
Citation: Awais Asif, Sami Ullah Khan, Thabet Abdeljawad, Muhammad Arshad, Ekrem Savas. 3D analysis of modified F-contractions in convex b-metric spaces with application to Fredholm integral equations[J]. AIMS Mathematics, 2020, 5(6): 6929-6948. doi: 10.3934/math.2020444
[1] | Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344 |
[2] | Mohammad Asim, Reny George, Mohammad Imdad . Suzuki type multivalued contractions in C*-algebra valued metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1126-1139. doi: 10.3934/math.2021068 |
[3] | Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335 |
[4] | Qing Yang, Chuanzhi Bai . Fixed point theorem for orthogonal contraction of Hardy-Rogers-type mapping on O-complete metric spaces. AIMS Mathematics, 2020, 5(6): 5734-5742. doi: 10.3934/math.2020368 |
[5] | Dong Ji, Yao Yu, Chaobo Li . Fixed point and endpoint theorems of multivalued mappings in convex b-metric spaces with an application. AIMS Mathematics, 2024, 9(3): 7589-7609. doi: 10.3934/math.2024368 |
[6] | Muhammad Sarwar, Muhammad Fawad, Muhammad Rashid, Zoran D. Mitrović, Qian-Qian Zhang, Nabil Mlaiki . Rational interpolative contractions with applications in extended b-metric spaces. AIMS Mathematics, 2024, 9(6): 14043-14061. doi: 10.3934/math.2024683 |
[7] | Seher Sultan Yeşilkaya, Cafer Aydın, Adem Eroǧlu . Fixed point results on ordered Prešić type mappings. AIMS Mathematics, 2020, 5(5): 5140-5156. doi: 10.3934/math.2020330 |
[8] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
[9] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[10] | Mohammed Shehu Shagari, Akbar Azam . Integral type contractions of soft set-valued maps with application to neutral differential equations. AIMS Mathematics, 2020, 5(1): 342-358. doi: 10.3934/math.2020023 |
Czerwik [1] introduced b-metric and proved fixed point theorems in it. It was further extended to partial b-metric and dislocated b-metric spaces in the past years. Chen et al. [2] introduced convex b-metric space and established various fixed point theorems. On the other hand, various authors generalized the metric space into many other spaces (see [3,4,5,6,7,8,9,10,11]).
Wardowski [12] introduced the idea of F-contraction which was later followed by many authors who delivered interesting results of F-contraction. One of them was presented by Cosentino et al. [13] who expanded F-contraction in F-contraction of Hardy Roger’s type. For more generalization of F-contraction, we refer the readers to see ([14,15,16]).
In this article we discuss F-contraction in the frame of convex b-metric space using generalized Mann’s iteration algorithm. However, we have modified definition of F-contraction of Nadler type by eliminating two of its conditions (F3) and (F4). Cosentino et al. [17] have proved the results for multivalued simple F-contraction of Banach type, while our results have been proved for F-Reich type contraction for single valued mappings. As the conditions (F3) and (F4) of the mappings belonging to the set F have been removed, thus, our results are more generalized than the results presented by Cosentino. Further we have presented application of our results in finding a unique solution to the Fredholm integral equation of the second kind. The reader can study more about Fredholm integral equation of the second kind in the article written by Teukolsky et al. [18].
Some fundamental definitions related to our work are given below:
Definition 1.1 ([17]): Let k≥1 be a real number. We denote by F the family of all functions F:R+→R with the following properties:
(F1) F is strictly increasing;
(F2) for each sequence {xn}⊂R+ of positive numbers limn→∞an=0 if and only if limn→∞F(an)=−∞;
(F3) for each sequence {xn}⊂R+ of positive numbers with limn→∞an=0, there exists m∈(0,1) such that limn→∞(an)mF(an)=0;
(F4) for each sequence (an)⊂R+ of positive numbers such that τ+F(san)≤F(san−1) for all n ∈ N and some τ∈R+, then τ+F(snan)≤F(sn−1an−1) for all n ∈ N.
Definition 1.2 ([17]): Let (X,d,s) be a b-metric space. A multivalued mapping T:X→CB(X) is called an F-contraction of Nadler type if there exist F∈Fs and τ∈R+ such that
τ+F(sH(Tx,Ty))≤Fd(x,y) |
for all x,y∈X with Tx=Ty.
Note that, in our theorems, we will consider Fb as the class of functions satisfying only (F1) and (F2) which modifies the definition of F-contraction.
Definition 1.3 ([1]): Assume that E=∅ with 1≤k∈R. If bk:E×E→[0,+∞) satisfies the following axioms, for each a,b,c∈E:
ⅰ). bk(a,b)=0 if and only if a=b;
ⅱ). bk(a,b)=bk(b,a);
ⅲ). bk(a,b)≤k[bk(a,c)+bk(c,b)]
Then the pair (E,bk) is known as b-metric space with k≥1.
Definition 1.4 ([1]): Suppose (an) is a sequence in E. Then
1) (an) is convergent to a point a∈E if limn→∞d(an,a)=0.
2) (an) is Cauchy if limn,m→∞d(an,am)=0.
3) The space (E,bk) is complete if every Cauchy sequence (an)⊂E is convergent to a point a∈E.
Definition 1.5 ([2]): Assume that E=∅ and define a mapping bk:E×E→[0,+∞). Let I=[0,1] with a continuous mapping η:E×E×I→E such that
bk(o,η(a,b;γ))≤γbk(o,a)+(1−γ)bk(o,b) | (2.1) |
for each o∈E and (a,b,γ)∈E×E×I.
Definition 1.6 ([2]): Assume that η:E×E×I→E is a convex structure on a b-metric space (E,bk). Then (E,bk,η) is known as convex b-metric space.
Suppose that (E,bk,η) is convex b-metric space with a self mapping f. Then for an∈E and γn∈[0,1],a generalize Mann’s iteration sequence {an}is defined as;
an+1=η(an,Tan;γn),n∈N. |
This section evaluates F-Kannan contraction for the existence of unique fixed point results.
Definition 2.1: Assume that F∈Fb, (E,bk,η) be a convex b-metric space with k>1. Then f:E→E is known as F-Kannan contraction if for h:E×E→[0,12) the following hold:
τ+F(kbk(fa,fb))≤F[h(a,b){bk(a,fa)+bk(b,fb)}] | (2.2) |
for every a,b∈E.
Theorem 2.2: Suppose (E,bk,η) is a complete convex b-metric space with an=η(an−1,fan−1;γn−1)n∈N having γn−1∈(0,14k2] and f:E→E is an F-Kannan contraction. If h:E×E→[0,14k2],then f has a unique fixed point in E.
Proof. By (2.1) and hypothesis, we write
bk(an,fan)=bk(fan,η(an−1,fan−1;γn−1))≤γn−1bk(an−1,fan)+(1−γn−1)bk(fan−1,fan)≤γn−1{kbk(an−1,fan−1)+kbk(fan−1,fan)}+bk(fan−1,fan)=kγn−1bk(an−1,fan−1)+(kγn−1+1)bk(fan−1,fan)≤kγn−1bk(an−1,fan−1)+(γn−1+1)kbk(fan−1,fan). |
Now, Since
τ+F(kbk(fan−1,fan))≤F[h(an−1,an){bk(an−1,fan−1)+bk(an,fan)}]. |
Therefore,
τ+F(kγn−1bk(an−1,fan−1)+(γn−1+1)kbk(fan−1,fan))≤F[kγn−1bk(an−1,fan−1)+(γn−1+1)h(an−1,an){bk(an−1,fan−1)+bk(an,fan)}]. |
This implies that
F(bk(an,fan))≤F[kγn−1bk(an−1,fan−1)+(γn−1+1)h(an−1,an){bk(an−1,fan−1)+bk(an,fan)}]−τ. |
Using (F1), we write
(1−(h(an−1,an)γn−1+h(an−1,an)))⋅bk(an,fan)≤{(kγn−1)+h(an−1,an)γn−1+h(an−1,an)}⋅bk(an−1,fan−1). |
As
h(an−1,an)γn−1+h(an−1,an)≤(14k2+1).14k2<1, |
hence
bk(an,fan)≤(kγn−1)+h(an−1,an)γn−1+h(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an)).bk(an−1,fan−1), | (2.3) |
Say
(kγn−1)+h(an−1,an)γn−1+h(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an))=σn−1, |
then
σn−1=(kγn−1)+h(an−1,an)γn−1+h(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an))<541−(h(an−1,an)γn−1+h(an−1,an))−1<541−516k2−1<911. |
Therefore (2.3) becomes
bk(an,fan)≤σn−1bk(an−1,fan−1)<911bk(an−1,fan−1). | (2.4) |
Operating (F1) again, we write
F(bk(an,fan))≤F(4k−516k2−5bk(an−1,fan−1))−τ<F(bk(an−1,fan−1))−τ. |
Similarly,
F(bk(an−1,fan−1))≤F(bk(an−2,fan−2))−τ. |
Consequently, we note
F(bk(an,fan))<F(bk(an−1,fan−1))−τ<F(bk(an−2,fan−2))−2τ<⋯<F(bk(a0,fa0))−nτ. |
taking limit n→∞, we obtain
limn→∞F(bk(an,fan))=−∞. |
By (F2), we get
limn→∞bk(an,fan)=0. |
Now, Since
bk(an,an+1)=bk(an,η(an,fan;γn))≤(1−γn)bk(an,fan), |
therefore, we note that limn→∞bk(an,an+1)=0. Next, we prove that the sequence {an} is Cauchy. Suppose on the contrary that {an} is not Cauchy. Then we can find subsequences {aμ(u)} and {aω(u)} of {an} and a positive real number ϵ0μ(u)>ω(u)>u with μ(u) as the smallest natural index such that
bk(aμ(u),aω(u))≥ϵ0 |
and
bk(aμ(u)−1,aω(u))<ϵ0. |
We deuce that
ϵ0≤bk(aμ(u),aω(u))≤k[bk(aμ(u),aω(u)+1)+bk(aω(u)+1,aω(u))] |
ϵ0k≤limu→∞supbk(aμ(u),aω(u)+1). | (2.5) |
Now,
bk(aμ(u),aω(u)+1)≤bk((η(aμ(u)−1,faμ(u)−1;γμ(u)−1),aω(u)+1)=γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1)bk(faμ(u)−1,aω(u)+1) |
≤γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1)k{bk(faμ(u)−1,faω(u)+1)+bk(faω(u)+1,aω(u)+1)}. | (2.6) |
Since, by (2.1) we can write
F(kbk(faμ(u)−1,faω(u)+1))≤F{h(aμ(u)−1,aω(u)+1)(bk(aμ(u)−1,faμ(u)−1)+bk(faω(u)+1,aω(u)+1))}−τ. |
Therefore,
F[γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1){kbk(faμ(u)−1,faω(u)+1)+kbk(faω(u)+1,aω(u)+1)}]≤F[γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1){h(aμ(u)−1,aω(u)+1)(bk(aμ(u)−1,faμ(u)−1)+bk(faω(u)+1,aω(u)+1))+kbk(faω(u)+1,aω(u)+1)}]−τ. |
Hence, using (F1) and (2.6), we write
bk(aμ(u),aω(u)+1)≤γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1)[h(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,faμ(u)−1)+{h(aμ(u)−1,aω(u)+1)+k}bk(faω(u)+1,aω(u)+1)]≤γμ(u)−1{kbk(aμ(u)−1,aω(u))+kbk(aω(u),aω(u)+1)}+(1−γμ(u)−1)[h(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,faμ(u)−1)+(h(aμ(u)−1,aω(u)+1)+k)⋅bk(faω(u)+1,aω(u)+1)]. |
Exerting limit u→∞, we obtain
limu→∞supbk(aμ(u),aω(u)+1)≤limu→∞supγμ(u)−1kbk(aμ(u)−1,aω(u))≤14k2k⋅ϵ0. |
This shows that
ϵ0k≤liml→∞supbk(aμ(u),aω(u)+1)<ϵ04k |
which is a contradiction. Hence, {an} is a Cauchy sequence. The completeness of E assure the existence of an element a∗ such that
limn→∞bk(an,a∗)=0. |
Next, we prove that a∗ is the fixed point of f. For this, we know that
bk(a∗,fa∗)≤k{bk(a∗,an)+bk(an,fa∗)}≤kbk(a∗,an)+k2{bk(an,fan)+bk(fan,fa∗)} | (2.7) |
As
F(kbk(fan,fa∗))≤F[h(a∗,an){bk(an,fan)+bk(a∗,fa∗)}]−τ |
therefore,
F(bk(a∗,fa∗))≤F(kbk(a∗,an)+k2{bk(an,fan)+bk(fan,fa∗)})≤F[kbk(a∗,an)+k2bk(an,fan)+kh(a∗,an){bk(an,fan)+bk(a∗,fa∗)}]−τ. |
Utilizing (F1), we obtain
F((1−kh(a∗,an))bk(a∗,fa∗))<F[kbk(a∗,an)+(k2+kh(a∗,an))(911)nbk(a0,fa0)]−nτ. |
Now, clearly
limnπ∞kbk(a∗,an)+(k2+kh(a∗,an))(911)nbk(a0,fa0)=0, |
therefore,
limn→∞F((1−kh(a∗,an))bk(a∗,fa∗))=limnπ∞F(kbk(a∗,an)+(k2+kh(a∗,an))(911)nbk(a0,fa0))−nτ=−∞. |
Consequently,
limn→∞(1−kh(a∗,an))bk(a∗,fa∗)=0. |
Hence, bk(a∗,fa∗)=0, i.e., a∗ is the fixed point of f. It remains to prove that a∗ is the only fixed point f. Suppose on the contrary that a∗∗ be another fixed point of f. Then
bk(a∗,a∗∗)≤k{bk(a∗,fa∗)+bk(fa∗,fa∗∗)}. |
By hypothesis,
F(kbk(a∗,fan))=F(kbk(fa∗,fan))≤F(h(a∗,an){bk(a∗,fa∗)+bk(an,fan)})=F(h(a∗,an)bk(an,fan))≤F(bk(a0,fa0))−nτ. |
As a result, we get F(kbk(a∗,fan))=−∞. By (F2), we obtain limn→∞kbk(a∗,fan)=0. Similarly, limn→∞kbk(a∗∗,fan)=0. i.e., limn→∞kbk(a∗,fan)+limn→∞kbk(a∗∗,fan)=0. Thus, using (F2), we obtain
limn→∞F(bk(a∗,a∗∗))≤limn→∞F(kbk(a∗,fan)+kbk(fan,a∗∗))=−∞. |
Consequently, limn→∞bk(a∗,a∗∗)=0. This shows that a∗=a∗∗.
This section examines F-Reich contraction for the possible existence of a unique fixed point. Also, an example is given to explain the proved theorem.
Definition 3.1: Assume that F∈Fb, (E,bk,η) be a convex b-metric space with k>1. Then f:E→E is known as F-Reich contraction if for g,h:E×E→[0,12) the following holds:
τ+F(kbk(fa,fb))≤F[g(a,b)bk(a,b)+h(a,b){bk(a,fa)+bk(b,fb)}] | (3.1) |
for every a,b∈E provided that (g+2h)(a,b)<1.
Theorem 3.2: Suppose (E,bk,η) is a complete convex b-metric space with an=η(an−1,fan−1;γn−1)n∈N having γn−1∈(0,14k2] and f:E→E is an F-Reich contraction. If g(a,b)+2h(a,b)≤14k2,then f has a unique fixed point in E.
