Research article

Best proximity points for proximal Górnicki mappings and applications to variational inequality problems

  • Received: 16 November 2023 Revised: 18 December 2023 Accepted: 27 December 2023 Published: 31 January 2024
  • MSC : 47H05, 47H10, 54J25

  • We introduce a large class of mappings called proximal Górnicki mappings in metric spaces, which includes Górnicki mappings, enriched Kannan mappings, enriched Chatterjea mappings, and enriched mappings. We prove the existence of the best proximity points in metric spaces and partial metric spaces. Moreover, we utilize appropriate examples to illustrate our results, and we verify the convergence behavior. As an application of our result, we prove the existence and uniqueness of a solution for the variational inequality problems. The obtained results generalize the existing results in the literature.

    Citation: P. Dhivya, D. Diwakaran, P. Selvapriya. Best proximity points for proximal Górnicki mappings and applications to variational inequality problems[J]. AIMS Mathematics, 2024, 9(3): 5886-5904. doi: 10.3934/math.2024287

    Related Papers:

  • We introduce a large class of mappings called proximal Górnicki mappings in metric spaces, which includes Górnicki mappings, enriched Kannan mappings, enriched Chatterjea mappings, and enriched mappings. We prove the existence of the best proximity points in metric spaces and partial metric spaces. Moreover, we utilize appropriate examples to illustrate our results, and we verify the convergence behavior. As an application of our result, we prove the existence and uniqueness of a solution for the variational inequality problems. The obtained results generalize the existing results in the literature.



    加载中


    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math., 3 (1922), 133–181. http://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] O. Popescu, A new class of contractive mappings, Acta Math. Hungar., 164 (2021), 570–579. https://doi.org/10.1007/s10474-021-01154-6 doi: 10.1007/s10474-021-01154-6
    [3] V. Berinde, M. Păcurar, Approximating fixed points of enriched contractions in Banach spaces, J. Fixed Point Theory Appl., 22 (2020), 38. https://doi.org/10.1007/s11784-020-0769-9 doi: 10.1007/s11784-020-0769-9
    [4] J. Górnicki, R. K. Bisht, Around averaged mappings, J. Fixed Point Theory Appl., 23 (2021), 48. https://doi.org/10.1007/s11784-021-00884-y
    [5] A. Marchis, Common fixed point theorems for enriched Jungck contractions in Banch spaces, J. Fixed Point Theory Appl., 23 (2021), 76. https://doi.org/10.1007/s11784-021-00911-y doi: 10.1007/s11784-021-00911-y
    [6] V. Berinde, M. Pacurar, Kannan's fixed point approximation for solving split feasibility and variational inequality problems, J. Comput. Appl. Math., 386 (2021), 113217. https://doi.org/10.1016/j.cam.2020.113217 doi: 10.1016/j.cam.2020.113217
    [7] V. Berinde, M. Păcurar, Approximating fixed points of enriched Chatterjea contractions by Krasnoselskij iterative algorithm in Banach spaces, J. Fixed Point Theory Appl., 23 (2021), 66. https://doi.org/10.1007/s11784-021-00904-x doi: 10.1007/s11784-021-00904-x
    [8] V. Berinde, M. Pacurar, Krasnoselskij-type algorithms for variational inequality problems and fixed point problems in Banach spaces, 2021. https://doi.org/10.48550/arXiv.2103.10289
    [9] T. Kesahorm, W. Sintunavarat, On novel common fixed point results for enriched nonexpansive semigroups, Thai J. Math., 18 (2020), 1549–1563.
    [10] V. Berinde, Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators, Ann. West Univ. Timisoara Math. Comput. Sci., 56 (2018), 13–27. https://doi.org/10.2478/awutm-2018-0013 doi: 10.2478/awutm-2018-0013
    [11] V. Berinde, M. Păcurar, Fixed point theorems for enriched Ćirić-Reich-Rus contractions in Banach spaces and convex metric spaces, Carpathian J. Math., 37 (2021), 173–184. https://doi.org/10.37193/CJM.2021.02.03 doi: 10.37193/CJM.2021.02.03
    [12] G. V. R. Babu, P. Mounika, Fixed points of enriched contraction and almost enriched CRR contraction maps with rational expressions and convergence of fixed points, Proc. Int. Math. Sci., 5 (2023), 5–16. https://doi.org/10.47086/pims.1223856 doi: 10.47086/pims.1223856
    [13] V. Berinde, Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), 293–304. {https://doi.org/10.37193/cjm.2019.03.04} doi: 10.37193/cjm.2019.03.04}
    [14] J. Anuradha, P. Veeramani, Proximal pointwise contraction, Topol. Appl., 156 (2009), 2942–2948. https://doi.org/10.1016/j.topol.2009.01.017 doi: 10.1016/j.topol.2009.01.017
    [15] M. A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. Theor., 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022 doi: 10.1016/j.na.2008.07.022
    [16] A. Anthony Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081
    [17] C. Di Bari, T. Suzuki, C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. Theor., 69 (2008), 3790–3794. https://doi.org/10.1016/j.na.2007.10.014 doi: 10.1016/j.na.2007.10.014
    [18] A. A. Eldred, W. A. Kirk, P. Veeramani, Proximinal normal structure and relatively nonexpanisve mappings, Stud. Math., 171 (2005), 283–293. https://doi.org/10.4064/sm171-3-5 doi: 10.4064/sm171-3-5
    [19] A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081
    [20] S. Karpagam, S. Agrawal, Best proximity point theorems for p-cyclic Meir-Keeler contractions, Fixed Point Theory Appl., 2009 (2009), 197308. https://doi.org/10.1155/2009/197308 doi: 10.1155/2009/197308
    [21] W. A. Kirk, S. Reich, P. Veeramani, Proximinal retracts and best proximity pair theorems, Numer. Func. Anal. Opt., 24 (2003), 851–862. https://doi.org/10.1081/NFA-120026380 doi: 10.1081/NFA-120026380
    [22] V. Pragadeeswarar, M. Marudai, Best proximity points: Approximation and optimization in partially ordered metric spaces, Optim. Lett., 7 (2013), 1883–1892. https://doi.org/10.1007/s11590-012-0529-x doi: 10.1007/s11590-012-0529-x
    [23] S. Sadiq Basha, Best proximity points: Global optimal approximate solutions, J. Glob. Optim., 49 (2011), 15–21. https://doi.org/10.1007/s10898-009-9521-0 doi: 10.1007/s10898-009-9521-0
    [24] S. Sadiq Basha, P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory, 103 (2000), 119–129. https://doi.org/10.1006/jath.1999.3415 doi: 10.1006/jath.1999.3415
    [25] S. Sadiq Basha, Extensions of Banach's contraction principle, Numer. Func. Anal. Opt., 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713 doi: 10.1080/01630563.2010.485713
    [26] V. Sankar Raj, A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal. Theor., 74 (2011), 4804–4808. https://doi.org/10.1016/j.na.2011.04.052 doi: 10.1016/j.na.2011.04.052
    [27] E. Karapınar, I. M. Erhan, Best proximity point on different type contractions, Appl. Math. Inf. Sci., 3 (2011), 342–353.
    [28] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240. https://doi.org/10.1007/BF01110225 doi: 10.1007/BF01110225
    [29] S. G. Matthews, Partial metric topology, Gen. Topol. Appl., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
    [30] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2005), 229–240. https://doi.org/10.4995/agt.2005.1957 doi: 10.4995/agt.2005.1957
    [31] L. Ćirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218 (2011), 2398–2406. https://doi.org/10.1016/j.amc.2011.07.005 doi: 10.1016/j.amc.2011.07.005
    [32] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categor. Struct., 7 (1999), 71–83. https://doi.org/10.1023/A:1008684018933 doi: 10.1023/A:1008684018933
    [33] A. Shcheglov, J. Z. Li, C. Wang, A. Ilin, Y. Zhang, Reconstructing the absorption function in a quasi-linear sorption dynamic model via an iterative regularizing algorithm, Adv. Appl. Math. Mech., 16 (2024), 237–252. https://doi.org/10.4208/aamm.OA-2023-0020 doi: 10.4208/aamm.OA-2023-0020
    [34] Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization methods for illposed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062
    [35] G. Lin, X. L. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008
    [36] G. Baravdish, O. Svensson, M. Gulliksson, Y. Zhang, Damped second order flow applied to image denoising, IMA J. Appl. Math., 84 (2019), 1082–1111. https://doi.org/10.1093/imamat/hxz027 doi: 10.1093/imamat/hxz027
    [37] Q. Ran, X. Cheng, R. Gong, Y. Zhang, A dynamical method for optimal control of the obstacle problem, J. Inverse Ill Pose. P., 31 (2023), 577–594. https://doi.org/10.1515/jiip-2020-0135 doi: 10.1515/jiip-2020-0135
    [38] C. Shih-sen, H. W. Joseph Lee, C. K. Chan, A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization, Nonlinear Anal. Theor., 70 (2009), 3307–3319. https://doi.org/10.1016/j.na.2008.04.035 doi: 10.1016/j.na.2008.04.035
    [39] A. Latif, R. F. Al Subaie, M. O. Alansari, Fixed points of generalized multi-valued contractive mappings in metric type spaces, J. Nonlinear Var. Anal., 6 (2022), 123–138. https://doi.org/10.23952/jnva.6.2022.1.07 doi: 10.23952/jnva.6.2022.1.07
    [40] V. Asem, Y. M. Singh, On Meir-Keeler proximal contraction for non-self mappings, J. Adv. Math. Stud., 15 (2022), 250–261.
    [41] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Society for Industrial and Applied Mathematics, 2000.
    [42] D. V. Thong, D. Van Hieu, Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems, Numer. Algor., 82 (2019), 761–789. https://doi.org/10.1007/s11075-018-0626-8 doi: 10.1007/s11075-018-0626-8
    [43] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [44] F. Tchier, C. Vetro, F. Vetro, Best approximation and variational inequality problems involving a simulation function, Fixed Point Theory Appl., 2016 (2016), 26. https://doi.org/10.1186/s13663-016-0512-9 doi: 10.1186/s13663-016-0512-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(886) PDF downloads(87) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog