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1. Introduction and preliminaries

The well-known Banach contraction mapping principle was introduced by Stefan Banach in the
year 1922 [1]. The result indicates that every contraction mapping on a complete metric space has a
unique fixed point. After that, metric fixed-point theory evolved by generalizing Banach’s contraction
principle. In the same way, here, we generalize a class of mapping called generalized enriched
contractions [2].

In the year 2019, a large class of Picard operators called enriched contractions was introduced by
Berinde and Pacurar [3] after that, Górnicki and Bisht [4] generalized the result of enriched
contractions by using averaged mappings. In 2021, Alexandra Marchis [5] proved common
fixed-point theorems by applying the enriched-type conditions for two single-valued mappings
satisfying the weak commutativity conditions.

Considering this direction, the following class of enriched mappings were introduced and studied
by various authors in recent years.
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Enriched contractions [3], enriched Kannan mappings [6], enriched Chatterjea mappings [7],
enriched almost contractions [8], semi-groups of enriched non-expansive mappings [9] are proven in
Hilbert space, enriched strictly pseudo contractive operators [10], enriched Ciric-Reich-Rus
contraction [11], enriched contraction mappings with rational contraction [12], and enriched
non-expansive mappings [13] proven in Banach space. Another type of enriched non-expansive
mappings [13] have been proven in Hilbert space.

Definition 1.1. [3] Let (Ω, ∥.∥) be a normed linear space. A mapping ϕ : Ω → Ω is said to be an
enriched contraction if there exists κ ∈ [0,+∞) and σ ∈ [0, κ + 1) such that, for every ξ, ζ ∈ Ω,

∥κ(ξ − ζ) + ϕξ − ϕζ∥ ≤ σ∥ξ − ζ∥. (1.1)

Example. [3] Any contraction ϕ with a constant c is an enriched contraction. Let κ = 0 and σ = c ∈
[0, 1); then, ϕ becomes a contraction.

Example. [3] Let Ω = [0, 1] be endowed with the usual norm, and let ϕ : Ω → Ω be defined by
ϕξ = 1 − ξ for all ξ ∈ [0, 1]. Then, ϕ is non-expansive. Here, let k ∈ (0, 1) and σ = 1 − k;then, ϕ is not
a contraction, but ϕ is an enriched contraction

∥(κ − 1)(ξ − ζ)∥ ≤ σ∥ξ − ζ∥ , σ ∈ [0, κ + 1).

Theorem 1.1. [3] Let (Ω, ∥.∥) be a Banach space and ϕ : Ω→ Ω a (κ, σ)-enriched contraction. Then

(1) fix (ϕ) = p;

(2) there exists λ ∈ (0, 1] such that the iterative method (ξn), given by

ξn+1 = (1 − λ)ξn + λϕξn, n ≥ 0,

converges strongly to p, for any ξ0 ∈ Ω;

(3) the estimate

∥ξn+i−1 − p∥ ≤
ci

1 − c
∥ξn − ξn−1∥

holds for every n, i ∈ {1, 2, 3, ...}, where c = σ
κ+1 .

In 2021, Popescu [2] introduced a new class of Picard operators that generalizes the class of enriched
contractions, enriched Kannan mappings, and enriched Chatterjea mappings and proved some fixed-
point theorems. The new class of Picard operators called Górnicki mappings is a more general class of
mappings that includes discontinuous functions.

Definition 1.2. [2] Let (Ω, d) be a complete metric space, and let ϕ : Ω → Ω be a self-mapping. We
say that ϕ is a Górnicki mapping if ϕ satisfies

d(ϕξ, ϕζ) ≤ M[d(ξ, ϕξ) + d(ζ, ϕζ) + d(ξ, ζ)]

with M < 1 and there exists non-negative real constants α, β with α ≤ 1 such that, for arbitrary ξ ∈ Ω,
there exists µ ∈ Ω with d(µ, ϕµ) ≤ αd(ξ, ϕξ) and d(µ, ξ) ≤ βd(ξ, ϕξ).
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The following theorems were proved by Popescu [2] for Górnicki mappings including the class of
enriched contractions.

Theorem 1.2. [2] Let (Ω, d) be a complete metric space, and let ϕ : Ω → Ω be a Górnicki mapping.
Then ϕ has a fixed point.

Theorem 1.3. [2] Let (Ω, ∥.∥) be a linear normed space and ϕ : Ω→ Ω a (κ, σ)-enriched contraction.
Then, ϕ is a Górnicki mapping.

Theorem 1.4. [2] Let (Ω, ∥.∥) be a linear normed space and ϕ : Ω → Ω a (κ, σ)-enriched Kannan
contraction. Then, ϕ is a Górnicki mapping.

Theorem 1.5. [2] Let (Ω, ∥.∥) be a linear normed space and ϕ : Ω → Ω a (κ, σ)-enriched Chatterjea
contraction. Then, ϕ is a Górnicki mapping.

Let ∆ be a non-empty subset of a metric space (Ω, d), and let ϕ : ∆ → Ω represent a mapping.
Suppose that ξ is a solution to the equation ϕξ = ξ if and only if ξ is a fixed point of ϕ. Hence, the
condition ϕ(∆) ∩ ∆ , ∅ is necessary for the existence of fixed points for the operator ϕ. When this
necessary condition is not satisfied, it implies that, for any ξ ∈ ∆, d(ξ, ϕξ) > 0, and as a result, the
mapping ϕ : ∆ → Ω does not have any fixed points; this means that the equation ϕξ = ξ has no
solutions. Consequently, we have to find an element ξ such that, the distance between ξ and ϕξ is
minimized. The best approximation theorem and best proximity point theorem have been developed in
this field of work. The references for best proximity points are as follows [14–27].

Definition 1.3. [28] Let ∆ and Γ be two non-empty subsets of a metric space (Ω, d) and consider a
mapping ϕ : ∆→ Γ. We say that η ∈ ∆ is a best proximity point of ϕ if

d(η, ϕη) = d(∆,Γ) := in f {d(ξ, ζ) : ξ ∈ ∆, ζ ∈ Γ}.

In 1994, Matthews [29] introduced partial metric spaces which generalized the usual metric spaces
by relaxing the metric condition that the self-distance must be zero. It has significant application in
computer science particularly in research on the denotational semantics of data flow networks [29].
Since this finding many authors have worked in that area. A few references are [30–32].

Definition 1.4. [29] A partial metric space on a non-empty set Ω is a function p : Ω × Ω → [0,∞)
such that

(1) ξ = ζ ⇔ p(ξ, ξ) = p(ξ, ζ) = p(ζ, ζ);

(2) p(ξ, ξ) ≤ p(ξ, ζ) (self-distance);

(3) p(ξ, ζ) = p(ζ, ξ) (symmetry);

(4) p(ξ, ζ) ≤ p(ξ, η) + p(η, ζ) − p(η, η) (triangular inequality).

It is clear that, if p(ξ, ζ) = 0, then, from (1) and (2), ξ = ζ. But, if ξ = ζ, p(ξ, ζ) may not be 0.

Example. Consider that Ω = [0,∞), with a partial metric p : Ω ×Ω→ [0,∞), is defined by

p(ξ, ζ) = max{ξ, ζ}

for all ξ, ζ ∈ Ω. It is easy to verify that (Ω, p) is a partial metric space.
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The following topological properties for partial metric spaces were proved by Mathews in [29].
A partial metric on Ω generates a T0 topology τp on Ω, which has a family of open p-balls such
that {Bp(ξ, ϵ) : ξ ∈ Ω, ϵ > 0}, where Bp(ξ, ϵ) = {ζ ∈ Ω : p(ξ, ζ) < p(ξ, ξ) + ϵ} for all ξ ∈ Ω and ϵ > 0.
If p is a partial metric on Ω, then the metric dp : Ω ×Ω→ [0,∞) is given by

dp(ξ, ζ) = 2p(ξ, ζ) − p(ξ, ξ) − p(ζ, ζ).

Furthermore, lim
n→∞

dp(ξn, ξ) = 0 if and only if

p(ξ, ξ) = lim
n→∞

p(ξn, ξ) = lim
n,m→∞

p(ξn, ξm).

Let (Ω, p) be a partial metric space. Then,
(i) a sequence (ξn) in (Ω, p) converges to a point ξ ∈ Ω if and only if p(ξ, ξ) = lim

n→∞
p(ξn, ξ);

(ii) a sequence (ξn) in (Ω, p) is called a Cauchy sequence if lim
n,m→∞

p(ξn, ξm) exist(and is finite);

(iii) (Ω, p) is said to be complete if every Cauchy sequence (ξn) in Ω converges with respect to τp

to a point ξ ∈ Ω such that p(ξ, ξ) = lim
n,m→∞

p(ξn, ξm).

Let ∆ and Γ be non-empty subsets of a partial metric space (Ω, ∥.∥). Then, p(∆,Γ) = inf{p(ζ, µ) :
ζ ∈ ∆, µ ∈ Γ}.

Lemma 1.1. [29] Let (Ω, p) be a partial metric space and (ξn) be a sequence in Ω. Then,
(i) (ξn) is a Cauchy sequence in (Ω, p) if and only if it is a Cauchy sequence in the metric

space (Ω, dp);
(ii) the space (Ω, p) is complete if and only if the metric space (Ω, dp) is complete.

There are a lot of of studies on the application of fixed point theory in the field of computational
mathematics and inverse problems [33]. For work on the uniqueness of inverse problems in parabolic
partial differential equations, see [34–38],and, for more works on fixed points, see [39, 40].

Motivated by the works of Berinde and pacurar [3] and Popescu [2], in this article, we introduce
a generalization of Górnicki mappings by considering a non-self-map ϕ and prove the existence and
uniqueness of best proximity points for proximal Górnicki mappings. Which generalizes many existing
results in the literature. As a part of this study, the large class of generalized enriched contractions
called Górnicki mappings are introduced to partial metric spaces and we prove the existence of fixed
points and best proximity points in partial metric spaces.

2. Main results

In this section, we are going to define a proximal Górnicki mapping. By using the definition we
are going to prove the existence and uniqueness of best proximity points. As a continuation, we define
the concept of a proximal enriched contraction, proximal enriched Kannan mapping, and proximal
enriched Chatterjea mapping; we also prove that a proximal Górnicki mapping is a generalization of
all of these results.

Definition 2.1. Let ∆ and Γ be a non-empty convex subset of a normed linear space (Ω, ∥.∥). Given
any λ ∈ (0, 1), the proximal averaged multi-valued mapping ϕλ on ∆ is defined by

ϕλξ = (1 − λ)ξ + λµ,

where ∥µ − ϕξ∥ = d(∆,Γ) for all ξ, µ ∈ ∆.
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Remark 2.1. Suppose that ∆ = Γ in (2.1); then, the proximal averaged multi-valued mapping reduced
the averaged mapping in [4]. That is,

ϕλξ = (1 − λ)ξ + λϕξ.

Definition 2.2. Let ∆ and Γ be a non-empty subset of a complete metric space (Ω, d). A mapping
ϕ : ∆ → Γ is said to be a proximal Górnicki mapping if, for every ξ, ζ, µ, ν ∈ ∆ under the following
condition

d(ϕξ, µ) = d(∆,Γ)
d(ϕζ, ν) = d(∆,Γ)

 =⇒ d(µ, ν) ≤ M[d(ξ, µ) + d(ξ, ζ) + d(ζ, ν)]

with 0 ≤ M < 1, and there exist α, β ≥ 0 with α ≤ 1 such that, for this any ξ ∈ ∆, there exists η ∈ ∆
whenever d(ϕη, ϱ) = d(∆,Γ) this implies that

d(η, ϱ) ≤ αd(ξ, µ), d(ξ, η) ≤ βd(ξ, µ),

where ϱ ∈ ∆.

Theorem 2.1. Let (Ω, d) be a complete metric space, and let ∆andΓ be closed subsets ofΩ. A mapping
ϕ : ∆→ Γ is a proximal Górnicki mapping; then, ϕ has a unique best proximity point.

Proof. Suppose that ξ0 ∈ ∆; there exists µ0 ∈ ∆ such that d(ϕξ0, µ0) = d(∆,Γ).
For ξ0, µ0 ∈ ∆ there exist ξ1, µ1 ∈ ∆ such that d(ξ1, µ1) ≤ αd(ξ0, µ0) and d(ξ0, ξ1) ≤ βd(ξ0, µ0).
Continuing this, we have that ξn, µn ∈ ∆, where d(ϕξn, µn) = d(∆,Γ) and

d(ξn+1, µn+1) ≤ αd(ξn, µn), d(ξn+1, ξn) ≤ βd(ξn, µn).

Note that,
d(ξn+1, ξn) ≤ βd(ξn, µn) ≤ ... ≤ βαnd(ξ0, µ0).

Here lim
n→∞

d(ξn+1, ξn) = 0. To prove that (ξn) is a Cauchy sequence, without loss of generality for
n,m ∈ N, consider that n < m:

d(ξn, ξm) ≤ d(ξn, ξn+1) + d(ξn+1, ξn+2) + ... + d(ξm−1, ξm)
≤ βαnd(ξ0, µ0) + βαn+1d(ξ0, µ0) + ... + βαm−1d(ξ0, µ0)
= βαnd(ξ0, µ0)(1 + α + ... + αm−n−1)
≤ βαn(1 − α)−1d(ξ0, ϕξ0),

where d(ξn, ξm) → 0 as n → ∞. Since Ω is complete, there exists η ∈ Ω such that ξn → η; also,
d(ξn, µn)→ 0 implies that µn → η as n→ ∞. For η ∈ ∆ there exists ν ∈ ∆, such that d(ϕη, ν) = d(∆,Γ).
Now,

d(µn, ν) ≤ M[d(ξn, µn) + d(η, ν) + d(ξn, η)].

Applying the limit we will get that d(η, ν) = 0 implies that η = ν. Hence we have that d(ν, ϕη) = d(∆,Γ).
Therefore, η is a best proximity point for ϕ. To prove uniqueness, suppose that η1, η2 ∈ ∆ are the best
proximity points for ϕ. Now, we have

d(µ1, µ2) ≤ M[d(η1, µ1) + d(η2, µ2) + d(η1, η2)],
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where d(µ1, ϕη1) = d(∆,Γ) = d(µ2, ϕη2).

d(η1, η2) ≤ Md(η1, η2),
(1 − M)d(η1, η2) ≤ 0,

d(η1, η2) ≤ 0.

Therefore we have η1 = η2. This implies the uniqueness.

Remark 2.2. Let ξ be a best proximity point for ϕ if and only if ξ is a fixed point for the proximal
multi-valued averaged mapping ϕλ.

Suppose that d(ϕξ, ξ) = d(∆,Γ); then, the proximal multi valued averaged mapping becomes

ϕλξ = (1 − λ)ξ + λξ = ξ.

Therefore ξ becomes a fixed point of ϕλ, and the converse is also true.

Here we are going to prove that in a normed linear space, the class of proximal enriched contractions
are contained in the class of proximal Górnicki mappings.

Definition 2.3. Let (Ω, ∥.∥) be a normed linear space and ∆ and Γ be non-empty subsets of Ω. A
mapping ϕ : ∆ → Γ is said to be a proximal enriched contraction if there exist β ∈ [0,∞) and
σ ∈ [0, β + 1) such that, for every ξ, ζ there exist µ, ν ∈ Ω whenever

∥ϕξ − µ∥ = d(∆,Γ),
∥ϕζ − ν∥ = d(∆,Γ),

implies
∥β(ξ − ζ) + µ − ν∥ ≤ σ∥ξ − ζ∥.

Theorem 2.2. Let ∆ and Γ be non-empty subsets ofΩ. If ϕ : ∆→ Γ is a proximal enriched contraction,
then ϕ is a proximal Górnicki mapping.

Proof. Consider a proximal multi-valued averaged mapping ϕλ given by

ϕλξ = (1 − λ)ξ + λµ,

where ∥µ − ϕξ∥ = d(∆,Γ). Since
∥ϕλξ − ϕλζ∥ ≤ c∥ξ − ζ∥

implies that a proximal multi valued averaged mapping is a contraction mapping with λ = 1
β+1 < 1 and

c = σ
β+1 < 1, consider that

∥µ − ν∥ ≤ ∥µ − ϕλξ∥ + ∥ϕλξ − ϕλζ∥ + ∥ϕλζ − ν∥

≤ (1 − λ)∥ξ − µ∥ + (1 − λ)∥ζ − ν∥ + c∥ξ − ζ∥.

Let M = max{1 − λ, c}; this implies that

∥µ − ν∥ ≤ M[∥ξ − µ∥ + ∥ζ − ν∥ + ∥ξ − ζ∥].
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That is,
d(µ, ν) ≤ M[d(ξ, µ) + d(ξ, ζ) + d(ζ, ν)].

For given ξ ∈ ∆, let η = ϕλξ with d(ϕη, ϱ) = d(∆,Γ) and d(ϕξ, u) = d(A, B), where u,w ∈ A; we have

λ∥η − ϱ∥ = ∥ϕλη − η∥ = ∥ϕλη − ϕλξ∥ ≤ c∥ξ − η∥

this implies that ∥η − ϱ∥ ≤ c∥ξ − µ∥ ; also, ∥ξ − η∥ = ∥ξ − ρλξ∥ = λ∥ξ − µ∥.
Therefore, ρ is a proximal Górinicki mapping with α = c and β = λ.

Definition 2.4. A mapping ρ : ∆ → Γ is said to be a proximal enriched Kannan mapping, if there
exists β ∈ [0,∞) and σ ∈ [0, 1

2 ) such that, for all ξ, ζ there exist µ, ν ∈ ∆, whenever

∥ϕξ − µ∥ = d(∆,Γ),
∥ϕζ − ν∥ = d(∆,Γ),

implies
∥β(ξ − ζ) + µ − ν∥ ≤ σ(∥ξ − µ∥ + ∥ζ − ν∥).

Theorem 2.3. Let ∆ and Γ be a nonempty subset of a normed linear space Ω, suppose that ϕ : ∆→ Γ
is a proximal enriched Kannan mapping then ϕ is a proximal Górnicki mapping.

Proof. Consider the proximal multi-valued averaged mapping ϕλ such that

∥ϕλξ − ϕλζ∥ = ∥(1 − λ)(ξ − ζ) + λ(µ − ν)∥

= λ∥
(1 − λ)
λ

(ξ − ζ) + (µ − ν)∥

≤ λc(∥ξ − µ∥ + ∥ζ − ν∥)
≤ c(∥ϕλξ − ξ∥ + ∥ϕλζ − ζ∥),

which implies that the proximal averaged mapping ϕλ is a Kannan mapping with λ = 1
β+1 < 1 and

c = σ < 1
2 .

Here,

∥µ − ν∥ ≤ ∥µ − ϕλξ∥ + ∥ϕλξ − ϕλζ∥ + ∥ϕλζ − ν∥

≤ (1 − λ)∥µ − ξ∥ + (1 − λ)∥ν − ζ∥ + c(∥ϕλξ − ξ∥
+ ∥ϕλζ − ζ∥)

≤ (1 − λ + cλ)(∥µ − ξ∥ + ∥ν − ζ∥),

and (1 − λ + cλ) < 1. Therefore we have

d(µ, ν) ≤ M(d(µ, ξ) + d(ν, ζ) + d(ξ, ζ)

with M = 1 − λ + cλ < 1.
For given ξ ∈ ∆, let η = ϕλξ with d(ϕη, ϱ) = d(∆,Γ) and d(ϕξ, µ) = d(∆,Γ), where µ, ϱ ∈ Γ; then,

we have

λ∥η − ϱ∥ = ∥ϕλη − η∥ = ∥ϕλη − ϕλξ∥
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≤ c(∥ξ − ϕλξ∥ + ∥η − Tλη∥)
= cλ(∥ξ − µ∥ + ∥η − ϱ∥)

∥η − ϱ∥ ≤
c

1 − c
∥ξ − µ∥.

Hence, d(η, ϱ) ≤ c
1−c∥ξ − µ∥.

Also, d(ξ, η) = ∥ξ − η∥ = λ∥ξ − µ∥ = λd(ξ, µ).
Therefore, T is a proximal Górnicki mapping with α = c

1−c < 1 and β = λ.

Definition 2.5. Let ∆ and Γ be nonempty subset of a normed linear space Ω; consider T : ∆ → Γ
to be proximal enriched Chatterjea mapping if there exist β ∈ [0,∞) and σ ∈ [0, 1

2 ) such that for all
ξ, ζ there exist µ, ν ∈ Ω, whenever

∥ϕξ − µ∥ = d(∆,Γ),
∥ϕζ − ν∥ = d(∆,Γ),

implies
∥β(ξ − ζ) + µ − ν∥ ≤ σ(∥(β + 1)(ξ − ζ) + ζ − ν∥ + ∥(β + 1)(ζ − ξ) + ξ − µ∥).

Theorem 2.4. Let δ,Γ be a non-empty subsets of a normed linear space Ω; suppose that ϕ : ∆ → Γ is
a proximal enriched Chatterjea mapping then ϕ is a proximal Gornicki mapping.

Proof. Consider the proximal averaged mapping ϕλ; we have

∥ϕλξ − ϕλζ∥ = ∥(1 − λ)ξ + λµ − (1 − λ)ζ − λν∥

= λ∥
(1 − λ)
λ

(ξ − ζ) + (µ − ν)∥.

Let β = 1−λ
λ

; we have

∥ϕλξ − ϕλζ∥ ≤ λc (∥(β + 1)(ξ − ζ) + ζ − ν∥ + ∥(β + 1)(ζ − ξ) + ξ − µ∥)

∥ϕλξ − ϕλζ∥ ≤ c (∥ϕλζ − ξ∥ + ∥ϕλζ − ξ∥) .

Therefore the proximal averaged mapping is a Chatterjea mapping with c = σ < 1
2 .

Suppose that, for ξ, ζ ∈ ∆, there exist µ, ν ∈ ∆ such that d(µ, ϕξ) = d(ν, ϕζ) = d(∆,Γ). Now,

∥µ − ν∥ ≤ ∥µ − ϕλξ∥ + ∥ϕλξ − ϕλζ∥ + ∥ϕλζ − ν∥

≤ (1 − λ) (∥µ − ξ∥ + ∥ν − ζ∥) + c (∥ϕλζ − ξ∥ + ∥ϕλξ − ζ∥)

≤ (1 − λ + λc) (∥µ − ξ∥ + ∥ν − ζ∥) + 2c∥ξ − ζ∥

implies that d(µ, ν) ≤ M (d(µ, ξ) + d(ν, ζ) + d(ξ, ζ)) with M = max{(1 − λ + cλ, 2c} < 1.
For given ξ ∈ ∆, let η = ϕλξ with d(ϕη, ϱ) = d(∆,Γ) and d(ϕξ, µ) = d(∆,Γ), where µ, ϱ ∈ ∆; then,

we have

λ∥η − ϱ∥ = ∥ϕλη − η∥

≤ c (∥ϕλη − ξ∥ + ∥ϕλξ − η∥)

≤ cλ (∥ξ − µ∥ + ∥η − ϱ∥) .

Here ∥η − ϱ∥ ≤ c
1−c∥ξ − µ∥; also, ∥η − ξ∥ = λ∥ξ − µ∥.

Therefore we conclude that ϕ is a proximal Górnicki mapping with α = c
1−c and β = λ.
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Remark 2.3. Let ∆ = Γ in Theorems 2.1–2.4; then, the results can be reduced to Theorems 4 and 6–8
in [2], respectively. Our work generalizes the work done by Popescu [2].

Example. Let Ω = R2, ∥(ξ1, ξ2) − (ζ1, ζ2)∥ =
√

(ξ1 − ζ1)2 + (ξ2 − ζ2)2, ∆ = {(ξ, 0) : ξ ∈ R} and Γ =
{(ξ, 1) : ξ ∈ R}. Consider ϕ : ∆→ Γ to be the following non-self mapping:

ϕξ =

( ξ+2
2 , 1), if ξ ≤ 3,

( ξ2 , 1), if ξ > 3.

Therefore, ϕ is a proximal Górnicki mapping but ϕ is not a proximal enriched contraction; also,ϕ is not
a proximal enriched Kannan mapping or proximal enriched Chatterjea mapping.

Proof. Let (ξ, 0), (ζ, 0) ∈ ∆.
Case I. For ξ ≤ 3, ζ ≤ 3, there exist µ = ( ξ+2

2 , 0) and ν = ( ζ+2
2 , 0) such that ∥µ − ν∥ = |ξ−ζ |

2 ,
where d(ϕ(ξ, 0), µ) = d(ϕ(ζ, 0), ν) = d(∆,Γ) = 1.
Case II. For ξ > 3, ζ > 3, there exist µ = ( ξ2 , 0) and ν = ( ζ2 , 0) such that ∥µ − ν∥ = ξ−ζ

2 ,
where d(ϕ(ξ, 0), µ) = d(ϕ(ζ, 0), ν) = d(∆,Γ) = 1.
Case III. For ξ ≤ 3, ζ > 3, there exists µ = ( ξ+2

2 , 0) and v = ( ζ2 , 0); we have

∥µ − ν∥ = |
ξ + 2

2
−
ζ

2
| ≤ |
ξ − ζ

2
| + 1

≤
2
3

(|ξ − ζ | +
3
2

)

≤
2
3

(|ξ − ζ | +
ζ

2
)

≤
2
3

(|ξ − ζ | +
|ξ − 2|

2
+
ζ

2
).

For every (ξ, 0), (ζ, 0) ∈ R2 we have,

∥µ − ν∥ ≤
2
3

(∥(ξ, 0) − (ζ, 0)∥ + ∥(ξ, 0) − µ∥ + ∥(ζ, 0) − ν∥).

Let η = µ; that is,

η =

( ξ+2
2 , 0), ξ ≤ 3,

( ξ2 , 0), ξ > 3.

Choose

wϱ =


( ξ+6

4 , 0), ξ ≤ 3,
( ξ+4

4 , 0), ξ > 3, ξ2 ≤ 3,
( ξ4 , 0), ξ > 3, ξ2 > 3,

d(η, ϱ) = ∥(
ξ + 2

2
, 0) − (

ξ + 6
4
, 0)∥ = |

ξ − 2
4
| if ξ ≤ 3,

d(η, ϱ) = ∥(
ξ

2
, 0) − (

ξ + 4
4
, 0)∥ = |

ξ − 4
4
|, if ξ > 3 and

ξ

2
≤ 3,

d(η, ϱ) = ∥(
ξ

2
, 0) − (

ξ

4
, 0)∥ = |

ξ

2
|, if ξ > 3 and

ξ

2
> 3,
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then, d(ξ, µ) =

| ξ−2
2 |, if ξ ≤ 3,
|
ξ

2 |, if ξ > 3.
Also note that

d(ξ, η) = ∥(ξ, 0) − (
ξ + 2

2
, 0)∥ = |

ξ − 2
2
| = d(ξ, µ) i f ξ ≤ 3,

d(ξ, η) = ∥(ξ, 0) − (
ξ

2
, 0)∥ = |

ξ

2
| = d(ξ, µ) i f ξ > 3.

Table 1 shows the convergence behavior of initial points (0, 0), (0.5, 0), (2, 0), (3, 0) to fixed
point (2,0) using iteration process.

Table 1. Iteration of convergence for a proximal Górnicki mapping.

ξn ξ0 = (0, 0) ξ0 = (0.5, 0) ξ0 = (2, 0) ξ0 = (3, 0)
ξ1 (0,0) ( 5.0000e-01,0) (2,0) (3,0)
ξ2 ( 1,0) (1.2500e+00,0) (2,0) ( 2.5000e+00,0)
ξ3 (1.5000e+00,0) (1.6250e+00,0) (2,0) (2.2500e+00,0)
ξ4 (1.7500e+00,0) (1.8125e+00,0) (2,0) (2.1250e+00,0)
ξ5 (1.8750e+00,0) (1.9062e+00,0) (2,0) (2.0625e+00,0)
ξ6 (1.9375e+00,0) (1.9531e+00,0) (2,0) (2.0312e+00,0)
ξ7 (1.9687e+00,0) (1.9765e+00,0) (2,0) (2.0156e+00,0)
ξ8 (1.9843e+00,0) (1.9882e+00,0) (2,0) (2.0078e+00,0)
ξ9 (1.9921e+00,0) (1.9941e+00,0) (2,0) (2.0039e+00,0)
ξ10 (1.9960e+00,0) (1.9970e+00,0) (2,0) (2.0019e+00,0)
...

