) and O(h4), we have

ϕn+1
i − ϕn

i

∆t
= −

F′(ϕn
i )

ϵ2 + ∆cϕ
n
i −

h2

12

(
∆cϕ

n
i − ∆cϕ

n−1
i

∆t
+ ∆c

F′(ϕn
i )

ϵ2

)
, (2.12)

for n ≥ 2. Given ϕ0, ϕ1 is computed by using the standard fourth-order Laplacian ∆s.

2.2.2. Two-dimensional space

In a 2D space, the compact Laplace operator ∆c [30] is defined as

∆cϕi j = ∇d · ∇cϕi j =
1

6h2

(
ϕi−1, j+1 + 4ϕi, j+1 + ϕi+1, j+1 + 4ϕi−1, j

−20ϕi j + 4ϕi+1, j + ϕi−1, j−1 + 4ϕi, j−1 + ϕi+1, j−1

)
.

By the Taylor series in two variables, we can obtain

ϕ(x + ∆x, y + ∆y) =
5∑

k=0

1
k!

(
∆x

∂

∂x
+ ∆y

∂

∂y

)k

ϕ(x, y)

+O((∆x)6 + (∆y)6).

By replacing ∆x and ∆y with different values ±h, we get

ϕ(x + h, y) + ϕ(x − h, y) + ϕ(x, y − h) + ϕ(x, y + h)
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= 4ϕ + h2ϕxx + h2ϕyy +
h4

12
ϕxxxx +

h4

12
ϕyyyy + O(h6), (2.13)

ϕ(x − h, y − h) + ϕ(x − h, y + h) + ϕ(x + h, y − h) + ϕ(x + h, y + h)

= 4ϕ + 2h2ϕxx + 2h2ϕyy +
h4

6
ϕxxxx + h4ϕxxyy +

h4

6
ϕyyyy + O(h6). (2.14)

From Eqs (2.13) and (2.14), we have

ϕ(x − h, y − h) + ϕ(x − h, y + h) + ϕ(x + h, y − h) + ϕ(x + h, y + h)
+4

[
ϕ(x + h, y) + ϕ(x − h, y) + ϕ(x, y − h) + ϕ(x, y + h)

]
− 20ϕ(x, y)

= 6h2
(
ϕxx + ϕyy

)
(x, y) +

h4

2

(
ϕxxxx + 2ϕxxyy + ϕyyyy

)
(x, y) + O(h6).

Finally, we have

∆cϕ
n
i j = ∆ϕ(xi, y j, tn) +

h2

12
∆2ϕ(xi, y j, tn) + O(h4), (2.15)

where ∆2ϕ = ∆(∆ϕ) is the biharmonic operator. Note that another standard fourth-order 9-point
Laplace operator ∆s is defined as

∆sϕ
n
i j =

1
12h2

(
−ϕn

i−2, j + 16ϕn
i−1, j − 30ϕn

i j + 16ϕn
i+1, j − ϕ

n
i+2, j

)
+

1
12h2

(
−ϕn

i, j−2 + 16ϕn
i, j−1 − 30ϕn

i j + 16ϕn
i, j+1 − ϕ

n
i, j+2

)
.

In a similar way, ∆sϕi j = ∆ϕ(xi, y j)+O(h4). Figure 1 shows the nodes used by the compact and standard
Laplace operators at a point, respectively.

Figure 1. Schematic diagram of nodes for both the compact and standard Laplace operators
at one point.

Using Eq (2.15), similar to Eq (2.11), we discretize the governing Eq (1.1). Therefore, up to O(∆t)
and O(h4), we have

ϕn+1
i j − ϕ

n
i j

∆t
= −

F′(ϕn
i j)

ϵ2 + ∆cϕ
n
i j −

h2

12

∆cϕ
n
i j − ∆cϕ

n−1
i j

∆t
+ ∆c

F′(ϕn
i j)

ϵ2

 , (2.16)

for n ≥ 2. Given ϕ0, ϕ1 is computed by using the standard fourth-order Laplacian ∆s.
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2.2.3. Three-dimensional space

In a 3D space, a compact Laplace operator ∆c [31] is defined as

∆cϕi jk = ∇d · ∇cϕi jk

=
1

30h2

[
14(ϕi+1, jk + ϕi−1, jk + ϕi, j+1,k + ϕi, j−1,k + ϕi j,k+1 + ϕi j,k−1)

+3(ϕi+1, j,k+1 + ϕi+1, j,k−1 + ϕi+1, j+1,k + ϕi+1, j−1,k + ϕi−1, j+1,k

+ϕi−1, j−1,k + ϕi, j+1,k+1 + ϕi, j−1,k−1 + ϕi−1, j,k+1 + ϕi−1, j,k−1

+ϕi−1, j+1,k+1 + ϕi−1, j−1,k−1 + ϕi, j+1,k−1 + ϕi, j−1,k+1)
+ϕi−1, j+1,k−1 + ϕi−1, j−1,k+1 + ϕi+1, j+1,k+1 + ϕi+1, j−1,k−1

+ϕi+1, j+1,k−1 + ϕi+1, j−1,k+1 − 128ϕi jk

]
.

By the Taylor expansion in three variables, we can obtain

ϕ(x + ∆x, y + ∆y, z + ∆z, t) =
5∑

k=0

1
k!

(
∆x

∂

∂x
+ ∆y

∂

∂y
+ ∆z

∂

∂z

)k

ϕ(x, y, z, t)

+O((∆x)6) + O((∆y)6) + O((∆z)6). (2.17)

Then, we can derive the following equations from Eq (2.17) by replacing ∆x, ∆y, and ∆z with different
values ±h.

ϕ(x + h, y, z, t) + ϕ(x − h, y, z, t) + ϕ(x, y + h, z, t)
+ϕ(x, y − h, z, t) + ϕ(x, y, z + h, t) + ϕ(x, y, z − h, t)

= 6ϕ + h2
(
ϕxx + ϕyy + ϕzz

)
+

h4

12

(
ϕxxxx + ϕyyyy + ϕzzzz

)
+ O(h6), (2.18)

ϕ(x − h, y − h, z, t) + ϕ(x − h, y + h, z, t) + ϕ(x + h, y − h, z, t)
+ϕ(x + h, y + h, z, t) + ϕ(x − h, y, z − h, t) + ϕ(x − h, y, z + h, t)
+ϕ(x + h, y, z − h, t) + ϕ(x + h, y, z + h, t) + ϕ(x, y − h, z − h, t)
+ϕ(x, y − h, z + h, t) + ϕ(x, y + h, z − h, t) + ϕ(x, y + h, z + h, t)

= 12ϕ + 4h2
(
ϕxx + ϕyy + ϕzz

)
+

h4

3

(
ϕxxxx + ϕyyyy + ϕzzzz

)
+h4

(
ϕxxyy + ϕyyzz + ϕxxzz

)
+ O(h6), (2.19)

ϕ(x − h, y − h, z − h, t) + ϕ(x − h, y − h, z + h, t)
+ϕ(x − h, y + h, z − h, t) + ϕ(x − h, y + h, z + h, t)
+ϕ(x + h, y − h, z − h, t) + ϕ(x + h, y − h, z + h, t)
+ϕ(x + h, y + h, z − h, t) + ϕ(x + h, y + h, z + h, t)

= 8ϕ + 4h2
(
ϕxx + ϕyy + ϕzz

)
+

h4

3

(
ϕxxxx + ϕyyyy + ϕzzzz

)
2h4

(
ϕxxyy + ϕyyzz + ϕxxzz

)
+ O(h6). (2.20)
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Multiplying both sides of Eqs (2.18)–(2.20) by 14, 3, and 1, respectively, and adding the equations, we
have

30h2∆cϕi jk = 30h2(ϕxx + ϕyy + ϕzz) +
5
2

h4(ϕxxxx + ϕyyyy + ϕzzzz

+2ϕxxyy + 2ϕyyzz + 2ϕxxzz) + O(h6). (2.21)

By dividing both the sides of Eq (2.21) by 30h2, we obtain

∆cϕ
n
i jk = ∆ϕ(xi, y j, zk, tn) +

h2

12
∆2ϕ(xi, y j, zk, tn) + O(h4). (2.22)

Note that the 3D standard fourth-order 13-point Laplace operator ∆s is defined as

∆sϕ
n
i jk =

1
12h2

(
−ϕn

i−2, jk + 16ϕn
i−1, jk − 30ϕn

i jk + 16ϕn
i+1, j − ϕ

n
i+2, j

)
+

1
12h2

(
−ϕn

i, j−2,k + 16ϕn
i, j−1,k − 30ϕn

i jk + 16ϕn
i, j+1,k − ϕ

n
i, j+2,k

)
+

1
12h2

(
−ϕn

i j,k−2 + 16ϕn
i j,k−1 − 30ϕn

i jk + 16ϕn
i j,k+1 − ϕ

n
i j,k+2

)
.

In a similar way, ∆sϕi jk = ∆ϕ(xi, y j, zk) + O(h4). Figure 2 shows the grid point usages of standard ∆h

and compact ∆h in a 3D space.

Figure 2. Schematic diagram of nodes for both the compact and standard Laplace operators
at one point in a 3D space.

Using Eq (2.15), we discretize the governing Eq (1.1). Therefore, up to O(∆t) and O(h4), we have

ϕn+1
i jk − ϕ

n
i jk

∆t

= −
F′(ϕn

i jk)

ϵ2 + ∆cϕ
n
i jk −

h2

12

∆cϕ
n
i jk − ∆cϕ

n−1
i jk

∆t
+ ∆c

F′(ϕn
i jk)

ϵ

 , (2.23)

for n ≥ 2. Given ϕ0, ϕ1 is computed by using the standard fourth-order Laplacian ∆s.
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3. Numerical results

We demonstrate the representative properties of the explicit compact AC equation: phase
separation, fourth-order accuracy in space, non-increase of total energy, and motion by mean
curvature. We show the efficiency of our method using numerical comparison and measuring
computational time. In addition, we perform the computational experiments for a non-convex initial
condition with and without an obstacle to highlight the advantage of the proposed scheme. It can
easily handle the computation on arbitrary complex domains.

3.1. Phase separation

We consider one of the most basic computational simulations, that is, the dynamics of phase
separation. First, we conduct the numerical experiment in a 1D computational domain Ω = (0, 1)
with the initial condition given as

ϕ0
i = 0.1rand, for 1 ≤ i ≤ Nx,

where rand is a random number in [−1, 1]. To observe the equilibrium profile, we cease the iterative
computation when the following criterion is met:

||ϕn − ϕn−1||2 < 1.0e-5, (3.1)

where n is a positive integer, and ϕn is called a numerical equilibrium solution. The parameters are
taken as Nx = 100, h = 1/Nx, ∆t = 0.1h2, and ϵ = 4h/(2

√
2 tanh−1(0.9)). Figure 3 indicates the initial

condition (t = 0), numerical solution (t = 30∆t), and numerical equilibrium solution (t = 2242∆t).
From this result, we can also numerically confirm that the numerical solutions are bounded between −1
and 1.

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

Figure 3. Temporal evolution of the initial and numerical solutions which are bounded
between the interval [−1, 1]. The numerical solution at t = 2242∆t is an equilibrium solution.

We next observe the phase separation in a 2D domain Ω = (0, 1)2. The initial condition is given as

ϕ0
i j = 0.1rand, for 1 ≤ i ≤ Nx, 1 ≤ i ≤ Ny. (3.2)
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The parameters are taken as Nx = Ny = 100, h = 1/Nx, ∆t = 0.1h2, and ϵ = 4h/(2
√

2 tanh−1(0.9)).
Figure 4 indicates the initial condition (t = 0) and numerical solutions (t = 30∆t, 100∆t). From this
result, we can also numerically confirm that the numerical solutions are bounded between −1 and 1.

(a) (b)

(c)
Figure 4. (a)–(c) are snapshots of 2D initial and numerical solutions at t = 0, 30∆t,
and 100∆t, respectively.

3.2. Convergence test

We investigate a quantitative estimate of the rate of convergence. Note that the discrete l2-norms of
numerical solutions is defined as

||ϕn||2 =

√√
1

Nx

Nx∑
i=1

(ϕn
i )2, ||ϕn||2 =

√√√
1

NxNy

Nx∑
i=1

Ny∑
j=1

(ϕn
i j)2,

in 1D and 2D domains, respectively. First, in a 1D domain Ω = (0, 2), we consider the traveling wave
solution of the AC equation [32, 33]:

ϕ(x, t) =
1
2

[
1 − tanh

(
x − 0.7 − st

2
√

2ϵ

)]
, (3.3)

where s = 3ϵ/
√

2. At t = 0, the initial profile is

ϕ(x, 0) =
1
2

[
1 − tanh

(
x − 0.7

2
√

2ϵ

)]
. (3.4)
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Figure 5 shows the initial, numerical, and analytic profiles. Here, the parameters used are
Nx = 100, h = 2/Nx, ϵ = 8h/(2

√
2 tanh−1(0.9)), ∆t = 0.1h2, and the final T = 120∆t.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1
Initial

Numerical

Analytic

Figure 5. Numerical and analytic traveling wave solutions with the initial profile in a 1D
domain.

