Citation: D. Preethi, J. Vimala, S. Rajareega. A systematic study in the applications of fuzzy hyperlattice[J]. AIMS Mathematics, 2021, 6(2): 1695-1705. doi: 10.3934/math.2021100
[1] | P. Corsini, V. Leoreanu-Fotea, Applications of hyperstructure theory, Kluwer Dordrecht, 2003. |
[2] | B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007. |
[3] | B. Davvaz, A. D. Nezhad, M. M. Heidari, Inheritance examples of algebraic hyperstructures, Inf. Sci., 224 (2013), 180-187. doi: 10.1016/j.ins.2012.10.023 |
[4] | A. D. Nezhada, M. Nadjafikhahb, S. M. Moosavi Nejadc, B. Davvaz, The algebraic hyperstructure of elementary particles in physical theory, Indian J. Phys., 86 (2012), 1027-1032. DOI: 10.1007/s12648-012-0151-x. doi: 10.1007/s12648-012-0151-x |
[5] | G. Birkhoff, Lattice Ordered Grou, Annals Math., Second Series, 43 (1942), 298-331. doi: 10.2307/1968871 |
[6] | X. Z. Guo, X. L. Xin, Hyperlattices, Pure Appl. Math., 20 (2004), 40-43. |
[7] | D. L. Hartl, E. W. Jones, Genetics: Principles and Analysis, Jones and Bartlett Publishers, 1998. |
[8] | M. Konstantinidou, J. Mittas, An introduction to the theory of hyperlattices, Math. Balkanica., 7 (1977), 187-193. |
[9] | A. D. Lokhande, A. B. Gangadhara, J. A. Ansari, Characterizations of Prime and Minimal Prime Ideals of Hyperlattices, Int. J. Recent Innovation Trends Comput. Commun., 5(2017), 532-548. |
[10] | F. Marty, Sur une generalisation de la notion de groupe, 8th congres des Mathematiciens Scandinaves, (1934), 45-49. |
[11] | T. Muta, Foundations of quantum chromodynamics, Second edition, World Sci. Lect. Notes Phys., 57 (1998). |
[12] | P. He, X. Xin, J. Zhan, On rough hyperideals in hyperlattices, J. Appl. Math., (2013), Article ID 915217. |
[13] | P. He, X. Xin, Fuzzy hyperlattices, Comput. Math. Appl., 62 (2011), 4682-4690. doi: 10.1016/j.camwa.2011.10.059 |
[14] | D. Preethi, J. Vimala, B. Davvaz, S. Rajareega, Biological inheritance on fuzzy hyperlattice ordered group, J. Intell. Fuzzy Syst., 38 (2020), 6457-6464. DOI: 10.3233/JIFS-179726. doi: 10.3233/JIFS-179726 |
[15] | D. Preethi, J. Vimala, S. Rajareega, Some properties on fuzzy hyperlattice ordered group, Int. J. Adv. Sci. Technol., 28 (2020), 124-132. |
[16] | S. Rajareega, J. Vimala, D. Preethi, Complex intuitionistic fuzzy soft lattice ordered group and its weighted distance measures, Mathematics, 8 (2020). |
[17] | S. Rasouli, B. Davvaz, Lattices derived from hyperlattices, Commun. Algebra., 38 (2010), 2720-2737. doi: 10.1080/00927870903055230 |
[18] | S. Rasouli, B. Davvaz, Construction and spectral topology on hyperlattices, Mediterr. J. Math., 7 (2010), 249-262. doi: 10.1007/s00009-010-0065-9 |
[19] | M. K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft. Comput., 12 (2008), 891-900. doi: 10.1007/s00500-007-0257-9 |
[20] | A. S. Lashkenari, B. Davvaz, Ordered Join Hyperlattices, U.P.B. Sci. Bull., Series A., 78 (2016). |
[21] | M. AI-Tahan, B. Davvaz, Fuzzy subsets of the phenotypes of F2-offspring, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform., 34 (2016). |
[22] | M. AI-Tahan, B. Davvaz, A new relationship between intuitionistic fuzzy sets and genetics, J. Classif. (Springer)., 36 (2019), 494-512. doi: 10.1007/s00357-018-9276-8 |
[23] | M. AI-Tahan, B. Davvaz, Algebraic hyperstructures associated to Biological inheritance, Math. Biosci., Elsevier., 285(2017), 112-118. doi: 10.1016/j.mbs.2017.01.002 |
[24] | M. AI-Tahan, B. Davvaz, n-ary hyperstructures associated to the genotypes of F2-offspring, Int. J. Biomath., 10 (2017). |
[25] | R. H. Tamarin, Principles of Genetics, 7Eds., The McGraw-Hill Companies, 2001. |
[26] | I. Tofan, A. C. Volf, On some connections between hyperstructures and fuzzy sets, Ital. J. Pure Appl. Math., 7 (2000), 63-68. |
[27] | J. Vimala, Fuzzy lattice ordered group, Int. J. Sci. Eng. Res., 5 (2014). |
[28] | Y. Q. Yin, J. M. Zhang, D. H. Xu, J. Y. Wang, The L-fuzzy hypermodules, Comput. Math. Appl., 59 (2010), 953-963. doi: 10.1016/j.camwa.2009.09.012 |
[29] | L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X |