Research article

Coupled common best proximity point theorems for nonlinear contractions in partially ordered metric spaces

  • Received: 11 July 2020 Accepted: 03 September 2020 Published: 07 September 2020
  • MSC : 46B20, 47H10, 54H25

  • In this paper, we first introduce the concept of mixed γ-proximally monotone property type mappings and investigate the existence of the coupled proximally coincidence point for such mappings in partially ordered complete metric spaces. Furthermore, we prove the existence and uniqueness of coupled common best proximity points. Our results extend, improve and generalize several known results in the literature.

    Citation: Raju Gopi, Veerasamy Pragadeeswarar, Choonkil Park, Dong Yun Shin. Coupled common best proximity point theorems for nonlinear contractions in partially ordered metric spaces[J]. AIMS Mathematics, 2020, 5(6): 6913-6928. doi: 10.3934/math.2020443

    Related Papers:

  • In this paper, we first introduce the concept of mixed γ-proximally monotone property type mappings and investigate the existence of the coupled proximally coincidence point for such mappings in partially ordered complete metric spaces. Furthermore, we prove the existence and uniqueness of coupled common best proximity points. Our results extend, improve and generalize several known results in the literature.


    加载中


    [1] R. P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116. doi: 10.1080/00036810701556151
    [2] A. Abkar, S. Ghods, A. Azizi, Coupled best proximity point theorems for proximally g-Meir-Keeler type mappings in partially ordered metric spaces, Fixed Point Theory A., 2015 (2015), 1-16. doi: 10.1186/1687-1812-2015-1
    [3] M. A. Alghamdi, N. Hussain, P. Salimi, Fixed point and coupled fixed point theorems on b-metriclike spaces, J. Inequal. Appl., 2013 (2013), 1-25. doi: 10.1186/1029-242X-2013-1
    [4] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal-Theor., 65 (2006), 1379-1393. doi: 10.1016/j.na.2005.10.017
    [5] B. S. Choudhury, N. Metiya, M. Postolache, et al. A discussion on best proximity point and coupled best proximity point in partially ordered metric spaces, Fixed Point Theory A., 2015 (2015), 1-17. doi: 10.1186/1687-1812-2015-1
    [6] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal-Theor., 11 (1987), 623-632. doi: 10.1016/0362-546X(87)90077-0
    [7] M. Hristov, A. Ilchev, B. Zlatanov, Coupled fixed points for Chatterjea type maps with the mixed monotone property in partially ordered metric spaces, AIP Conference Proceedings, 2172 (2019), 1-5.
    [8] A. Ilchev, B. Zlatanov, Error estimates for approximation of coupled best proximity points for cyclic contractive maps, Appl. Math. Comput., 290 (2016), 412-425.
    [9] P. Kumam, V. Pragadeeswarar, M. Marudai, et al. Coupled best proximity points in ordered metric spaces, Fixed Point Theory A., 2014 (2014), 1-13. doi: 10.1186/1687-1812-2014-1
    [10] V. Lakshmikantham, L. Ćirić, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal-Theor., 70 (2009), 4341-4349. doi: 10.1016/j.na.2008.09.020
    [11] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal-Theor., 72 (2010), 4508-4517. doi: 10.1016/j.na.2010.02.026
    [12] W. Shatanawi, Coupled fixed point theorems in generalized metric spaces, Hacet. J. Math. Stat., 40 (2011), 441-447.
    [13] W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces, Fixed Point Theory A., 2012 (2012), 1-16. doi: 10.1186/1687-1812-2012-1
    [14] B. Zlatanov, A variational principle and coupled fixed points, J. Fixed Point Theory Appl., 21 (2019), 1-13. doi: 10.1007/s11784-018-0638-y
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2671) PDF downloads(107) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog