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Abstract: This manuscript introduces novel rough approximation operators inspired by topological 
structures, which offer a more flexible approach than existing methods by extending the scope of 
applications through a reliance on a general binary relation without constraints. Initially, four distinct 
types of neighborhoods, termed basic-minimal neighborhoods, are generated from any binary relation. 
The relationships between these neighborhoods and their properties are elucidated. Subsequently, new 
rough set models are constructed from these neighborhoods, outlining the main characteristics of their 
lower and upper approximations. These approximations are applied to classify the subset regions and to 
compute the accuracy measures. The primary advantages of this approach include its ability to achieve 
the highest accuracy values compared to all approaches in the published literature and to maintain 
the monotonicity property of the accuracy and roughness measures. Furthermore, the efficacy of the 
proposed technique is demonstrated through the analysis of heart failure diagnosis data, showcasing 
a 100% accuracy rate compared to previous methods, thus highlighting its clinical significance. 
Additionally, the topological properties of the proposed approaches and the topologies generated from 
the suggested neighborhoods are discussed, positioning these methods as a bridge to more topological 
applications in the rough set theory. Finally, an algorithm and flowchart are developed to illustrate the 
determination and utilization of basic-minimal exact sets in decision-making problems. 
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1. Introduction 

The rough set (RS) theory and its extensions have garnered increasing attention, particularly in 
computer science, artificial intelligence, and medical applications. Though other uncertainty theories, 
such as fuzzy or grey, and hybrid theories such as fuzzy-rough, have their merits, RS offers distinct 
advantages. Unlike the fuzzy theory, which relies on membership degrees, RS handles incomplete 
knowledge by classifying objects based on equivalence relations, thus allowing for the determination 
of information completeness within a set. Similarly, the RS provides a structured approach to handle 
uncertainty, which distinguishes it from the grey theory. Moreover, the RS theory's flexibility in dealing 
with imprecise and uncertain data sets outshines hybrid theories such as fuzzy-rough, which may face 
challenges in balancing complexity and interpretability. By focusing on these theories, we aim to 
underscore the novelty and significance of our research. We provide a comparative analysis in Table 1, 
outlining the advantages and limitations of the RS theory against other uncertainty theories, thereby 
emphasizing the unique contributions and potential applications of our proposed approach. 

Table 1. Comparison of advantages and limitations of rough set theory with other 
uncertainty theories and hybrid theories like fuzzy-rough. 

Theory Advantages Limitations 

Rough set (RS) 
Handles incomplete knowledge 

effectively 
Strict requirement of equivalence relations

Fuzzy theory Deals with membership degrees May struggle with handling uncertainty 

Grey theory Addresses uncertainty effectively Limited flexibility in data representation 

Fuzzy-rough 
Integrates fuzzy and rough set 

concepts 
Complexity may hinder interpretability 

Pawlak's pioneering work in 1982 [1,2] established RS theory as an effective tool to handle 
incomplete knowledge by classifying objects based on equivalence relations, thus allowing for the 
determination of information completeness within a set. The fundamental principles of this theory 
include approximation operators and accuracy measures, which provide crucial insights to decision-
makers regarding the structures and sizes of the boundary regions. However, the strict requirement of 
an equivalence relation limits the applicability of the traditional RS theory. These limitations have 
driven researchers to propose various generalizations that use either arbitrary or specific relations to 
broaden the scope of the theory. Yao [3] initiated this line of research in 1996, which led to the emergence 
of numerous proposals that present generalized rough sets, such as tolerance [4], similarity [5,6], quasi-
order [7], and general relations [8–10]. These advancements have significantly expanded the 
applicability of the RS theory. 