We perform a convergence test with the initial condition (3.4) on a set of increasingly finer mesh
grid sizes. The computational solutions are computed on the uniform grids and time steps, h = 2/Nx

for Nx = 40, 80, and 160. The fixed time-step size is ∆t = 5.0e-9, the final time is T = 50000∆t,
and ϵ = 0.025. The convergence rate is defined as the ratio of successive errors, that is,

log2(||eNx ||2/||e2Nx ||2), where the discrete l2-norm error is defined as ||eNx ||2 =

√
1

Nx

∑Nx
i=1(ϕ(xi, n∆t) − ϕn

i )

and ||e2Nx ||2 =

√
1

2Nx

∑2Nx
i=1 (ϕ(xi, n∆t) − ϕn

i ). Table 1 lists the errors and rates of convergence and
demonstrates that the proposed scheme is spatially fourth-order accurate.

Table 1. Convergence results in a 1D space.

h 0.5000 0.0250 0.0125
l2-error 1.6363e-4 9.8470e-6 6.2480e-7
Rate 4.05 3.98

In a 2D domain Ω = (0, 2)2, we consider the following solution:

ϕ(x, y, t) =
1
2

[
1 − tanh

(
0.8x + 0.6y − 0.88 − st

√
2ϵ

)]
. (3.5)

The parameters are taken as N = Nx = Ny = 100, h = 2/N, ∆t = 0.1h2, ϵ = 8h/(2
√

2 tanh−1(0.9)),
and the final time T = 90∆t. In this test, the Dirichlet boundary condition is used and the values of
order parameter on the boundary are set as the analytic solutions. Figures 6(a) and 6(b) show the initial
profile at t = 0 and the numerical solution at t = 90∆t, respectively. Figure 6(c) shows the contours of
the initial, numerical, and analytic solutions at the ϕ = 0.5 level.
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(a) t = 0 (b) t = 60∆t

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Initial

Numerical

Analytic

(c) Contours at the ϕ = 0.5 level
Figure 6. (a) and (b) are 2D mesh plots of the initial condition and the numerical solution
at t = 60∆t, respectively. (c) is the contours of the numerical and analytic solutions with the
initial condition at the ϕ = 0.5 level.

We conduct a convergence test with the initial condition (3.5) on a set of increasingly finer mesh
grid sizes. The computational solutions are computed using h = 2/N for N = 40, 80, 160, the fixed
time-step size ∆t = 1.0e-9, the final time T = 250000∆t, and ϵ = 0.025. Table 2 lists the errors
and rates of convergence. Here, the discrete l2-norm error in a 2D domain is defined as ||eN ||2 =√

1
N2

∑N
i=1

∑N
j=1(ϕ(xi, y j, n∆t) − ϕn

i j). The results in the 2D domain suggest that the scheme is indeed
fourth-order accurate in space.

Table 2. Convergence results in a 2D space.

h 0.5000 0.0250 0.0125
l2-error 9.3779e-5 6.2659e-6 3.9393e-7
Rate 3.90 3.99

3.3. Equilibrium profile

We verify that a numerical equilibrium solution in which the profile is a hyperbolic tangent is
consistent with a theoretical solution when the time is large enough. The initial condition on a domain
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Ω = (−1, 1) is

ϕ(x, 0) = 0.5 tanh
(

x
√

2ϵ

)
. (3.6)

The parameters are taken as Nx = 200, h = 2/Nx, ∆t = 0.1h2, t = 5, and ϵ = 4h/(2
√

2 tanh−1(0.9)). In
Figure 7, the numerical equilibrium profile agrees well with the analytic one

ϕ(x, t) = tanh
(

x
√

2ϵ

)
.

Here, the l2-norm error between two equilibrium profiles is less than 1.0e-16.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Initial

Analytic

Numerical

Figure 7. Analytic and numerical equilibrium solutions are in good agreement, which are
denoted by a black line with stars and red circles. Here, an initial condition is ϕ(x, 0) =
0.5 tanh (x/

√
2ϵ) on a domain Ω = (−1, 1) with a black dashed line.

3.4. Total energy decrease

We numerically validate that the total energy functional (1.2) decreases over time. In a 2D domain,
the discrete total energy is defined as

Eh(ϕn) =
h2

ϵ2

Nx∑
i=1

Ny∑
j=1

F(ϕn
i j) +

h2

2

Nx∑
i=1

Ny∑
j=1

|∇cϕ
n
i j|

2.

The initial condition is defined as Eq (3.2) on Ω = (0, 1)2. The parameters are used as follows:
N = 100, h = 1/N, ∆t = 0.1h2, T = 2000∆t, and ϵ = 4h/(2

√
2 tanh−1(0.9)). Figure 8 shows

the time evolution of the discrete total energy and numerical solution. The normalized discrete total
energy E(ϕn)/E(ϕ0) is non-increasing over time t. The snapshots of the numerical solutions are at
t = 0, 0.002, 0.006, and 0.02, respectively.
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Figure 8. Discrete total energy dissipation over time t.

3.5. Efficiency

In this section, we verify the efficiency of the proposed method. First, we present numerical
comparisons between the proposed scheme and previous work [13], and compare the performance
using their computational time. In [13], the authors used the linear multigrid method to solve the AC
equation using the fourth-order compact FDM. One V-cycle in the linear multigrid procedure consists
of three parts: a pre-smoothing, a coarse grid correction, and a post-smoothing [34]. For the sake of
convenience, we define the cost of performing one smoothing sweep on the finest grid as a work
unit (WU). We assume that each number of pre- and post-smoothing sweeps is equal to the positive
integer ν larger than 1. The smoothing steps mainly adopt the Gauss-Seidel type method, however, we
apply the explicit method whose computational cost is less than that. The computational cost of the
proposed method is estimated to be less than 2 WU, whereas that of the multigrid method in a 3D
domain is

2ν
(
1 + 2−3 + 2−6 + 2−9 + · · · + 2−3N

)
<

2
1 − 2−3 νWU =

16ν
7

WU,

where N = Nx = Ny = Nz. In general, one V-cyle is not enough even though it depends on the given
tolerance [35, 36]. Hence, the computational cost of our method is estimated to be less than that of the
multigrid method.

We use the initial condition as ϕ(x, y, z, 0) = sin(2πx) sin(2πy) sin(2πz) on a domain Ω = (0, 1)3,
the mesh size N = 32, 64, 128, 256, and the other parameters as h = 1/N, ∆t = 0.1h2, T = 10∆t,
and ϵ = 0.1. Our computation is performed using MATLAB 2022b on an Intel Core i9-12900H
CPU @ 2.50 GHz with 32 GB of RAM. We measure total CPU time (sec) for 10 time iterations and
calculate it divided by the number of time iterations. Table 3 lists the average CPU times. Our method
is more than 10 times faster than the implicit-type method.

Table 3. Average CPU time (sec) according to mesh sizes N3. Here, the average CPU time
is defined as the total CPU time over all time iterations.

Mesh size 323 643 1283 2563

Long et al. [13] 0.0373 0.2766 2.2953 17.8828
Ours 0.0029 0.0201 0.1674 1.3946
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3.6. Motion by mean curvature

Motion by mean curvature, the representative property of the AC equation, means that the interface
Γ(t) of the solution evolves in the direction of the normal velocity proportional to the magnitude of
the mean curvature [37]. The interface Γ(t) is defined by the zero-level set of the solution ϕ, i.e.,
Γ(t) = {x ∈ Ω | ϕ(x, t) = 0}. The normal velocity V of Γ(t) at each point x is

V(x, t) = −(κ1 + κ2) = −
(

1
R1
+

1
R2

)
,

where κ1 and κ2 are the principal curvatures of the interface, and R1 and R2 are the principal radii. In
this section, we only consider the case where the two principal radii are the same, therefore, we set the
radius as R(t). In a 2D space, there is one principal radius, therefore, V = −1/R(t). In a 3D space,
V = −2/R(t). Thus, for the spatial dimension d,

V =
1 − d
R(t)

. (3.7)

Because the normal velocity V is the change in radius with time t,

V =
dR(t)

dt
. (3.8)

From Eqs (3.7) and (3.8) and the initial radius R0 = R(0), the analytic radius is

R(t) =
√

R2
0 + 2(1 − d)t.