Proof. By hypothesis and (2.1)
bk(an,fan)=bk(fan,η(an−1,fan−1;γn−1))≤γn−1bk(an−1,fan)+(1−γn−1)bk(fan−1,fan)≤γn−1{kbk(an−1,fan−1)+kbk(fan−1,fan)}+bk(fan−1,fan)=kγn−1bk(an−1,fan−1)+(kγn−1+1)bk(fan−1,fan)≤kγn−1bk(an−1,fan−1)+(γn−1+1)kbk(fan−1,fan). |
Now, since
τ+F(kbk(fan−1,fan))≤F[g(an−1,an)bk(an−1,an)+h(an−1,an){bk(an−1,fan−1)+bk(an,fan)}], |
therefore,
τ+F(kγn−1bk(an−1,fan−1)+(γn−1+1)kbk(fan−1,fan))≤F[kγn−1bk(an−1,fan−1)+g(an−1,an)(γn−1+1)bk(an−1,an)+(γn−1+1)h(an−1,an){bk(an−1,fan−1)+bk(an,fan)}]. |
This leads to
F(bk(an,fan))≤F[kγn−1bk(an−1,fan−1)+g(an−1,an)(1+γn−1)(1−γn−1)bk(an−1,fan−1)+(γn−1+1)h(an−1,an){bk(an−1,fan−1)+bk(an,fan)}]−τ. |
Using (F1), we write
(1−(h(an−1,an)γn−1+h(an−1,an)))⋅bk(an,fan)≤{(kγn−1)+h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)(1−γn−12)}⋅bk(an−1,fan−1)<{(kγn−1)+h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)}⋅bk(an−1,fan−1). |
As,
h(an−1,an)γn−1+h(an−1,an)≤(14k2+1).14k2<1 |
and
h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)≤14k2⋅14k2+14k2<1, |
hence
bk(an,fan)≤(kγn−1)+h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an)).bk(an−1,fan−1). | (3.2) |
Say
(kγn−1)+h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an))=σn−1, |
then
σn−1=(kγn−1)+h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an))<(kγn−1)+h(an−1,an)γn−1+h(an−1,an)+g(an−1,an)1−(h(an−1,an)γn−1+h(an−1,an)+g(an−1,an))<1+14k1−(h(an−1,an)γn−1+h(an−1,an)+g(an−1,an))−1≤4k−516k2−5<1. |
Therefore (3.2) becomes
bk(an,fan)≤σn−1bk(an−1,fan−1)<4k−516k2−5bk(an−1,fan−1). | (3.3) |
Operating (F1) again, we write
F(bk(an,fan))≤F(4k−516k2−5bk(an−1,fan−1))−τ<F(bk(an−1,fan−1))−τ. |
Similarly,
F(bk(an−1,fan−1))≤F(bk(an−2,fan−2))−τ. |
Consequently, we note
F(bk(an,fan))<F(bk(an−1,fan−1))−τ<F(bk(an−2,fan−2))−2τ<⋯<F(bk(a0,fa0))−nτ, |
applying limit n→∞
limn→∞F(bk(an,fan))=−∞. |
By (F2), we get
limn→∞bk(an,fan)=0 |
Now, since
bk(an,an+1)=bk(an,η(an,fan,γn))≤(1−γn)bk(an,fan), |
therefore, we note that limn→∞bk(an,an+1)=0. It remains to prove that the sequence {an} is Cauchy. Suppose on the contrary that {an} is not Cauchy. Then we can find subsequences {aμ(u)} and {aω(u)} of {an} and a positive real number ϵ0μ(u)>ω(u)>u with μ(u) as the smallest natural index such that
bk(aμ(u),aω(u))≥ϵ0 |
and
bk(aμ(u)−1,aω(u))<ϵ0. |
We deduce that
ϵ0≤bk(aμ(u),aω(u))≤k[bk(aμ(u),aω(u)+1)+bk(aω(u)+1,aω(u))] |
ϵ0k≤limu→∞supbk(aμ(l),aω(u)+1). | (3.4) |
Now,
bk(aμ(u),aω(u)+1)≤bk((η(aμ(u)−1,faμ(u)−1,γμ(u)−1),aω(u)+1)=γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1)bk(faμ(u)−1,aω(u)+1)≤γμ(u)−1bk(aμ(u)−1,aω(u)+1) |
+(1−γμ(u)−1)k{bk(faμ(u)−1,faω(u)+1)+bk(faω(u)+1,aω(u)+1)}. | (3.5) |
Since, by (3.1)
F(kbk(faμ(u)−1,faω(u)+1))≤F{g(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,aω(u)+1)+h(aμ(u)−1,aω(u)+1)(bk(aμ(u)−1,faμ(u)−1)+bk(faω(u)+1,aω(u)+1))}−τ. |
Therefore,
F[γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1){kbk(faμ(u)−1,faω(u)+1)+kbk(faω(u)+1,aω(u)+1)}]≤F[γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1){g(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,aω(u)+1)+h(aμ(u)−1,aω(u)+1)(bk(aμ(u)−1,faμ(u)−1)+bk(faω(u)+1,aω(u)+1))+kbk(faω(u)+1,aω(u)+1)}]−τ. |
Hence, using (F1) and (3.5), we write
bk(aμ(u),aω(u)+1)≤γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1)[g(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,aω(u)+1)+h(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,faμ(u)−1)+{h(aμ(u)−1,aω(u)+1)+k}bk(faω(u)+1,aω(u)+1)]≤γμ(u)−1bk(aμ(u)−1,aω(u)+1)+(1−γμ(u)−1)[g(aμ(u)−1,aω(u)+1){bk(aμ(u)−1,aω(u))+bk(aω(u),aω(u)+1)}+h(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,fau(u)−1)+{h(aμ(u)−1,aω(u)+1)+k}bk(faω(u)+1,aω(u)+1)]≤γμ(u)−1{kbk(aμ(u)−1,aω(u))+kbk(aω(u),aω(u)+1)}+(1−γμ(u)−1)[g(aμ(u)−1,aω(u)+1){bk(aμ(u)−1,aω(u))+bk(aω(u),aω(u)+1)}+h(aμ(u)−1,aω(u)+1)bk(aμ(u)−1,faμ(u)−1)+(h(aμ(u)−1,aω(u)+1)+k)⋅bk(faω(u)+1,aω(u)+1)], |
exerting limit u→∞, we obtain
limu→∞supbk(aμ(u),aω(u)+1)≤limu→∞supγμ(u)−1kbk(aμ(u)−1,aω(u))≤(14k2k+14k2)⋅ϵ0. |
This shows that
ϵ0k≤limu→∞supbk(aμ(u),aω(u)+1)<ϵ02k |
which is a contradiction. Hence, {an} is a Cauchy sequence. The completeness of E assure the existence of an element a∗ such that
limn→∞bk(an,a∗)=0. |
Next, we prove that a∗ is the fixed point of f.
bk(a∗,fa∗)≤k{bk(a∗,an)+bk(an,fa∗)}≤kbk(a∗,an)+k2{bk(an,fan)+bk(fan,fa∗)}. | (3.6) |
As
F(kbk(fan,fa∗))≤F[g(a∗,an)bk(a∗,an)+h(a∗,an){bk(an,fan)+bk(a∗,fa∗)}]−τ, |
therefore, using above equation and (3.6)
F(bk(a∗,fa∗))≤F(kbk(a∗,an)+k2{bk(an,fan)+bk(fan,fa∗)})≤F[kbk(a∗,an)+k2bk(an,fan)+k⋅g(a∗,an)bk(a∗,an)+kh(a∗,an){bk(an,fan)+bk(a∗,fa∗)}]−τ. |
Utilizing (F1), we obtain
F((1−kh(a∗,an))bk(a∗,fa∗))<F[kbk(a∗,an)+k⋅g(a∗,an)bk(a∗,an)+{k2+kh(a∗,an)}(911)nbk(a0,fa0)]−τ. |
Clearly,
\underset{\mathit{n\pi \infty }}{\mathrm{lim}}\left\{\begin{array}{c}k{b}_{k}\left({a}^{*}, {a}_{n}\right)+{k}^{2}{b}_{k}\left({a}_{n}, f{a}_{n}\right)+k\cdot g\left({a}^{*}, {a}_{n}\right){b}_{k}\left({a}^{*}, {a}_{n}\right)\\ +\left\{{k}^{2}+kh\left({a}^{*}, {a}_{n}\right)\right\}{\left(\frac{9}{11}\right)}^{n}{b}_{k}\left({a}_{0}, f{a}_{0}\right)\end{array}\right\} = 0 |
therefore,
\lim\limits _{n \rightarrow \infty}F\left(\left(1-kh\left({a}^{*}, {a}_{n}\right)\right){b}_{k}\left({a}^{*}, f{a}^{*}\right)\right)\\ = \underset{\mathit{n\pi \infty }}{\mathrm{lim}}F\left(k{b}_{k}\left({a}^{*}, {a}_{n}\right)+{k}^{2}{b}_{k}\left({a}_{n}, f{a}_{n}\right)\\+k\cdot g\left({a}^{*}, {a}_{n}\right){b}_{k}\left({a}^{*}, {a}_{n}\right)+\left\{{k}^{2}+kh\left({a}^{*}, {a}_{n}\right)\right\}{\left(\frac{9}{11}\right)}^{n}{b}_{k}\left({a}_{0}, f{a}_{0}\right)\right) = -\infty , |
consequently,
\lim\limits _{n \rightarrow \infty}\left(1-kh\left({a}^{*}, {a}_{n}\right)\right){b}_{k}\left({a}^{*}, f{a}^{*}\right) = 0. |
Hence, {b}_{k}\left({a}^{*}, f{a}^{*}\right) = 0 , i.e., {a}^{*} is the fixed point of f . It remains to prove that {a}^{*} is the only fixed point f . Suppose on the contrary that {a}^{**} be another fixed point of f . Then
F\left(k{b}_{k}\left({a}^{*}, {a}^{**}\right)\right) = F\left(k{b}_{k}\left({fa}^{*}, f{a}^{**}\right)\right)\\\le F\left[g\left({a}^{*}, {a}^{**}\right){b}_{k}\left({a}^{*}, {a}^{**}\right)+h\left({a}^{*}, {a}^{**}\right)\left\{{b}_{k}\left({a}^{*}, {fa}^{*}\right)+{b}_{k}\left({a}^{**}, {fa}^{**}\right)\right\}\right]-\tau \\ = F\left[g\left({a}^{*}, {a}^{**}\right){b}_{k}\left({a}^{*}, {a}^{**}\right)\right]-\tau |
which is a contradiction. Hence, {b}_{k}\left({a}^{*}, {a}^{**}\right) = 0 . This shows that {a}^{*} = {a}^{**} .
