Citation: Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang. Closure properties of generalized $\lambda$-Hadamard product for a class of meromorphic Janowski functions[J]. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102
[1] | R. M. El-Ashwah, M. K. Aouf, Hadamard product of certain meromorphic starlike and convex function, Comput. Math. Appl., 57 (2009), 1102-1106. doi: 10.1016/j.camwa.2008.07.044 |
[2] | P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, Springer-Verlag, New York, Berlin Heidelbergr Tokyo, 1983. |
[3] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297-326. doi: 10.4064/ap-28-3-297-326 |
[4] | J. H. Choi, Y. C. Kim, S. Owa, Generalizations of hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495-501. doi: 10.1006/jmaa.1996.0157 |
[5] | S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4 |
[6] | H. Tang, G.-T. Deng, S.-H. Li, Quasi-Hadamard product of meromorphic univalent functions at infinity, J. Math., 34 (2014), 51-57. |
[7] | R. M. El-Ashwah, M. K. Aouf, A. M. Hassan, A. H. Attia, Generalizations of hadamard product of certain meromorphic multivalent functions with positive coefficients, European Journal of Mathematical Sciences, 2 (2013), 41-50. |
[8] | J.-L. Liu, H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl., 259 (2001), 566-581. doi: 10.1006/jmaa.2000.7430 |
[9] | F. Ghanim, M. Darus, New subclass of multivalent hypergeometric meromorphic functions, J. Pure Appl. Math., 61 (2010), 269-280. |