...
...

...
...

ξ53 (2,0) (2,0) (2,0) (2,0)

Figure 1. Convergence behavior for proximal Górnicki mapping.

Figure 1 shows convergence behavior graphically to the fixed point (2, 0). Therefore, we conclude that
ϕ is a proximal Górnicki mapping with α = 1

2 and β = 1. Now, let (ξ, 0) = (3, 0) and (ζ, 0) = (3 + 1
n , 0),
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n ≥ 1, and let µ = ( 5
2 , 0) and ν = (1

2 (3 + 1
n ), 0). We have

∥β((ξ, 0) − (ζ, 0) + µ − ν)∥ = ∥(1 −
β

n
−

1
2n
, 0)∥ = |1 −

β

n
−

1
2n
| → 1.

As n→ ∞, since

σ∥(ξ, 0) − (ζ, 0)∥ = σ∥(
1
n
, 0)∥ = σ|

1
n
| → 0,

as n→ ∞, we conclude that ϕ is not a proximal enriched contraction.

σ(∥(ξ, 0) − µ∥ + ∥(ζ, 0) − ν∥) = σ(∥(
1
2
, 0)∥ + ∥

1
2

(3 +
1
n
, 0)∥) = σ(2 +

1
2n

)→ 2σ < 1,

as n→ ∞, we conclude that ϕ is not a proximal enriched Kannan mapping. Also, we have

σ(∥(β + 1)((ξ, 0) − (ζ, 0)) + (ζ, 0) − ν∥ + ∥(β + 1)((ζ, 0) − (ξ, 0)) + (ξ, 0) − µ∥)

= σ(∥(
3
2
−
β

n
+

1
2n
, 0)∥ + ∥(

β

n
+

1
n
+

1
2
, 0)∥)

= σ(|
3
2
−

b
n
+

1
2n
| + |

1
2
+
β + 1

n
|)→ 2σ < 1,

as n→ ∞.
Therefore, we conclude that ϕ is not a proximal enriched Chatterjea mapping

3. Fixed points and best proximity points for Górnicki mappings on a partial metric space

In this section, we extend our results to partial metric spaces and prove the existence of fixed points
and best proximity points for Górnicki mappings and proximal Górnicki mappings on partial metric
spaces.

Definition 3.1. Let (Ω, p) be a complete partial metric space; a mapping ϕ : Ω → Ω is said to be a
Górnicki mapping if

p(ϕξ, ϕζ) ≤ M[p(ξ, ϕξ) + p(ζ, ϕζ) + p(ξ, ζ)]

with M < 1 for all ξ, ζ ∈ ϕ and there exist α, β ≥ 0 with α < 1 such that, for all ξ ∈ Ω, there exists µ ∈ Ω
with p(µ, ϕµ) ≤ αp(ξ, ϕξ), p(µ, ξ) ≤ βp(ξ, ϕξ).

Theorem 3.1. Let (Ω, p) be a complete partial metric space, and let ϕ : Ω → Ω be a Górnicki
mapping; then, ϕ has a fixed point.

Proof. Let ξ0 ∈ Ω; there exists ξ1 ∈ Ω such that

p(ξ1, ϕξ1) ≤ αp(ξ0, ϕξ0),
p(ξ1, ξ0) ≤ βp(ξ0, ϕξ0).

In general,

p(ξn+1, ϕξn+1) ≤ αp(ξn, ϕξn),
p(ξn+1, ξn) ≤ βp(ξn, ϕξn),
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implies that
p(ξn+1, ξn) ≤ βp(ξn, ϕξn) ≤ ... ≤ βαn p(ξ0, ϕξ0).

Therefore,
lim
n→∞

p(ξn+1, ξn) = 0.

To prove that{ξn} is Cauchy, consider the following:

p(ξn, ξm) ≤ p(ξn, ξn+1) + p(ξn+1, ξm) − p(ξn+1, ξn+1)
≤ p(ξn, ξn+1) + p(ξn+1, ξn+2) + ... + p(ξm−1, ξm)
≤ βαn p(ξ0, ϕTξ0) + βαn+1 p(ξ0, ϕξ0) + ... + βαm−1 p(ξ0, ϕξ0)
= βαn p(ξ0, ϕξ0)(1 + α + ... + αm−n−1)
≤ βαn(1 − α)−1 p(ξ0, ϕξ0),

lim
n→∞

p(ξn, ξm) = 0. Since {ξn} is Cauchy with respect to the metric dp, as induced by the partial metric
p, then there exists ξ such that {ξn} converges to ξ with respect to the metric such that lim

n→∞
dp(ξn, ξ) = 0;

then, we have

p(ξ, ξ) = lim
n→∞

p(ξn, ξ) = lim
n,m→∞

p(ξm, ξn) = 0.

Also, lim
n→∞

p(ξn, ϕξn) = 0 since

p(ξn, ϕξn) ≤ αp(ξn−1, ϕξn−1) ≤ ... ≤ αn p(ξ0, ϕξ0).

Note that lim
n→∞

p(ϕξn, ϕξ) = p(ξ, ϕξ) since

p(ϕξn, ϕξ) ≤ p(ϕξn, ξ) + p(ξ, ϕξ) − p(ξ, ξ),
lim
n→∞

p(ϕξn, ϕξ) ≤ p(ξ, ϕξ),

also, we have

p(ξ, ϕξ) ≤ p(ξ, ϕξn) + p(ϕξn, ϕξ − p(ϕξn, ϕξn),

applying limits on both sides, we have that, p(ξ, ϕξ) ≤ lim
n→∞

p(ϕξn, ϕξ), which implies that
lim
n→∞

p(ϕξn, ϕξ) = p(ξ, ϕξ).
Now to prove ϕ(ξ) = ξ consider the following

p(ϕξn, ϕξ) ≤ M (p(ξn, ϕξn) + p(ξ, ϕξ) + p(ξn, ξ)) ,

applying the limit on both sides implies that ϕξ = ξ.

Theorem 3.2. In the above Theorem 3.1, if M < 1
2 then ϕ has a unique fixed point.

Proof. To prove the uniqueness, suppose that there exists two fixed points ξ1, ξ2 ∈ ω such that ϕξ1 = ξ1
and ϕξ2 = ξ2. Then, we have

p(ϕξ1, ϕξ2) ≤ M(p(ξ1, ϕξ1) + p(ξ2, ϕξ2) + p(ξ1, ξ2)),
p(ξ1, ξ2) ≤ 2Mp(ξ1, ξ2).

Since M < 1
2 , we have that p(ξ1, ξ2) = 0. This implies that ξ1 = ξ2.
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Example. Consider Ω = [0, 1] with a partial metric p(ξ, ζ) = max{ξ, ζ}. Let ϕ(ξ) = ξ

2 and p( ξ2 ,
ζ

2 ) =
p(ξ,ζ)

2 , which implies that p( ξ2 ,
ζ

2 ) ≤ 1
2 [p(ξ, ξ2 ) + p(ζ, ζ2 ) + p(ξ, ζ)]; also, p( ξ2 ,

ξ

4 ) ≤ 1
2 p(ξ, ξ2 ) and p( ξ2 , ξ) ≤

p(ξ, ξ2 ); in this case, ϕ, satisfies the conditions for a Górnicki mapping with M = 1
2 , µ = ξ2 , α = 1

2 and
β = 1 for all ξ ∈ Ω. Therefore, ϕ has a unique fixed point.

Example. Consider F to be the set of all polynomials of degree less than or equal to n with non-
negative real coefficients; suppose f1, f2 ∈ F has a partial metric space such that p( f1, f2) = maxi{ai, bi},

where f1 = a0 + a1t + ... + antn and f2 = b0 + b1t + ... + bntn; suppose that ϕ : F → F with
ϕ(a0 + a1t + ... + antn) =

(
a1
2 t + a2

2 t2 + ... + an
2 tn

)
for every f1, f2 ∈ F ; then,

p
(
a1

2
t + ... +

an

2
tn,

b1

2
t + ... +

bn

2
tn

)
≤

1
2

p (a0 + ... + antn, b0 + ... + bntn) ,

also

p
(a1

2
t + ... +

an

2
tn,

a2

4
t + ... +

an

4
tn
)
≤

1
2

p(a0 + a1t + ... + antn,
a1

2
t + ... +

an

2
tn),

and p(a1
2 t + ... + an

2 tn, a0 + a1t + ... + antn) ≤ p(a0 + a1t + ... + antn, a1
2 t + ... + an

2 tn); in this case, ϕ
satisfies the condition of a Górnicki mapping with M = 1

2 and µ =
(

a1
2 t + a2

2 t2 + ... + an
2 tn

)
for every

a0 + a1t + ... + antn ∈ F with α = 1
2 and β = 1 this implies that ϕ has a unique fixed point.

The definition of a proximal Górnicki mapping on partial metric spaces is as follows

Definition 3.2. Let (Ω, p) be a complete partial metric space, and let ∆ and Γ be non-empty subsets of
Ω. A mapping Ω : ∆→ Γ is said to be a proximal Górinicki mapping if for all ξ, ζ there exist µ, ν ∈ ∆
whenever

p(ϕξ, µ) = p(∆,Γ),
p(ϕζ, ν) = p(∆,Γ),

implies
p(µ, ν) ≤ M (p(ξ, µ) + p(ξ, ζ) + p(ν, ζ))

with 0 ≤ M < 1 and there exist α, β ≥ 0 with α ≤ 1 such that, for any ξ ∈ ∆, there exists η ∈ ∆ when
p(ϕη, ϱ) = p(∆,Γ) this implies that

p(η, ϱ) ≤ αp(ξ, µ), p(ξ, η) ≤ βp(ξ, µ),

where ϱ ∈ ∆.

Theorem 3.3. Let (Ω, p) be a complete partial metric space, and let ∆ and Γ be closed subsets of Ω.
A mapping ϕ : ∆→ Γ is a proximal Górnicki mapping; then, ϕ has a best proximity point.

Proof. Suppose that ξ0 ∈ ∆; there exists µ0 ∈ ∆ such that p(ϕξ0, µ0) = p(∆,Γ).
For ξ0, µ0 ∈ ∆, there exist ξ1, µ1 ∈ ∆ such that p(ξ1, µ1) ≤ αp(ξ0, µ0) and p(ξ0, ξ1) ≤ βd(ξ0, µ0).

Continuing this, we have that ξn, µn ∈ ∆, where p(ϕξn, µn) = p(∆,Γ) and

p(ξn+1, µn+1) ≤ αp(ξn, µn), p(ξn+1, ξn) ≤ βp(ξn, µn).
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Note that,
p(ξn+1, ξn) ≤ βp(ξn, µn) ≤ ... ≤ βαn p(ξ0, µ0).

Here lim
n→∞

p(ξn+1, ξn) = 0. To prove that (ξn) is a Cauchy sequence, without loss of generality for
n,m ∈ N, consider that n < m.

p(ξn, ξm) ≤ p(ξn, ξn+1) + p(ξn+1, ξm) − p(ξn+1, ξn+1)
≤ p(ξn, ξn+1) + p(ξn+1, ξn+2) + ... + p(ξm−1, ξm)
≤ βαn p(ξ0, µ0) + βαn+1 p(ξ0, µ0) + ... + βαm−1 p(ξ0, µ0)
= βαn p(ξ0, µ0)(1 + α + ... + αm−n−1)
≤ βαn(1 − α)−1 p(ξ0, µ0),

lim
n,m→∞

p(xn, xm) = 0. Since {ξn} is Cauchy with respect to the metric dp, as induced by the partial metric

p, then there exists η such that {ξn} converges to η with respect to the metric such that lim
n→∞

dp(ξn, η) = 0,
and We have

p(η, η) = lim
n→∞

p(ξn, η) = lim
n,m→∞

p(ξm, ξn) = 0.

Also lim
n→∞

p(ξn, µn) = 0 since

p(ξn, µn) ≤ αp(ξn−1, µn−1) ≤ ... ≤ αn p(ξ0, µ0).

For η ∈ ∆, there exists µ ∈ ∆ such that d(ϕη, µ) = d(∆,Γ).
Note that lim

n→∞
p(µn, µ) = p(η, µ) since

p(µn, µ) ≤ p(µn, η) + p(η, µ) − p(η, η),
lim
n→∞

p(µn, µ) ≤ p(η, µ),

also, we have

p(η, µ) ≤ p(η, µn) + p(µn, µ) − p(µn, µn),

applying the limits on both sides, we have that p(η, µ) ≤ lim
n→∞

p(µn, µ), which implies that lim
n→∞

p(µn, µ) =
p(η, µ).

Now,

p(µn, µ) ≤ M (p(ξn, µn) + p(µ, η) + p(ξn, η)) ,

applying the limit on both sides implies that p(η, µ) = 0; hence, η = µ. Therefore, we have that
p(η, ϕη) = p(∆,Γ) hence η becomes a best proximity point for ϕ.

Theorem 3.4. In the above Theorem 3.3, if M < 1
2 , then ϕ has a unique best proximity point.

AIMS Mathematics Volume 9, Issue 3, 5886–5904.



5900

Proof. To prove uniqueness, suppose that η1, η2 ∈ ∆ are best proximity points for ϕ. Now, we have

p(η1, η2) ≤ M[p(η1, η1) + p(η2, η2) + p(η1, η2)],

where p(η1, ϕη1) = p(∆,Γ) = p(η2, ϕη2).

p(η1, η2) ≤ 2Mp(η1, η2),
(1 − 2M)p(η1, η2) ≤ 0,

p(η1, η2) ≤ 0.

Therefore, we have the η1 = η2. This implies the uniqueness.

4. Application to Górnicki mappings on variational inequality problems

In the year 1966, Hartman and Stampachia proved that a mapping ϕ : Rn → Rn is continuous on a
compact, convex subset Ω of Rn; considering this, we can find ζ ∈ Ω such that

⟨ϕζ , ζ − η⟩ ≥ 0,

for every η ∈ Ω.
Now considerΨ as a real Hilbert space with the inner product ⟨· , ·⟩ and the induced norm ∥·∥. Let ℵ

be a non-empty closed convex subset of Ψ. An element ζ0 ∈ ℵ is known as the best approximation
if ∥ξ − ζ0∥ = D(ξ,ℵ), where D(ξ,ℵ) = infζ∈ℵ∥ξ − ζ∥. The operator Υℵ : Ψ → ℵ is called the metric
projection of Ψ onto ℵ such that, for all ξ ∈ Ψ,

Υℵ(ξ) = {ζ ∈ ℵ : ∥ξ − ζ∥ = D(ξ,ℵ)}.

For each point ξ ∈ Ψ, there exists a unique nearest point in ℵ, denoted by Υℵ(ξ).
That is,

∥ξ − Υℵ(ξ)∥ ≤ ∥ξ − ζ∥

for all ζ ∈ ℵ.
The projection operator Υℵ plays an important role in proving the existence of the solution to

variational inequality problems.
We consider the following variational inequality problem:

Find µ ∈ ℵ such that ⟨Πµ , ν − µ⟩ ≥ 0 for all ν ∈ ℵ. (4.1)

Kinderlehrer and Stampacchia [41]introduced and applied variational inequality problems to solve the
deflection of an elastic beam problem, filtration of a liquid through porous media, and free boundary
problems of lubrication. These are the references for application-related fixed point theory [38,42–44].

Lemma 4.1. Let η ∈ Ψ. Then, µ ∈ ℵ satisfies the inequality ⟨µ − η , ζ − µ⟩ ≥ 0 for all ζ ∈ ℵ if and
only if µ = Υℵη.

Lemma 4.2. Let Π : Ψ → Ψ. Then µ ∈ ℵ is a solution of ⟨Πµ , ν − µ⟩ ≥ 0 for all ν ∈ ℵ if and only if
µ = Υℵ(µ − λΠµ) with λ > 0.
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Theorem 4.1. Suppose that λ > 0 and Υℵ(I − λΠ) is a proximal Górnicki mapping on ℵ. Then, there
exists a unique solution µ∗ for the variational inequality problem (4.1).

Proof. Consider the operator ϕ : ℵ → ℵ defined by ϕξ = Υℵ(ξ − λΠξ) for all ξ ∈ ℵ. By Lemma 4.2,
there exists µ∗ ∈ ℵ as a solution of ⟨Πµ∗ , ν − µ∗⟩ ≥ 0 for all ν ∈ ℵ if and only if µ∗ = ϕµ∗. In
Theorem 2.1 let ∆ = Γ = ℵ; then, ϕ satisfies the hypothesis of Theorem 2.1. Therefore, there exists a
unique fixed point µ∗ for ϕ.

5. Conclusions

Through this work the concept of the best proximity points has been are introduced for proximal
Górnicki mappings which include fixed points for Górnicki mappings, enriched contractions,
enriched Kannan mappings, and enriched Chatterjea mappings. Also, proximal Górnicki mappings
generalize proximal enriched contractions, proximal enriched Kannan mappings, and proximal
enriched Chatterjea mappings.
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