Example 3.3: Suppose E = \left[0, \left.+\infty \right)\right. , fa = \frac{a}{6} for all a\in E and choose a mapping {b}_{k}:E\times E\to \left[0, \left.+\infty \right)\right. defined as {b}_{k}\left(a, b\right) = {(a-b)}^{2} . Demonstrate \mathrm{\eta }:E\times E\times \left[\mathrm{0, 1}\right]\to E as \eta \left(a, b; \gamma \right) = \gamma a+\left(1-\gamma \right)b for all a, b\in E . Fix {a}_{n} = \eta ({a}_{n-1}, f{a}_{n-1};{\gamma }_{n-1}) and {\gamma }_{n-1} = \frac{1}{4{k}^{2}} = \frac{1}{16} . Now, for all o, a, b\in E , we write
{b}_{k}\left(o, \left(a, b, \gamma \right)\right) = {\left[\gamma \left(o-a\right)+(1-\gamma )\left(o-b\right)\right]}^{2}\le {\left[\gamma \left|o-a\right|+\left(1-\gamma \right)\left|o-b\right|\right]}^{2}\\ = {\left(\gamma \left|o-a\right|\right)}^{2}+{\left(\left(1-\gamma \right)\left|o-b\right|\right)}^{2}+2\gamma \left(1-\gamma \right)\left|o-a\right|\left|o-b\right|\\\le {\left(\gamma \left|o-a\right|\right)}^{2}+{\left(\left(1-\gamma \right)\left|o-b\right|\right)}^{2}+\gamma \left(1-\gamma \right)\left({\left(o-a\right)}^{2}+{\left(o-b\right)}^{2}\right)\\ = {\gamma \left(o-a\right)}^{2}+{\left(1-\gamma \right)\left(o-b\right)}^{2} = \gamma {b}_{k}\left(o, a\right)+\left(1-\gamma \right){b}_{k}\left(o, b\right). |
Hence, {(E, b}_{k}, \eta) is a convex b-metric space with k = 2 . Next, define g, h:E\times E\to \left[0, \left.\frac{1}{2}\right)\right. by
g\left( {x, y} \right) = \left\{ {\begin{array}{*{20}{c}} {\frac{1}{{4{k^2}}}\;\;\;\;if\;x \lt y}\\ {\frac{1}{{4{k^2} + 1}}\;\;\;\;otherwise} \end{array}} \right. |
and fix h(x, y) = 0 . Observe that g\left(a, b\right)+2h\left(a, b\right)\le \frac{1}{4{k}^{2}}\cdot Then
\mathrm{ln}\left(k{b}_{k}\left(fa, fb\right)\right) = \mathrm{ln}\left\{k{\left(\frac{a}{6}-\frac{b}{6}\right)}^{2}\right\} = \mathrm{ln}\left(k\frac{1}{36}{(a-b)}^{2}\right)\le \mathrm{ln}\left[g\left(a, b\right){\left(a-b\right)}^{2}\right]\\ = \mathrm{ln}\left[g\left(a, b\right){b}_{k}\left(a, b\right)+h\left(a, b\right)\left\{{b}_{k}\left(a, fa\right)+{b}_{k}\left(b, fb\right)\right\}\right], |
i.e., F\left(k{b}_{k}\left(fa, fb\right)\right)\le F\left[g\left(a, b\right){b}_{k}\left(a, b\right)+h\left(a, b\right)\left\{{b}_{k}\left(a, fa\right)+{b}_{k}\left(b, fb\right)\right\}\right] . Observe that F\left(x\right) = ln\left(x\right) satisfies (F1) and (F2). Thus, the inequality (3.1) is satisfied for \tau \in \mathrm{ln}\left(\frac{4{k}^{2}+2}{4{k}^{2}+1}\right) . Now
{a}_{n} = {\gamma }_{n-1}{a}_{n-1}+\left(1-{\gamma }_{n-1}\right)f{a}_{n-1} = {\gamma }_{n-1}{a}_{n-1}+\left(1-{\gamma }_{n-1}\right)\frac{{a}_{n-1}}{6} |
= \left(\frac{5}{6}{\gamma }_{n-1}+\frac{1}{6}\right){a}_{n-1} = \frac{17}{96}{a}_{n-1}. |
Similarly
{a}_{n-1} = \frac{17}{96}{a}_{n-2}, {a}_{n-2} = \frac{17}{96}{a}_{n-3}, \cdots , {a}_{1} = \frac{17}{96}{a}_{0}. |
Therefore, {a}_{n} = {\left(\frac{17}{96}\right)}^{n}{a}_{0} and f{a}_{n} = \frac{1}{6}{\left(\frac{17}{96}\right)}^{n}{a}_{0} . Letting n\to \infty, we get {a}_{n}\to 0 and f{a}_{n}\to 0 . i.e., 0 is the fixed point of f . For uniqueness, suppose on contrary that r is another fixed point of f then {b}_{k}\left(0, r\right)>0 , say {b}_{k}\left(0, r\right) = \delta . Hence
{\delta = b}_{k}\left(0, r\right) = {b}_{k}\left(f0, fr\right) = {\left(0-\frac{r}{5}\right)}^{2} = \frac{{r}^{2}}{25} = \frac{1}{25}{b}_{k}\left(0, r\right) = \frac{1}{25}\delta |
which is a contradiction. Therefore, 0 is the only fixed point of f .
In Figure 1, the graph in blue and purple colour represent g(a, b){b}_{k}\left(a, b\right)+h\left(a, b\right)\left\{\begin{array}{c}{b}_{k}\left(a, fa\right)\\ +{b}_{k}(b, fb)\end{array}\right\} while that in red and green shows k{b}_{k}\left(a, b\right) . The first one clearly dominates the later one, hence confirming the contractive inequality.
In Figure 2, the graph in red colour represent F\left[g(a, b){b}_{k}\left(a, b\right)+h\left(a, b\right)\left\{\begin{array}{c}{b}_{k}\left(a, fa\right)\\ +{b}_{k}(b, fb)\end{array}\right\}\right] while that in blue shows F\left(k{b}_{k}\left(a, b\right)\right) . Note that the higher is the graph at z-axis, the bigger is the value of the mapping F . Hence, both the figures clearly demonstrate that the inequality (3.2) holds true.