For the details, refer to the references [37, 38]. We demonstrate the motion by mean curvature in 2D
and 3D domains. First, we perform a 2D simulation with the initial condition

ϕ(x, y, 0) = tanh

R0 −
√

(x − 0.5)2 + (y − 0.5)2

√
2ϵ

,
in which the shape of zero-level contour is a circle with center (0.5, 0.5) and radius R0 = 0.35, on
Ω = (0, 1)2. The parameters used are N = 100, h = 1/N, ∆t = 0.1h2, ϵ = 4h/(2

√
2 tanh−1 (0.9)),

and T = 6000∆t. Figure 9(a) shows that the given circle shrinks in the direction of the normal vector
according to motion by mean curvature. The zero-level contours are drawn every 600∆t from t = 0 to
t = 6000∆t. From the contour spacing, it can be observed that the circle shrinks faster as the radius
of the circle becomes smaller. Figure 9(b) indicates that the analytic and numerical radii agree with
each other. Figure 9(c)–9(e) show the snapshots of the computational solution at time t = 0, 3600∆t,
and 6000∆t, respectively.
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Figure 9. (a) With a circle initial condition, contours at the zero-level set of numerical
solution ϕ every 600∆t from t = 0 to t = 6000∆t. (b) Analytic and numerical radii
R(t) decrease over time t. (c)–(e) Mesh plots of the numerical solution at t = 0, 3600∆t,
and 6000∆t.

We consider three circles with different centers and radii as shown in Figure 10(a). The initial
condition is

ϕ(x, y, 0) = tanh

0.27 −
√

(x − 0.35)2 + (y − 0.65)2

√
2ϵ


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+ tanh

0.17 −
√

(x − 0.72)2 + (y − 0.25)2

√
2ϵ


+ tanh

0.1 −
√

(x − 0.8)2 + (y − 0.55)2

√
2ϵ

 + 2.

Here, the parameters, N, h, ϵ, ∆t, are used as described above. Figures 10(b) and 10(c) are the
snapshots of the computational solutions at t = 1200∆t and t = 3000∆t, respectively. Figure 10(d)
shows the zero-level contours every 300∆t from t = 0 to t = 3000∆t. The interface of the
computational solution shrinks with the different velocities depending on the mean curvature of each
circle. In other words, because the curvature of a circle with a smaller radius is large, the
smaller-radius circle disappears first, and the larger-radius circle shrinks slowly.

(a) (b)

(c)
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(d)
Figure 10. When the initial condition is defined as three different circles, (a)–(c) are mesh
plots of the numerical solution at t = 0, 1200∆t, and 3000∆t, and (d) is the zero-level
contours every 300∆t from t = 0 to t = 3000∆t.

Figure 11 shows the snapshots of the initial and numerical solution with the torus-type initial
condition:

ϕ(x, y, 0) = tanh

0.4 −
√

(x − 0.5)2 + (y − 0.5)2

√
2ϵ


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− tanh

0.3 −
√

(x − 0.5)2 + (y − 0.5)2

√
2ϵ

 − 1,

on Ω = (0, 1)2. Here, the parameters, N, h, ϵ, ∆t, are used as described above. In Figure 11, the top
and bottom rows show mesh plots and zero-level contours of the solution, respectively, where the time
t is 0, 3000∆t, and 5000∆t. It is observed that the radius of the inner contour is smaller than that of
the outer contour as shown in Figure 11. Hence, with motion by mean curvature, the inner contour
decreases faster than the outer contour.
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(c) t = 5000∆t
Figure 11. When the torus-type initial condition is given, (a)–(c) are snapshots of the
numerical solution and zero-level set at time t = 0, 3000∆t, and 5000∆t, respectively.

In addition, we observe the results of 2D simulation with the star-shaped initial condition on
Ω = (0, 1)2 as shown in Figure 12(a). We use N = 150, h = 1/N, ∆t = 0.1h2, and
ϵ = 8h/(2

√
2 tanh−1 (0.9)). Even though an initially complex shape is given, the part with the largest

mean curvature is smoothed first, and then becomes circular. Figure 12(b) and 12(c) show mesh and
contour plots of the computational solution at t = 0, 100∆t, and 3000∆t.
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(c) t = 3000∆t

Figure 12. When the star-shaped initial condition is given, (a)–(c) are snapshots of the
computational solution and zero-level set at t = 0, 1000∆t, and 3000∆t, respectively.

Next, we consider several computational simulations in a 3D domain to demonstrate motion by
mean curvature. First of all, we verify the decreasing trend in the radius of a sphere. We conduct
the 3D simulation with the following initial condition:

ϕ(x, y, z, 0) = tanh

R0 −
√

(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

√
2ϵ

,
i.e., a sphere with center (0.5, 0.5, 0.5) and radius R0 = 0.35, on the computational domain
Ω = (0, 1)3. The parameters used are N = Nx = Ny = Nz = 80, h = 1/N, ∆t = 0.1h2, and
ϵ = 4h/(2

√
2 tanh−1 (0.9)). Figure 13 shows that the given sphere shrinks in the direction of the

normal vector according to motion by mean curvature.
Figure 14 shows the temporal evolution of a torus in a domain Ω = (0, 1) × (0, 1) × (0, 0.5). The

initial torus with center (0.5, 0.5, 0.25), large radius R1 = 0.25, and small radius R2 = 0.12 is defined
as:

ϕ(x, y, z, 0) = tanh

R2 −

√
(R1 −

√
(x − 0.5)2 + (y − 0.5)2)2 + (z − 0.25)2

√
2ϵ

.
The parameters are used as Nx = Ny = 100, Nz = 50, h = 0.01, ϵ = 8h/(2

√
2 tanh−1 (0.9)), ∆t = 0.1h2,

and T = 700∆t.
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Figure 13. With a sphere initial condition, the analytic and numerical radii R(t) decrease
over time t. The dot plots are displayed every 200∆t from t = 0.
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Figure 14. With a torus initial condition, (a)–(c) are snapshots of the numerical solution at
t = 0, 300∆t, and 700∆t, respectively. The top row is the zero-level isosurface. The second
and bottom rows are contours of horizontal (z = 0.25) and vertical (y = 0.5) sections of the
top figures, respectively.
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On a computational domain Ω = (−1, 1)3, we consider a sphere of center (0, 0, 0) and radius R0

perturbed by a spherical harmonic Yl,m [39, 40]:

ϕ(x, y, z, 0) = tanh

R0 −
√

x2 + y2 + z2 + AYl,m(θ, φ)
√

2ϵ

,
where A denotes amplitude, θ is the polar angle (measured from z-axis), and φ is the azimuthal
angle (measured counterclockwise from the x-axis to the y-axis). Here, l = 10, m = 7, R0 = 0.7,
and A = 0.7. The parameters are used as N = 100, h = 2/N, ϵ = 4h/(2

√
2 tanh−1 (0.9)), ∆t = 0.1h2,

and T = 1000∆t. Figure 15 shows the snapshots at t = 0, 200∆t, and 1000∆t. From the results, the
temporal evolution works according to motion by mean curvature.

(a) t = 0 (b) t = 200∆t (c) t = 1000∆t
Figure 15. With a sphere initial condition perturbed by a spherical harmonic, (a)–(c) are
snapshots of the numerical solution at time t = 0, 200∆t, and 1000∆t, respectively.

3.7. Temporal evolution with obstacles

The implicit-type methods, compared to the explicit method, can use a relatively large ∆t.
However, it is difficult to implement their algorithms for the computational simulation. For example,
the multigrid method is one of the most famous algorithms for solving implicitly discretized PDEs. If
the computational domain is complex or there are obstacles that interfere with the evolution of order
parameter ϕ, it gets more complicated. In contrast, our proposed explicit compact method can obtain
the spatially fourth-order accurate solution for the AC equation efficiently even in complex domains
or in the presence of obstacles. To demonstrate these advantages, we perform the computational
simulations considering obstacles that are solid and fixed structures in 2D and 3D domains.

