Citation: Rui Wang, Jiangtao Peng. On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups Ⅱ[J]. AIMS Mathematics, 2021, 6(2): 1706-1714. doi: 10.3934/math.2021101
[1] |
B. Bollobás, I. Leader, The number of k-sums modulo k, J. Number Theory, 78 (1999), 27-35. doi: 10.1006/jnth.1999.2405
![]() |
[2] |
R. B. Eggletőn, P. Erdos, Two combinatorial problems in group theory, Acta Arith., 21 (1972), 111-116. doi: 10.4064/aa-21-1-111-116
![]() |
[3] |
W. Gao, M. Huang, W. Hui, Y. Li, C. Liu, J. Peng, Sums of sets of abelian group elements, J. Number Theory, 208 (2020), 208-229. doi: 10.1016/j.jnt.2019.07.026
![]() |
[4] |
W. Gao, I. Leader, Sums and k-sums in an abelian groups of order k, J. Number Theory, 120 (2006), 26-32. doi: 10.1016/j.jnt.2005.11.010
![]() |
[5] |
W. Gao, Y. Li, J. Peng, F. Sun, Subsums of a Zero-sum Free Subset of an Abelian Group, Electron. J. Combin., 15 (2008), R116. doi: 10.37236/840
![]() |
[6] |
W. Gao, Y. Li, J. Peng, F. Sun, On subsequence sums of a zero-sum free sequence Ⅱ, Electron. J. Combin., 15 (2008), R117. doi: 10.37236/841
![]() |
[7] |
A. Geroldinger, D. J. Grynkiewicz, The large Davenport constant I: Groups with a cyclic, index 2 subgroup, J. Pure Appl. Algebra, 217 (2013), 863-885. doi: 10.1016/j.jpaa.2012.09.004
![]() |
[8] | A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, Chapman & Hall/CRC, 2006, vol. 278, p700. |
[9] | H. Guan, X. Zeng, P. Yuan, Description of invariant F(5) of a zero-sum free sequence, Acta Sci. Natur. Univ. Sunyatseni, 49 (2010), 1-4 (In Chinese). |
[10] |
J. E. Olson, Sums of sets of group elements, Acta Arith., 28 (1975), 147-156. doi: 10.4064/aa-28-2-147-156
![]() |
[11] | J. E. Olson, E. T. White, Sums from a sequence of group elements, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, 1977,215-222. |
[12] | J. Peng, W. Hui, On the structure of zero-sum free set with minimum subset sums in abelian groups, Ars Combin., 146 (2019), 63-74. |
[13] | J. Peng, W. Hui, on subsequence sums of zero-sum free sequences in abelian groups of rank two. JP J. Algebra, Number Theory Appl., 48 (2020), 133-153. |
[14] |
J. Peng, W. Hui, Y. Li, F. Sun, On subset sums of zero-sum free sets of abelian groups. Int. J. Number Theory, 15 (2019), 645-654. doi: 10.1142/S1793042119500349
![]() |
[15] |
J. Peng, Y. Li, C. Liu, M. Huang, On the inverse problems associated with subsequence sums of zero-sum free sequences over finite abelian groups, Colloq. Math., 163 (2021), 317-332. doi: 10.4064/cm8033-12-2019
![]() |
[16] |
J. Peng, Y. Li, C. Liu, M. Huang, On subsequence sums of a zero-sum free sequence over finite abelian groups, J. Number Theory, 217 (2020), 193-217. doi: 10.1016/j.jnt.2020.04.024
![]() |
[17] |
J. Peng, Y. Qu, Y. Li, On the inverse problems associated with subsequence sums in Cp⊕Cp, Front. Math. China, 15 (2020), 985-1000. doi: 10.1007/s11464-020-0869-2
![]() |
[18] |
A. Pixton, Sequences with small subsums sets, J. Number Theory, 129 (2009), 806-817. doi: 10.1016/j.jnt.2008.12.004
![]() |
[19] |
Y. Qu, X. Xia, L. Xue, Q. Zhong, Subsequence sums of zero-sum free sequences over finite abelian groups, Colloq. Math., 140 (2015), 119-127. doi: 10.4064/cm140-1-10
![]() |
[20] |
F. Sun, On subsequence sums of a zero-sum free sequence, Electron. J. Combin., 14 (2007), R52. doi: 10.37236/970
![]() |
[21] | F. Sun, Y. Li, J. Peng, A note on the inverse problems associated with subsequence sums, J. Combin. Math. Combin. Comput. (in press). |
[22] |
P. Yuan, Subsequence sums of a zero-sumfree sequence, European J. Combin., 30 (2009), 439-446. doi: 10.1016/j.ejc.2008.04.008
![]() |
[23] |
P. Yuan, Subsequence Sums of Zero-sum-free Sequences, Electron. J. Combin., 16 (2009), R97. doi: 10.37236/186
![]() |
[24] |
P. Yuan, X. Zeng, On zero-sum free subsets of length 7, Electron. J. Combin., 17 (2010), R104. doi: 10.37236/376
![]() |