In the next section, we discuss the application of our results to Fredholm integral equation of the second type.
Fredholm integral equation can be classified as an Equation of the first kind and Equation of the second kind. The solution of Fredholm integral equation leads to Fredholm theory. Fredholm linear equation has key importance in inverse problems, linear forward modeling, the theory of signal processing and distributions, etc. Adomian decomposition method is an effective tool for solving Fredholm integral equation. In this section we provide an application of our results to the solution of Fredholm integral equations:
p\left(t\right) = S\left(t\right)+\sigma {\int }_{a}^{b}T\left(t, \tau \right)p\left(\tau \right)d\tau | (4.1) |
Theorem 4.1: Suppose Eq (4.1) with a\le t, \tau \le b , S\in E[a, b] and the continuous mapping T(t, \tau) . Let W = \max _{a \leq t, \tau \leq b}T(t, \tau) , g:E[a, b]\to E[a, b] and \alpha, \beta :E\left[a, b\right]\times E\left[a, b\right]\to \left[\mathrm{0, 1}\right) with \alpha \left(p, q\right)+2\beta \left(p, q\right)\le \frac{1}{4{k}^{2}} satisfy the following condition;
F\left[k{\left[W\left(b-a\right)\left|\sigma \right|\right]}^{p}\underset{a\le t, \tau \le b}{\mathrm{max}}{\left|p\left(\tau \right)-q\left(\tau \right)\right|}^{p}\right]\le F\left[\alpha \left(p, q\right){\left|p-q\right|}^{p}+\beta \left(p, q\right)\left\{\begin{array}{c}{\left|p-gp\right|}^{p}\\ +{\left|q-gq\right|}^{p}\end{array}\right\}\right]-\tau , |
for all p, q\in E[a, b] . Then the integral equation (4.1) has a unique solution.
Proof. Suppose E = c[p, q] and {b}_{k}:E\times E\to [0, +\infty) is defined by
{b}_{k}\left(p, q\right) = \max _{a \leq t, \tau \leq b}{\left|p\left(t\right)-q\left(t\right)\right|}^{p}, | (4.2) |
and define a mapping T by
g\left(p\left(t\right)\right) = S\left(t\right)+\sigma {\int }_{a}^{b}T\left(t, \tau \right)p\left(\tau \right)d\tau \;for\; all\; p\in H\left[a, b\right]. | (4.3) |
Set
{a}_{n} = \eta \left({a}_{n-1}, T{a}_{n-1};{\gamma }_{n-1}\right) = {\gamma }_{n-1}{a}_{n-1}+(1-{\gamma }_{n-1}){a}_{n-1}, n\in N |
where {\gamma }_{n-1}\in \left(0, \left.\frac{1}{4{k}^{2}}\right]\right.. Clearly ({E, b}_{k}, \eta) is a convex b-metric space with k = {2}^{p-1} . Now
F\left[{kb}_{k}\left(g\left(p\right), g\left(q\right)\right)\right] = F\left[\underset{a\le t, \tau \le b}{\mathrm{max}}{\left|g\left(p\left(t\right)\right)-g\left(q\left(t\right)\right)\right|}^{p}\right]\\ = F\left[k\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}{\left|\sigma {\int }_{a}^{b}T\left(t, \tau \right)p\left(\tau \right)d\tau -\sigma {\int }_{u}^{v}T\left(t, \tau \right)q\left(\tau \right)d\tau \right|}^{p}\right]\\ = F\left[k\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}{\left|\sigma {\int }_{a}^{b}\left(T\left(t, \tau \right)p\left(\tau \right)-T\left(t, \tau \right)q\left(\tau \right)\right)d\tau \right|}^{p}\right]\\\le F\left[k\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}{{\left|\sigma \right|}^{p}\left|{\int }_{a}^{b}\left|T\left(t, \tau \right)\right|\left|p\left(\tau \right)-q\left(\tau \right)\right|d\tau \right|}^{p}\right]\\\le F\left[k{\left[W\left(b-a\right)\left|\sigma \right|\right]}^{p}\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}{\left|p\left(\tau \right)-q\left(\tau \right)\right|}^{p}\right]\\\le F\left[\alpha \left(p\left(t\right), q\left(t\right)\right){\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}\left|p\left(t\right)-q\left(t\right)\right|}^{p}+\beta \left(p\left(t\right), q\left(t\right)\right)\left\{\begin{array}{c}\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}{\left|p\left(t\right)-gp\left(t\right)\right|}^{p}\\ +{\underset{a\le t, \tau \le b}{\mathrm{m}\mathrm{a}\mathrm{x}}\left|q\left(t\right)-gq\left(t\right)\right|}^{p}\end{array}\right\}\right]\\-\tau = F\left[\alpha \left(p, q\right){b}_{k}\left(p, q\right)+\beta \left(p, q\right)\left\{\begin{array}{c}{b}_{k}\left(p, Tp\right)\\ +{b}_{k}\left(q, Tq\right)\end{array}\right\}\right]-\tau . |
Hence, g is an F -Reich contraction. Therefore, by Theorem (3.2) there exist a unique solution of g\left(p\left(t\right)\right) .
Corollary 4.2: Consider Eq (4.1) with a\le t, \tau \le b , S\in E[a, b] and the continuous mapping T(t, \tau) . If W = \max _{a \leq t, \tau \leq b}T(t, \tau) , g:E[a, b]\to E[a, b] and \beta :E\left[a, b\right]\times E\left[a, b\right]\to [0, \left.\frac{1}{2}\right) with \beta :H[a, b]\times H[a, b]\to \left(0, \left.\frac{1}{4{k}^{2}}\right]\right. satisfy the following condition;
F\left[k{\left[W\left(b-a\right)\left|\sigma \right|\right]}^{2}\underset{a\le t, \tau \le b}{\mathrm{max}}{\left|p\left(\tau \right)-q\left(\tau \right)\right|}^{2}\right]\le F\left[\beta \left(p, q\right)\left\{{\left|p-gp\right|}^{2}+{\left|q-gq\right|}^{2}\right\}\right]-\tau , |
for all p, q\in E[a, b] . Then the integral equation (4.1) has a unique solution.
This paper has modified the definition of generalized F -contractions by eliminating the conditions (F3) and (F4) and thus proved some principal fixed point results in the setting of convex b-metric spaces. Throughout this research, it was observed that the elements {a}_{n} are taken from the convex structure \eta \left(a, b, \gamma \right) . Thus, investigated fixed point for F -Reich contractions and F -Kannan contractions followed by the verification of our results with the help of example and graphs. Further, an application of our results in finding a unique solution to the Fredholm integral equation is described. The paper furthers the research already done on the topic of F -contractions and fixed point theory.
The authors declare that there is no conflict of interest.
[1] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav., 1 (1993), 5-11. |
[2] | L. Chen, C. Li, R. Kaczmarek, et al. Several fixed point theorems in convex b-metric spaces and applications, Mathematics, 8 (2020), 1-16. |
[3] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debr., 57 (2000), 31-37. |
[4] | R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, SIAM J. Discrete Math., 17 (2003), 134-160. |
[5] | V. S. Gahler, 2-metrische Raume und ihre topologische struktur, Math. Nachr., 26 (1963), 115-148. |
[6] | A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, Tran. A. Razmadze Math. Institute, 172 (2018), 481-490. |
[7] | M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 1-14. |
[8] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. |
[9] | S. Malhotra, S. Shukla, R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces, Acta Math. Univ. Comenianae, 2 (2013), 165-175. |
[10] | S. G. Matthews, Partial metric topology, In: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728 (1994), 183-197. |
[11] | Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297. |
[12] | D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. |
[13] | M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers type, Filomat, 28 (2014), 715-722. |
[14] | A. Shoaib, A. Asif, M. Arshad, Generalized dynamic process for generalized multivalued F-contraction of hardy Rogers type in b-metric spaces, Turk. J. Anal. Number Theory, 6 (2018), 43-48. |
[15] | A. Asif, M. Nazim, M. Arshad, et al. F-metric, F-contraction and common fixed point theorems with applications, Mathematics, 7 (2019), 586-599. |
[16] | Z. Ma, A. Asif, H. Aydi, et al. Analysis of F-contractions in function weighted metric spaces with an application, Open Math., 18 (2019), 582-594. |
[17] | M. Cosentino, M. Jleli, B. samet, et al. Solvability of integrodifferential problems via fixed point theory in b-metric spaces, Fixed Point Theory App., 2015 (2015), 70. |
[18] | W. H. Teukolsky, S. A. Vetterling, W. T. Flannery, Section 19.1. Fredholm Equations of the Second Kind, In: Numerical Recipes: The Art of Scientific Computing, 3 Eds., Cambridge University Press, New York, 2007. |
1. | A. Asif, M. Alansari, N. Hussain, M. Arshad, A. Ali, Danilo Comminiello, Iterating Fixed Point via Generalized Mann’s Iteration in Convex b-Metric Spaces with Application, 2021, 2021, 1099-0526, 1, 10.1155/2021/8534239 | |
2. | Awais Asif, Nawab Hussain, Hamed Al-Sulami, Muahammad Arshad, Efthymios G. Tsionas, Some Fixed Point Results in Function Weighted Metric Spaces, 2021, 2021, 2314-4785, 1, 10.1155/2021/6636504 | |
3. | Gunasekaran Nallaselli, Amani S. Baazeem, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Khalil Javed, Eskandar Ameer, Nabil Mlaiki, Fixed Point Theorems via Orthogonal Convex Contraction in Orthogonal ♭-Metric Spaces and Applications, 2023, 12, 2075-1680, 143, 10.3390/axioms12020143 | |
4. | Surjeet Singh Chauhan Gonder, Khushboo Basra, Convergence and Stability Results of Modified CUIA Iterative Scheme for Hyperbolic Convex Metric space, 2021, 2089, 1742-6588, 012040, 10.1088/1742-6596/2089/1/012040 | |
5. | Amna Naz, Samina Batul, Dur-e-Shehwar Sagheer, Irshad Ayoob, Nabil Mlaiki, F-Contractions Endowed with Mann’s Iterative Scheme in Convex Gb-Metric Spaces, 2023, 12, 2075-1680, 937, 10.3390/axioms12100937 | |
6. | Muhammad Sarwar, Syed Khayyam Shah, Kamaleldin Abodayeh, Arshad Khan, Ishak Altun, On a new generalization of a Perov-type F-contraction with application to a semilinear operator system, 2024, 2024, 2730-5422, 10.1186/s13663-024-00762-5 | |
7. | Kamaleldin Abodayeh, Syed Khayyam Shah, Muhammad Sarwar, Chanon Promsakon, Thanin Sitthiwirattham, Ćirić-type generalized F-contractions with integral inclusion in super metric spaces, 2024, 16, 26667207, 100443, 10.1016/j.rico.2024.100443 |