Research article Special Issues

A systematic study in the applications of fuzzy hyperlattice

  • Received: 10 September 2020 Accepted: 10 November 2020 Published: 26 November 2020
  • MSC : 03E72, 06D72, 20N20

  • In the last few decennium, the acquaintance between algebraic hyperstructures and fuzzy sets have been considered for its theoretical as well as applications in various fields. Fuzzy hyperstructures are fascinating research topic and substantial amount of researches have been undergoing as of now. As a consequence, fuzzy hyperlattice was introduced by Pengfei He, Xiaolong Xin. But the applications on fuzzy hyperlattice are not defined so far. By scrutinizing the fuzzy hyperlattice, our objective is to present some applications of fuzzy hyperlattice in Biological and Physical Sciences. We find the first and second applications in dihybrid cross of Drosophila melanogaster (housefly) and Pisum sativum (Peas), respectively. Third application is in particle Physics (Elementary particles interaction).

    Citation: D. Preethi, J. Vimala, S. Rajareega. A systematic study in the applications of fuzzy hyperlattice[J]. AIMS Mathematics, 2021, 6(2): 1695-1705. doi: 10.3934/math.2021100

    Related Papers:

  • In the last few decennium, the acquaintance between algebraic hyperstructures and fuzzy sets have been considered for its theoretical as well as applications in various fields. Fuzzy hyperstructures are fascinating research topic and substantial amount of researches have been undergoing as of now. As a consequence, fuzzy hyperlattice was introduced by Pengfei He, Xiaolong Xin. But the applications on fuzzy hyperlattice are not defined so far. By scrutinizing the fuzzy hyperlattice, our objective is to present some applications of fuzzy hyperlattice in Biological and Physical Sciences. We find the first and second applications in dihybrid cross of Drosophila melanogaster (housefly) and Pisum sativum (Peas), respectively. Third application is in particle Physics (Elementary particles interaction).


    加载中


    [1] P. Corsini, V. Leoreanu-Fotea, Applications of hyperstructure theory, Kluwer Dordrecht, 2003.
    [2] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA, 2007.
    [3] B. Davvaz, A. D. Nezhad, M. M. Heidari, Inheritance examples of algebraic hyperstructures, Inf. Sci., 224 (2013), 180-187. doi: 10.1016/j.ins.2012.10.023
    [4] A. D. Nezhada, M. Nadjafikhahb, S. M. Moosavi Nejadc, B. Davvaz, The algebraic hyperstructure of elementary particles in physical theory, Indian J. Phys., 86 (2012), 1027-1032. DOI: 10.1007/s12648-012-0151-x. doi: 10.1007/s12648-012-0151-x
    [5] G. Birkhoff, Lattice Ordered Grou, Annals Math., Second Series, 43 (1942), 298-331. doi: 10.2307/1968871
    [6] X. Z. Guo, X. L. Xin, Hyperlattices, Pure Appl. Math., 20 (2004), 40-43.
    [7] D. L. Hartl, E. W. Jones, Genetics: Principles and Analysis, Jones and Bartlett Publishers, 1998.
    [8] M. Konstantinidou, J. Mittas, An introduction to the theory of hyperlattices, Math. Balkanica., 7 (1977), 187-193.
    [9] A. D. Lokhande, A. B. Gangadhara, J. A. Ansari, Characterizations of Prime and Minimal Prime Ideals of Hyperlattices, Int. J. Recent Innovation Trends Comput. Commun., 5(2017), 532-548.
    [10] F. Marty, Sur une generalisation de la notion de groupe, 8th congres des Mathematiciens Scandinaves, (1934), 45-49.
    [11] T. Muta, Foundations of quantum chromodynamics, Second edition, World Sci. Lect. Notes Phys., 57 (1998).
    [12] P. He, X. Xin, J. Zhan, On rough hyperideals in hyperlattices, J. Appl. Math., (2013), Article ID 915217.
    [13] P. He, X. Xin, Fuzzy hyperlattices, Comput. Math. Appl., 62 (2011), 4682-4690. doi: 10.1016/j.camwa.2011.10.059
    [14] D. Preethi, J. Vimala, B. Davvaz, S. Rajareega, Biological inheritance on fuzzy hyperlattice ordered group, J. Intell. Fuzzy Syst., 38 (2020), 6457-6464. DOI: 10.3233/JIFS-179726. doi: 10.3233/JIFS-179726
    [15] D. Preethi, J. Vimala, S. Rajareega, Some properties on fuzzy hyperlattice ordered group, Int. J. Adv. Sci. Technol., 28 (2020), 124-132.
    [16] S. Rajareega, J. Vimala, D. Preethi, Complex intuitionistic fuzzy soft lattice ordered group and its weighted distance measures, Mathematics, 8 (2020).
    [17] S. Rasouli, B. Davvaz, Lattices derived from hyperlattices, Commun. Algebra., 38 (2010), 2720-2737. doi: 10.1080/00927870903055230
    [18] S. Rasouli, B. Davvaz, Construction and spectral topology on hyperlattices, Mediterr. J. Math., 7 (2010), 249-262. doi: 10.1007/s00009-010-0065-9
    [19] M. K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft. Comput., 12 (2008), 891-900. doi: 10.1007/s00500-007-0257-9
    [20] A. S. Lashkenari, B. Davvaz, Ordered Join Hyperlattices, U.P.B. Sci. Bull., Series A., 78 (2016).
    [21] M. AI-Tahan, B. Davvaz, Fuzzy subsets of the phenotypes of F2-offspring, FACTA UNIVERSITATIS (NIS) Ser. Math. Inform., 34 (2016).
    [22] M. AI-Tahan, B. Davvaz, A new relationship between intuitionistic fuzzy sets and genetics, J. Classif. (Springer)., 36 (2019), 494-512. doi: 10.1007/s00357-018-9276-8
    [23] M. AI-Tahan, B. Davvaz, Algebraic hyperstructures associated to Biological inheritance, Math. Biosci., Elsevier., 285(2017), 112-118. doi: 10.1016/j.mbs.2017.01.002
    [24] M. AI-Tahan, B. Davvaz, n-ary hyperstructures associated to the genotypes of F2-offspring, Int. J. Biomath., 10 (2017).
    [25] R. H. Tamarin, Principles of Genetics, 7Eds., The McGraw-Hill Companies, 2001.
    [26] I. Tofan, A. C. Volf, On some connections between hyperstructures and fuzzy sets, Ital. J. Pure Appl. Math., 7 (2000), 63-68.
    [27] J. Vimala, Fuzzy lattice ordered group, Int. J. Sci. Eng. Res., 5 (2014).
    [28] Y. Q. Yin, J. M. Zhang, D. H. Xu, J. Y. Wang, The L-fuzzy hypermodules, Comput. Math. Appl., 59 (2010), 953-963. doi: 10.1016/j.camwa.2009.09.012
    [29] L. A. Zadeh, Fuzzy sets, Inf. Control., 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2429) PDF downloads(210) Cited by(4)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog