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1. Introduction

Let A be an associative algebra. For A, B € A, denote by [A, B] = AB — BA the Lie product
of A and B. An additive (a linear) map 6 : A — A is called a global Lie triple derivation
if 6([[A,B],C]) = [[0(A),B],C] + [[A,6(B)],C] + [[A, B],o6(C)] for all A,B,C € A. The study
of global Lie triple derivations on various algebras has attracted several authors’ attention, see for
example [2, 11, 16, 17,20]. Next, let 6 : A — A be a map (without the additivity (linearity)
assumption). ¢ is called a global nonlinear Lie triple derivation if ¢ satisfies 6([[A, B],C]) =
[[6(A), B],C] + [[A,6(B)],C] + [[A, B],6(C)] for all A,B,C € A. Ji, Liu and Zhao [4] gave the
concrete form of global nonlinear Lie triple derivations on triangular algebras. Chen and Xiao [3]
investigated global nonlinear Lie triple derivations on parabolic subalgebras of finite-dimensional
simple Lie algebras. Very recently, Zhao and Hao [21] paid attention to non-global nonlinear Lie triple
derivations. Let F' : AX AX A — A be a map and Q be a proper subset of (A. § is called a non-global
nonlinear Lie triple derivation if ¢ satisfies 6([[A, B], C]) = [[0(A), B], C]+[[A, 6(B)], C1+[[A, B], 6(C)]
for any A, B,C € A with F(A,B,C) € Q. Let M be a finite von Neumann algebra with no central
summands of type ;. Zhao and Hao [21] proved that if 6 : M — M satisfies 6([[A, B],C]) =
[[6(A), B],C] + [[A,d(B)], C] + [[A, B],6(C)] for any A,B,C € M with ABC = 0, then 6 = d + T,
where d is a derivation from M into itself and 7 is a nonlinear map from M into its center such that
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7([[A, B], C]) = 0 with ABC = 0.

Let A be an associative *-algebra. For A, B € A, denote by [A, B], = AB—BA” the skew Lie product
of A and B. The skew Lie product arose in representability of quadratic functionals by sesquilinear
functionals [12, 13]. In recent years, the study related to skew Lie product has attracted some authors’
attention, see for example [1,5-10, 14, 15, 18, 19, 22] and references therein. Amapéd : A - A
(without the additivity (linearity) assumption) is called a global nonlinear skew Lie triple derivation
if 6([[A, Bl., Cl.) = [[6(A), Bl.,C].. + [[A,o(B)].,C]. + [[A, B].,o(C)]. for all A,B,C € A. A map
0 : A — Ais called an additive *-derivation if it is an additive derivation and satisfies 6(A*) = 6(A)*
for all A € A. Li, Zhao and Chen [5] proved that every global nonlinear skew Lie triple derivation
on factor von Neumann algebras is an additive *-derivation. Taghavi, Nouri and Darvish [15] proved
that every global nonlinear skew Lie triple derivation on prime *-algebras is additive. Similarly, let
F:AXAXA — Abe amap and Q be a proper subset of A. If § satisfies 6([[A, Bl.,C].) =
[[6(A), Bl., Cl. + [[A, 6(B)]., C]. + [[A, B]., 6(C)]. for any A, B,C € A with F(A,B,C) € Q, then ¢ is
called a non-global nonlinear skew Lie triple derivation.

Motivated by the mentioned works, we will concentrate on characterizing a kind of non-global
nonlinear skew Lie triple derivations ¢ on factor von Neumann algebras satisfying o6([[A, B].,C].) =
[[6(A), Bl., Cl. + [[A,6(B)]., Cl. + [[A, B]., 6(C)]. for any A, B, C € A with A*B*C = 0.

As usual, C denotes the complex number field. Let H be a complex Hilbert space and B(H) be the
algebra of all bounded linear operators on H. Let A C B(H) be a factor von Neumann algebra (i.e.,
the center of A is CI, where [ is the identity of A ). Recall that A is prime (i.e., for any A, B € A,
AAB = {0} implies A = 0 or B = 0).

2. Main result

The main result is the following theorem.
Theorem 2.1. Let A be a factor von Neumann algebra acting on a complex Hilbert space H with
dimA > 1. If amap ¢ : A — A satisfies

o([[A, Bl., Cl,) = [[6(A), B]., Cl. + [[A,6(B)]., Cl. + [[A, Bl., 6(C)].
for any A, B, C € A with A*B*C = 0, then ¢ is an additive *-derivation.

Let P; € A be a nontrivial projection. Write P, = I — Py, A;; = PAP; (i,j = 1,2). Then
A=Ay + A + Ay + Ao For anyA eA A= A11 +A12 +A21 +A22, A,‘j S ﬂ,‘j (l,] = 1,2)

Lemma 2.1. (a) 6(P;))" = 6(P;)) (i = 1,2);
Proof. (a) It is clear that 6(0) = 0. For any X;; € Ay, it follows from P{PjX>; = 0 and
[[P1, P1]., X511« = O that

0 =6([[P1, P11+, X211%)
=[[6(P1), P1l., Xo11« + [[P1,0(P1)]s, Xo11s + [[P1, Pils, 0(X21)].
=—Pi6(P1) X5 = X516(P1)" + X210(P1)Py + P16(P1)Xa1 — X210(P1) Py + X516(Py)". (2.1)
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Multiplying (2.1) by P, from the left and by P; from the right, we have X,,(6(P)P, — 6(Py)"Py) = 0.

Then by the primeness of A, we get
P16(P1) Py = P16(P1)P).
By P{P;P, = 0 and [[P, P2]., P;]. = 0, we have

0 = o([[Py, P21, P2].)
= [[6(P1), P2l., P2l. + [[P1,6(P2)]., P2l. + [[Py, P2]., 6(P2)].

= 0(P1)Py — P20(P1)" Py — P20(P1)" + P0(P1)Py + P16(P2)Py — P0(P,) Py

Multiplying (2.3) by P, from both sides, we see that
P26(P1)" Py = P26(P1)Ps.
From P{P{P, = 0 and [[Py, P/]., P»]. = 0, we have

O = 6([[P13P1]*, PZ]*)
= [[6(P1), P1l., P2ls + [[P1, 6(P1)]s, Pale + [[P1, P1ls, 6(P2)].
= —P15(P1) Py + P26(Py)Py + P16(P)Py — P,6(Py)"P;.

Multiplying (2.5) by P; from the left and by P, from the right, then
P16(P1) Py = P16(P1)Ps.
Multiplying (2.5) by P, from the left and by P, from the right, then

Py6(Py)" Py = P6(P))P.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

It follows from (2.2), (2.4), (2.6) and (2.7) that 6(P;)* = 6(P,). Similarly, we can obtain that 6(P,)* =

6(P>).
(b) From P;P{P, = 0 and [[P;, Py]., P,]. = 0, we have

0 = o([[P2, P1]., P2].)
= [[6(P2), P1]., P2]. + [[P2, 6(P)]., P2ls + [[P2, Pi]., 6(P2)].

= —P16(P2)" Py + P20(P2) Py + P20(P1)Py — 6(P1)Py — P26(P1)" Py + Pr0(Py)".

(2.8)

Multiplying (2.8) by P; from the left and by P, from the right, we have P,6(P)P, = —P16(P,)*P;.

Then P6(P;)P, = —P16(P,)P, by (a). Similarly, we can obtain that P,6(P,)P, = —P,6(P;)P;.

Lemma 2.2. For any A;; € A;j (1 <i# j <2), we have

Proof. Let A\, € Ay,. For any X, € Ay, since AL, X[,P, = 0 and [[A,, X)2]., P2]. = 0, we have

0 :6([[1412, X12]*a PZ]*)
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=[[6(A12), Xi2]+, P2ls + [[A12, 6(X12)]., Pal. + [[A12, X121, 6(P2)].
=0(A12)X12 — X120(A12)" P2 — X],0(A12)" + P20(A12) X}, + A126(X12) P2
— P25(X12)*AT2 — XleTzé(Pz) + 5(P2)A12XT2. (29)

Multiplying (2.9) by P, from both sides, we have

0 = P6(A12)X12 — X1,0(A12)" Ps. (2.10)
Replacing X, with iXj, in (2.10) yields that

0 = P20(A12)X12 + X{,0(A12)" Ps. (2.11)

Combining (2.10) and (2.11), we see that P,6(A12)X;> = 0. Then P,6(A;2)P; = 0 by the primeness of
A. Similarly, we can obtain that P;6(A;;)P, = 0.

Lemma 2.3. For any Ay, € Ay, By € Ay, there exist Ga,p, € A, Ka,p, € Ay such
that
0(A12 + Ba1) = 6(A12) + 6(B21) + Gayypyy + Kappy, -

Pl"OOf. LetT = 5(A12 + Bz]) - 5(A12) - 5(321) From P;(Alz + Bz])*Pz = P;ATZPZ = P;B;lpz =0and
[[P2, Bai1]., P2]. = 0, we have

[[6(P2), A2 + Bails, Pals + [[P2, 6(A12 + Bai)ls, P2l + [[P2, A1z + Bails, 6(P2)].
= 0([[P2, A2 + Bals, P2])
= 0([[P2, A12]s, P2).) + 6([[P2, Ba1 1, P2].)
= [[6(P2), A12 + Bails, P2li + [[P2,6(A12) + 6(Bar)ls, Pals + [[P2, A1a + Bails, 6(P2)].,

which implies
[[Pz, T]*,P2]* =0. (212)

Multiplying (2.12) by P, from the left, we get T, = 0. Similarly, 75; = 0. Let
GA12,321 =T, KAIZ,le =T.
Then GA12,321 S ﬂlh KA12,321 (S ﬂzz, and so 5(A12 + le) = 5(A12) + (5(321) + GAlz,le + KA]Z,BZI'

Lemma 24. (a) P,6(P)P; =0(1 <i# j<2)
(b) P,6(P)HP; =0(i=1,2).
Proof. (a) For any X, € A, since P{X},P; = 0 and [[P, X)2]., P]. = 0, we have

0 =6([[P1, X12]+, P1]+)
=[[6(P1), X12]s, P11« + [[P1,6(X12) ], Prls + [[P1, Xi2)s, 6(P1)].
== X120(P)Py + Pi6(P)X, + P1o(X12)Py — 6(X12)Py — P10(X12) P,
+ P10(X12)" + X120(Py) — 0(P1)X7,. (2.13)

AIMS Mathematics Volume 7, Issue 8, 13963-13976.



13967

Multiplying (2.13) by P, from the left and by P, from the right, we have
P16(X12) Py + X126(P1)P, = 0.

It follows from Lemma 2.2 that X,6(P;)P; = —(P,0(X12)P1)* = 0. Then P,6(P;)P, = 0. Similarly,
P15(P2)P1 = O
(b) For any X5, € Ay, from (iX5)"P{Py = 0, [[iX3, P1]., Pi]. = iX5, + iX5;, Lemma 2.1(a) and
Lemma 2.3, there exist Ginl,inl € A, Kixy, ixy) € An such that
0(iX5)) + 0(iXa1) + Gixs ixy + Kixs, ixy,
=0([[iXa1, P1l., P11s)
=[[6(iX21), P1ls, P1ls + [[iX21, 6(PD)]s, P1]s + [[iX21, P1]s, 6(P1)].
=0(iX1)Py — P16(iX5)" Py — P16(iX5)" + P16(iX5) Py + iX56(P))Py +iP6(P)X5,
+iX510(Py) + lX;lé(Pl) + l(S(P])X;l + i0(P1)Xo;. (2.14)

Multiplying (2.14) by P, from the left and by P, from the right, we have

Py6(iX5,)P1 = 2iX510(P1)P; + iP,0(P1) X2 (2.15)
By (2.15), Lemma 2.2 and the fact that P,6(P;)P, = 0, we obtain X0(P;)P; = 0. Then
Plé(Pl)Pl =0. Slmllarly, P26(P2)P2 =0.

Remark 2.1. Let S = P6(P)P, — P,0(Py)P,. Then S* = —S by Lemma 2.1. We define a
map A : A — Aby
AX) = 6(X) - [X,S]

for any X € A. It is easy to verify that A is a map satisfying
A([[A, Bl., Cl.) = [[A(A), Bl., Cl. + [[A, A(B)]., C]. + [[A, Bl., A(C)].

forany A, B,C € A with A*B*C = 0. By Lemmas 2.1-2.4, it follows that
(@) A(P) =0 =1,2);
(b) For any A;j € A;j (1 <i# j<2), we have P;A(A;j)P; = 0;
(c) For any A, € Az, By € Ay, there exist Uy, p,, € A1, Vay,.p, € Axn such that

A(A1 + By1) = A(Ap) + A(Bay) + Uay,y, + Vapp,,-

Lemma 2.5. A(ﬂ”) - ﬂii (l = 1, 2)
Proof. Let Ay € Ayy. From A}, P3P, = 0, [[Ay1, P2]., P>]. = 0 and A(P,) = 0, we have

0 = A([[A11, P2]., P2].)
= [[A(All)’ PZ]*, PZ]*
= A(A11)Py = PA(A1) Py — PA(AL)" + PoA(A )P, (2.16)

Multiplying (2.16) by P; from the left, we get P{A(A)P, = 0. Since P;A}, P, = 0, [[P2, A1), Pi]. =
0 and A(P;) = A(P,) = 0, we have

0 = A([[P2, An s, P1).) = [[P2, A(A1D)], Pil. = P2A(A1) Py — PiA(A1) P (2.17)
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Multiplying (2.17) by P, from the left, we get P,A(A;;)P, = 0. For any X, € A\, from X|,A}, P> = 0,
[[Xi2,A11]s, P2]. = 0 and A(P,) = 0, we have

0 =A([[X12,A11], P2].)
=[[AX12), A11]s, P2l + [[X12, A(A1D]., P2l
=—-AAX 1) Py + PzA(Xlz)Ah + X12A(A )P, — PZA(AII)*Xikz- (2.18)

Multiplying (2.18) by P; from the left, we get —A;;A(X12)"P2 + X12A(A)P, = 0. It follows
from Remark 2.1(b) that X;;A(A1)P, = An(P2AX12)P)" = 0. Then P,A(A)P, = 0. Hence
A(Ay) € Ayy. Similarly, A(Ayy) C Ap.

Lemma 2.6. A(ﬂu) - ﬂij (1 <i# ] < 2)
Proof. Let Ay, € Aj,. Then P,A(A12)Py = 0 by Remark 2.1(b). For any X;, € Aj,, from X],A},P; =0
and A(P;) = 0, we have

A(-ApXi, + XA =A([[X12, A2]s, P1]s)
=[[A(X12), A12]s, Pils + [[X12, A(A12)]s, P1l.
= — ApAX12)"P1 + PIA(X12)A], + X12A(A )Py — A(A1)X7,
— PIA(AR)' X}, + X12A(A1)". (2.19)

Multiplying (2.19) by P, from the left and by P; from the right, then by Lemma 2.5, we get
P2A(A]2)XT2 = 0. Hence PzA(A]z)PZ = 0. Since ATZXTZPZ = 0, [[A]z,X]z]*,Pz]* = 0and A(PQ) = 0,
we have

0 =A([[A12, X121+, P2].)
=[[A(A12), X12]., Pal. + [[A12, A(X12)]s, P2
=A(A12)X12 = XnA(A12) Py — X[, A(A)" + PoA(A1R)XT,
+ ApAX12) Py — PoA(X 1) Al,. (2.20)

Multiplying (2.20) by P; from the left and by P, from the right, then by P,A(A12)P, = P,A(X12)P, =0,
we have P1A(A;p)X;, = 0. It follows that P{A(A;)P; = 0. Therefore A(A;;) € Ajpp. Similarly,
A(Ay) € Ay

Lemma 2.7. For any A;; € A;;, Bijj € A;j, Bji € Aj;; (1 <i# j<2), we have
(@) A(A; + Bij) = A(Ay) + A(B;));
(b) A(A;; + Bji) = A(A;) + A(Bj).
Proof. (a) Let T = A(A;i + B;j) — AA;) — A(B;;). Since iP;)'I*(As + By;) = (iP;)'I"Ay = (iP;)"I*B;; = 0
and [[iP}, I].,A;]. = 0, we have
[[AGP)), I].,Aii + Bjjl. + [[iP;, A(D]., Aii + Bjjl. + [[iP}, I., A(A; + B;)j)].
=A([[iP}, I]., A + Bij].)
=A([[iP;, 1., Aiil.) + A([[iP}, 1., Bjjl.)
=[[AGP)), I1., Aii + Bijl. + [[iPj, A(D]., Aii + Bijl. + [[iP}, I1., A(Ai) + A(B;j)]s,
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which implies
[[iP;, 1., T]. = 0. (2.21)

Multiplying (2.21) by P; from the left, by P; from the right, by P; from both sides, respectively, we get
Tij = le' = T]] = 0. Hence

A(Aii + Bij) = A(A”) + A(Bl]) + T,‘,'. (222)

For any X;; € A;;, from (A;; + B;;)" X*P AZX,*,P = ijXl*j =0, [[Bij, Xijl.. P;]. = 0 and (2.22), we
have

[A(All) + A(Bl]) + Tii’ Xij]*’ ]]* + [[Aii + Bij’ A(le)]*’ P]]* + [[All + Bl]’ Xl]]*’ A(P )]*

[[A(Au + Bl]) Xz;]*a ] [[All + Bl]’ A(Xij)]*’ PJ]* + [[All + Bl]5X]]*’ A(P )]

:A([[All + BU,XLJ]*’P'] )

_A([[All’Xl]]*vp] )+ A([[ ijs ] P]]*)

=[[A(Ai) + A(By)), Xijls, Pjl. + [[Aii + Bij, A(Xij)l., Pjl. + [[Aii + Bij, Xijl., A(P))]...
This implies

([T, Xijl, Pjl. = 0. (2.23)

Multiplying (2.23) by P; from the right, we see that 7;X;; = 0. Hence T; = 0, and so we obtain (a).
Similarly, we can show that (b) holds.

Lemma 2.8. For any A;j, Bjj € A;; (1 <i# j<2), we have
A(A;ij + Bij) = A(A;j) + A(By)).
Proof. For any Aj,, By, € A, it follows that
[[Pi + A1z, Py + Bials, P2l = A1a + Bip — A}, — B,. (2.24)
Then by (2.24) and Remark 2.1(c), there exist UA12+312,,A72,372 € A, VA12+312’*A’1‘2*B’1‘2 € Ay, such that

A([[P1 + A1z, Py + Biolw, P2ls) =A(A12 + Bio) + A(=AY, — Bjy) + UnyyiByn,-a1,-B:,
+ VA12+312,—A’]‘2—372' (225)

From (P + A12)" (P> + B12)"P, = 0, A(Py) = A(P) =0, (2.25), Lemmas 2.6 and 2.7, we have

A(Ai2 + Bio) + A(=A}, = Bp) + Unysi-as,-8:, + Vapsbp,-at,-51,
=A([[P1 + A1, P2 + B2, P2l)
=[[A(A12), P2 + Bials, Pl + [[P1 + A1z, A(B12)]s, P2l
=A(A1) + A(B12) — A(A1)" — A(Bro)" (2.26)

Multiplying (2.26) by P, from the left and by P, from the right, then by Lemma 2.6 and the fact that

UA12+312’_A72_BT2 e A, VA12+BIZ’_A72_BTz € Ay, we see that A(A12 + Bp) = A(Alz) + A(B). Slmﬂarly,
we can show that A(A,; + By1) = A(Ay) + A(By).
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Lemma 2.9. For any A;;, B;; € A; (i = 1,2), we have
A(A;; + Bi) = A(A;) + A(Byy).

Proof. For any A1, Biy € Ay, Bia € A, from A} B),P, = 0, A(Py) = 0, [[A11, Bi2l, P2 =

Ay 1By, — B},A},, Lemmas 2.5, 2.6 and 2.8, we have

A(A11B1y) + A(=B},A1) =A([[A11, Bizls, P2ly)
=[[A(A11), Bi2]s, P2ls + [[A11, A(B12)]s, P2l
=A(A11)Bi2 + A1 A(B12) — B),A(A11)" = A(B1p)" A}, (2.27)

Multiplying (2.27) by P, from the left and by P, from the right, we have
A(A11B12) = A(A11)Bia + A1l A(Bro). (2.28)

Similarly, we can show that
A(AxnBy1) = A(A22)Bai + AnA(Byy). (2.29)
For any X, € A\, it follows from Lemma 2.8 and (2.28) that
A(Ay1 + B11)X12 + (A + BiD)AX12) = A((Ar + Bi1)X12)
= A(A11 X12) + A(B11 X12)
= A(A1DX12 + AnA(X12) + AB11) X2 + BiiA(Xp2).

It follows that (A(All + Bll) - A(All) - A(Bll))XIZ = 0. Then A(A]l + Bll) = A(All) + A(Bll)
Similarly, we can show that A(A22 + Bzz) = A(Azz) + A(Bzz)

Lemma 2.10. For any Ay, € Az, By € Ayy, we have
A(A1x + Ba1) = A(A) + A(Byy).
Proof. For any X, € Ay, by X|,(A12 + By)" Py = X|,A}, Py = X],B5, P, =0,
[[X12, A2 + Ba1ls, P1ls = [[X12, A2l Prls + [[X12, Ba1ls, Pl € Ay,
Remark 2.1(c) and Lemma 2.9, there exist Uy, 5,, € Ai1, Va8, € Az such that

[[A(X12), A1z + Bails, P1]i + [[X12, A(A12) + A(By1) + U,y + Vap.y 1 Pil
+ [[X12,A12 + Ba ], A(PY)].
=A([[X12,A12 + Batls, P1]s)
=A([[X12, A12]s, P1]s) + A([[X12, B2t ]+, P1].)
=[[A(X12), A2 + Bails, Pile + [[X12, A(A12) + A(Bap)]s, Prls + [[X12, A2 + Barls, A(PY)]..

Then

0 = [[X12, Uapr.8yy + Vappoy lis Pils = =Vap, 5, X1, + X12V), (2.30)

12,B21°
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Multiplying (2.30) by P; from the right, we get V4,5, X, = 0. Hence V,, 5, = 0. Then by
Remark 2.1(c), we get
A(A1x + Ba1) = A(A12) + A(Ba1) + Uayy b, - (2.31)

For any X5, € Ay, from X;I(Alg + BQ])*PZ = XSIATZPZ = X;IB;PQ =0,
[[X21,A12 + Borls, Poli = [[X21, Ar2]s, Pols + [[X21, B2t ]+, P2l € An,
Lemma 2.9 and (2.31), we have

[[A(X21), A1z + Bails, Po)i + [[Xa1, A(A12) + A(Bay) + Uy, ., 1+, P2l
+ [[X21, A1z + Bay ], A(Py)].
=A([[X21, A1z + Bat]s, P2]s)
=A([[X21, Ar2]s, P2ls) + A([[X12, Bai ], P2ls)
=[[A(X21), A12 + Bails, Pols + [[X21, A(A12) + A(Bap)ls, Pali + [[Xa1, A1 + Bails, A(P2)],

which implies

0 = [[XZI’ UA]Z,BZ]]*, PZ]* = _UA12,321X;1 + X21 UZ (2'32)

12,821

Multiplying (2.32) by P, from the right, we obtain Uy, 5, X5, = 0. Then Uy, 5, = 0. Hence we
obtain the desired result.

Lemma 2.11. For any Ay, € Ay, Bz € Ay, Cy1 € Ayy, Dy € Ayy, we have

(@) A(Ay1 + Bz + Ca1) = A(Aq) + A(Br2) + A(Cay);

(b) A(B12 + Cy1 + Dyy) = A(B12) + A(Cyy) + A(Dya).
Pl"OOf: (@) Let T = A(A1; + Bip + Cy1) — A(A11) — A(By2) — A(Cyp). From P;(All + By + Cy)*Py =
P;A}, P, = P;B},P, = P;C;, P, = 0 and [[ P>, Ay1]., P2]. = [[P2, Ca1l., P2]. = 0, we have

[[A(P2), A1 + Biz + Cotls, Pal + [[P2, A(A11 + Bio + Co1)ls, Pol + [[P2, A1r + Bio + Copli, A(P2) .
=A([[P2,A11 + Biz + Ca1ls, P2ls)
=A([[P2, A11]s, P2)) + A([[P2, Bi2ls, P2ls) + A([[P2, Cat]., P2]s)
=[[A(P2), A11 + Bia + Catls, P2l + [[P2, A(A11) + A(B12) + A(Cay)]s, P2l
+ [[P2,A11 + Bia + Cypls, A(P2) ..

This implies
[[P2, T]., P2]. = 0. (233)

Multiplying (2.33) by P, from the left, we have T, = 0. For any X, € A, from P{X[,(A; + B2 +
Ca) = PIX,An = PIX,Bin = PiX(,Co1 = 0, [[P1, X12]., A1 + Bz + Cot]. = X12Cy — BipXj, and
Lemma 2.9, we have

[[ACPY), X12]ss A1 + Bia + Corls + [[P1, A(X12)]ss A1y + Biz + Coy .
+ [[P1, X12], A(A11 + Bia + Cap)ls
=A([[P1, X12]+, A1 + Bz + Ca1]4)
=A(X12C21) + A(=B12X7,)
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=A([[P1, X12]., A11l) + A([[P1, Xi2]s, Bizle) + A([[P1, X12]+, Ca1 1)
=[[A(P1), X12]s, A11 + Bio + Cop ] + [[P1, AX12)]s, A1 + Bia + Co ]
+ [[P1, X121+, A(A1) + A(By2) + A(Cay)],
which implies
[[P1, X12]., T]. = 0. (2.34)

Multiplying (2.34) by P, from both sides, we obtain X,7P; — P\TX}, = 0. Then X,,TP; = 0 by
Ty, = 0. Hence T,; = 0. Multiplying (2.34) by P, from the right, we have X,7P, = 0 and so T, = 0.
Let SAllsBlz,Czl =T. Then SAII,BIZ,CZI € An and

A(A11 + Bio + Cap) = A(A11) + A(B12) + A(Ca1) + S 4,1.B1o.Cor -
Similarly, there exists a Rg,, ¢,,.p,, € A2 such that
A(B1; + Co1 + Dy) = A(By2) + A(Cyy) + A(Dp) + Rp,.51.0 - (2.35)

For any X5, € Ay, by [[P2, Xo1]4, A1 + Bia + Co1l = A1 X5, + Xo1A11 + X351 B, — G5 X5, and (2.35),
there exist a R_a,,x;, X, 411.%1B1,-C21x;, € Floz such that
A([[P2, Xa1]s, A11 + Bia + Cu 1) =A(AN11 X)) + A(X21An) + A(X21 Biz — Coi X5))
+ R4y X5, X1 A1y X1 Bia—Car X, - (2.36)
From PiX;,(Ay; + By + Ca) = PiX, Al = PX;,B1y = P3X;,Car = 0, (2.36), Lemmas 2.9 and 2.10,
we have
[[A(P2), X211+, A11 + Bia + Corls + [[P2, A(X21)]s, Apr + Bz + Copl.
+ [[P2, X211+, A(A11 + Bio + Coy)l-
=A([[P2, X211+, A1 + Biz + Ca1]4)
=A(-A1X3) + AX21An) + AX21Bia = CuX5y) + Roay x5, Xy Xoi Bio-Ca1 X5,
=A(=A1 X5, + X01A11) + AX21B12) + A(=Co1X5) + Roay x5, %01 411, Xo1 Bia—Con X,
=A([[P2, X211+, A11]s) + A([[P2, X211+, Bi2l.) + A([[P2, X21]+, Ca14)
+ R—Anxgl,xﬂA]1,x2]13.2—c21x;1
=[[A(P2), X211+, A1 + Bio + Copls + [[P2, A(X21)]s, A1y + Bz + Copl.
+ [[P2, X211, A(A11) + A(B12) + A(Can)]s + Roay X3, X1 Avt X1 Bra—Cai X5, -
It follows that
[[P2, X211s Tl = Roayy x5, X1 Ar1 Xa1 Bia—Car X5, - (2.37)

Multiplying (2.37) by P from the right, then by R_A”XSI,XZ]A”,leglz_cﬂle € Ay, we obtain X5, TP = 0.
Hence SA11,3125C21 = T11 = 0, and so A(All + BIZ + C21) = A(All) + A(Blz) + A(C21)
Similarly, we can show that (b) holds.

Lemma 2.12. For any Ay € A, By € A, Cyy € Ay, Dy € Ay, we have

A(A11 + Bio + Gy + D) = A(A1) + A(B12) + A(Cap) + A(Dypy).
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Pl"OOf. LetT = A(A]] + B12 + Cz] + Dzz) - A(A]]) - A(B]z) - A(Cz]) - A(Dzz) From (A]] + B]z + Cz] +
DZZ)*PTPZ = ATIPTPZ = BTZPTPZ = C;IPTPZ = D;szPZ =0and [[A11 + By + C21 + DZZ’PI]*’PZ]* =
—Cj, + Cy , we have

[[A(A11 + Biz + Ca1 + D2y), Prls, Pl + [[A11 + Bia + Co1 + Doy, A(Py)]s, P2l
+[[A11 + Bz + Ca1 + Doy, P1]., A(P2)].
=A([[A11 + Bz + Ca1 + Dy, Py]., P2].)
=A([[A11, P11+, P2)) + A([[B12, P1]s, P21.) + A([[Cay, Pils, P2ls) + A([[D22, P1ls, P2]s)
=[[A(A11) + A(B12) + A(C1) + A(Dy2), Pils, Pal. + [[A11 + Bia + Cao1 + Doy, A(Py)]., P2l
+ [[A11 + Biz + Co1 + Dy, P, A(P)]..

This implies

[[T, P]., P2]. = 0. (2.38)
Multiplying (2.38) by P, from the left, we have T»; = 0. Similarly, T, = 0. For any X, € Aj,, from
PiX},(A11 + Bz + Cy1 + Dp) = P1X[,An = PiX{,B1; = P1X{,Ca1 = P1X[,Dy =0, [[P1, X12], A1 +

By + Cy1 + Dy, = X12Co1 — BIZXTZ + X 15Dy — DZQXTZ’ Lemmas 2.9 and 2.12, we have

[[A(P1), X12]s, A11 + Bio + Ca1 + D] + [[P1, A(X12) ]+, A1y + Bia + Co1 + Dol
+ [[P1, X12], A(A11 + Bio + Cop + D)l
=A([[P1, X121+, A1 + Biz + Ca1 + D2]s)
=A(X12Ca1) + A(=B12X7,) + A(X12Dyp — D X5)
=A([[P1, X121+, A11]s) + A([[P1, Xi2]s, Bi2ls) + A([[P1, X121+, Co1l) + A([[P1, X12]s, D22ls)
=[[A(P1), X12)s, A11 + Bia + Co1 + Daols + [[P1, A(X12))s, A1 + Bia + Co1 + Dozl
+ [[P1, X121, A(A11) + A(B12) + A(Car) + A(D2)].

This implies
[[P1, X12]., T]. = 0. (2.39)

Multiplying (2.39) by P, from the right, we obtain X,,7P, = 0. Then 75, = 0. Similarly, T}; = O.
Hence we obtain the desired result.

Lemma 2.13. For any A,‘,’, B, € ﬂii’Aij,Bij € ﬂij’ Bj,' € ﬂji’ Bjj € ﬂjj (1 < i # ] < 2), we
have

(a) A(A;iB;j) = A(Ai)B;j + Ay A(B;j);

(b) A(A;;Bjj) = A(Aip)Bj; + AijA(B;));

(c) A(A;iBj) = A(Ai)Bj; + AiA(Bj);

(d) A(A;jBji) = A(A;j)Bji + AijA(Bj;).
Proof. (a) It follows from (2.28) and (2.29) that (a) holds.

(b) Let Ay € Ay, By € Ap. From A7, B, Py = 0, A(P2) = 0, [[A12, Bnls, P2 = AppBxn — B,A7,,
Lemmas 2.5, 2.6 and 2.12, we have

A(A12Bx) + A(=By,AT,) =A([[A12, By, P2l.)
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=[[A(A12), B, P2].) + [[A12, A(B)]s, P2l
=A(A12)By + AinA(By) — By, A(A12)" — A(By)*Al,. (2.40)

Multiplying (2.40) by P; from the left and by P, from the right, we have A(A,B2) = A(A12)By +
A12A(Byy). Similarly, A(A2By1) = A(A21)By; + Ay A(Byy).
(c)Let A1, By € A1, X1» € Aj,. It follows from (a) that

A(AB11)X12 + A B A(X ) = A(A1 B X12)
= A(A11)B11 X2 + A1 A(B11 X12)
= A(A11)B11 X2 + Al A(B11)X 12 + A BiiAX ).

It follows that (A(AUBU)—A(A“)B“ —AllA(Bll))Xlz = 0. Hence A(A“B“) = A(All)B“ +A11A(B11).
Similarly, A(A2Bx) = A(A2)Bx + Ay A(By).

(d) Let Ay € Ajp, By € Ay . From B3, PiAp = 0, A(Py) =0, [[B21, P11, Ai2]s = Ba1Ap + A2 By,
Lemmas 2.6 and 2.12, we have

A(By1An) + A(A12By1) =A([[Bay, Pils, A12])
=[[A(B21), P11, Aiz]s + [[Ba1, Pils, A(A12)]s
=A(B21)A 1 + AnA(By1) + BoiA(A12) + A(A12) By (2.41)

Multiplying (2.41) by P; from both sides, we have A(A,B>1) = A(A12)By1 + A12A(Bsy). Similarly,
A(Az1B12) = A(A21)Bi2 + Ay A(By2).

Now, we give the proof of Theorem 2.1 in the following.
Proof of Theorem 2.1. By Lemmas 2.5, 2.6, 2.8, 2.9, 2.12 and 2.13, it is easy to verify that A is an
additive derivation on A. Let A;; € A;; (1 <i# j<2). By A;.“ij.Pj =0, A(P;) = 0 and Lemma 2.6,
we have

A(Ai)) — A(A}) = A(lTAi, Pjl., Pil) = [[A(Ai)), Pjl., Pjl. = A(A;) — A(A;)".
It follows that
A(A}) = A(A;)" (2.42)
LetA; € Ay, Xji € Aji (1 <i# j<2). Since AP X;; =0, A(P) =0, [[Ai, Pil., Xjil. = XjiAi — X;iA,
Lemmas 2.5, 2.6 and 2.13(b), we have
AX DA + X;iAAy) — AX DA — XiiA(AR)

= A(X;iAi) — AX;iA3)

= A([[Ai, P+, Xjil+)

= [[A(Ai), Pil., Xji] + [[Ai, Pil., AXi)]

= AXpDAi + XjiAAy) — AXGAL — XiA(A)"

It follows that X ;;(A(A%) — A(A;))*) = 0. Then
A(A}) = A(Ay)". (2.43)
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Forany A € A, wehave A = 37 _| A; ;. By (2.42), (2.43) and the additivity of A on A, it follows that

ij=1

2 2
AAY) = D AL = Y A" = AA)"

ij=1 ij=1

Hence A is an additive #-derivation. Therefore, ¢ is an additive *-derivation on ‘A by Remark 2.1.
3. Conclusions

In this paper, we gave the characterization of a kind of non-global nonlinear skew Lie triple
derivations on factor von Neumann algebras.
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