We use the non-convex initial condition and the rectangular bar-shaped obstacle in the 2D domain as
shown in Figure 16(a). In Figure 16, from top to bottom, each row represents without the obstacle, with
the obstacle, and overlapping the two cases. Here, the solid line and the purple area are the zero-level
set of the solutions with and without the obstacle, respectively, and the green area inside the dotted line
is the obstacle. The parameters used for the test are N = 256, h = 1/N, ∆t = 0.1h2, T = 39000∆t,
and ϵ = 4h/(2

√
2 tanh−1(0.9)) in the domain Ω = (0, 1)2. The first row of Figure 16 shows the

temporal evolution by mean curvature flow in the case without the obstacle as the numerical simulations
presented in previous subsections. To perform the simulations with the obstacle, we perform iterative
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calculations for numerical solutions only at grid points in the whole domain except for obstacles. For
the numerical solution near the obstacle, we always use the fixed solution, ϕ = −1, at points inside the
obstacle. The second row of Figure 16 shows the temporal evolution of the zero-level set of numerical
solutions with the obstacle. The mean curvature of the inward curves near the obstacle becomes larger
than in the case without the obstacle. Therefore, the part with larger mean curvature, such as near the
obstacle, shrinks faster according to motion by mean curvature. It is observed that the different mean
curvature causes different results of temporal evolution depending on whether the obstacle exists as
shown in the bottom row of Figure 16.
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(a) t = 0 (b) t = 13000∆t (c) t = 26000∆t (d) t = 39000∆t
Figure 16. (a)–(d) Snapshots of zero-level contours of the numerical solution without and
with an obstacle at t = 0, 13000∆t, 26000∆t, and 39000∆t. The first and second rows imply
the numerical solution without and with an obstacle, respectively. The third row shows the
overlapped contours of the two cases.

Next, we conduct the 3D experiments using the non-convex initial condition, where the values
inside the surface are ϕ = 1 and the outside is ϕ = −1 as shown in Figure 17(a). Figures 17(a)–17(d)
illustrate the temporal evolutions of zero-level isosurface of the numerical solutions without and with
the obstacle. In the second row of Figure 17, the green object represents the obstacle where the inside
and boundary of the obstacle are fixed to ϕ = −1. Here, we use the numerical parameters as N = 150,

AIMS Mathematics Volume 9, Issue 1, 735–762.



758

h = 1/N, ∆t = 0.1h2, and ϵ = 4h/(2
√

2 tanh−1(0.9)) in the domain Ω = (0, 1)3. Even in 3D space, the
mean curvature of the area with the obstacle is maintained to be large, and the solution contracts faster
than when there is no obstacle. The difference between 2D and 3D simulations is that there are two
principal curvatures in the 3D domain, which complicates the analysis of the numerical results more
than in the 2D cases. However, the basic mechanism is the same as the 2D simulations.

(a) t = 0 (b) t = 400∆t (c) t = 2400∆t (d) t = 3600∆t

Figure 17. (a)–(d) Snapshots of isosurface of the numerical solutions without and with an
obstacle at t = 0, 400∆t, 2400∆t, and 3600∆t. The first and second rows imply the numerical
solution without and with an obstacle, respectively.

4. Conclusions

We presented the explicit spatially fourth-order accurate compact method for the AC equation. We
use a fourth-order compact FDM, not only being more accurate but needing relatively less wide
stencils for the discrete Laplace operator. The time step restriction that is the typical problem of the
explicit Euler scheme is not severe because the governing equation is a second-order parabolic PDEs,
and small temporal step sizes should be used for an accurate numerical solution. Moreover, it is
simple to implement. Therefore, the proposed numerical algorithm is fast and efficient. We observed
the phase separation phenomena using random number initial conditions, calculated the rate of
convergence to verify the fourth-order accuracy in space, verified the hyperbolic tangent equilibrium
profile, and numerically demonstrated the dissipation of discrete total energy. We verified the
efficiency of the proposed method by comparing the computational cost between our method and the
existing method. We performed various numerical simulations for motion by mean curvature, the
representative property of the AC equation. Moreover, experiments comparing the numerical
solutions with and without solid obstacles were performed to indicate that the proposed numerical
algorithm is efficient and simple to implement. In previous research [41], the maximum bound
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principle and energy dissipation were proven for a one-step explicit method to the AC equation. On
the other hand, this is a non-trivial and challenging task for the current proposed scheme, which
involves a two-step method using the (n − 1)-, n-, and (n + 1)-th time step solutions. In this study, we
focused on proposing a fully explicit fourth-order compact scheme and presenting numerical
experiments of the proposed method for the AC equation. In future work, theoretical proof for the
maximum bound principle, energy dissipation, and error estimates will be considered, drawing
insights from the studies conducted by [42, 43].
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