In 2014, Abd El-Monsef et al. introduced the concept of the 𝑘 -neighborhood space (𝑘 -𝑵𝑺 ), 
which provided a generalized framework derived from binary relations [11]. This expansion extended 
Pawlak's model by incorporating various induced topologies. Subsequently, many researchers used 
these models to increase the applications of topology in RS's, resulting in various generalizations of 
this theory from a topological perspective. For instance, in 2020, Nawar et al. [12] applied the 𝑘-𝑵𝑺 
concept to develop and establish the concept of adhesion neighborhoods within the context of generalized 
covering approximation spaces [13], thereby building upon the concept of adhesion sets [14]. 
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Additionally, in the same year, Atef et al. [15] developed the 𝑘 - 𝑵𝑺  concept to introduce eight 
generalized types of neighborhoods (𝑘-adhesion neighborhoods), thereby proposing different models to 
generalize Pawlak's theory. However, El-Bably et al. identified numerous errors in this research and 
provided corrections and significant results in [16]. In another trajectory of 𝑘 -neighborhood 
exploration, El-Bably and Al-shami introduced core minimal-neighborhoods [17], extending Pawlak 
RSs into various generalized forms. They applied these forms in a significant medical context 
related to lung cancer diseases. The topologies derived from Abd El-Monsef et al.'s method have 
enabled diverse topological applications in RS's approaches, particularly in medicine [18–20] and 
economics [21,22]. In 2022, El-Bably et al. [23] explored new generalized closure spaces via 
binary relations using the 𝑘 -𝑵𝑺  concept, leading to new RS formulations and an enhanced 
granularity, significantly impacting real-life applications using soft RS's methodologies [24–28]. 
Several subsequent works, explored fuzzy RS's approaches [29,30], ideal structures [31], and 
corrections to prior methodologies [32], have expanded on these foundations, employing 
topological properties to define RS's methodologies and their medical applications [33–37]. These 
explorations underscore the potential of 𝑘-𝑵𝑺 in advancing neighborhood-based concepts. 

Despite these advancements, gaps remain in fully leveraging topological concepts within the RS 
theory. While powerful, traditional RS methods face limitations due to the stringent requirements of 
equivalence relations. Researchers have sought to address these limitations through generalizations 
and by introducing new structures. For instance, the pursuit of more general results and valid 
solutions has led to the development of structures such as Aczel-Alsina power Bonferroni 
aggregation operators for picture fuzzy information and decision analyses [38], hesitant fuzzy 
linguistic multigranulation decision-theoretic RS's [39], generalized 𝑍-fuzzy soft 𝛽-covering [40], 
rough neutrosophic matrices [41], and rough set-based bipolar approaches [42]. 

Building on this trajectory and the models of Abd El-Monsef et al. (𝑘-𝑵𝑺), this study introduces 
new rough approximation operators inspired by topological structures to enhance the applicability 
of (RS) models inspired by general binary relations, free from constraints but inherently topological 
in nature. These models aim to bridge rough set theory and topology, addressing critical challenges 
and broadening the applicability of RS theory. The proposed methods are based on the concept of 
"basic-minimal neighborhoods", which extends the idea of "basic neighborhoods". The notion of 
"basic-neighborhoods" was initially introduced by Abu-Gdairi et al. [9] as a counterpart to "initial 
neighborhoods" [19] that proposed in 2021. Additionally, in the same year, a related idea referred to 
as "containment neighborhoods" was described in [43], where rough sets were applied within the 
framework of the k-NS model developed by Abd El-Monsef et al. [11]. However, the study in [43] 
did not thoroughly examine the associated topological properties or provide a detailed construction 
of corresponding topologies. 

Subsequently, El-Gayar et al. [21] expanded the concept of "basic-neighborhoods" by defining 
four distinct types of neighborhoods, analyzing their topological properties, and proposing methods 
for constructing associated topologies. These advancements were also applied in economic decision-
making contexts. Moreover, the term “initial-neighborhoods” was redefined as "subset 
neighborhoods" in 2022, as noted in [44]. 

The key motivations for exploring RS models from a topological perspective are as follows: 
1) To alleviate some conditions imposed on the topological RS models, thereby expanding their 

applications; 
2) To preserve most of Pawlak's properties of approximation operators, which were often lost in 
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previous topologically derived methods [3,6,8,9,11]; 
3) To ensure that the values of accuracy and roughness satisfy the monotonic property, making the 

approach more suitable to analyze large samples; and 
4) To demonstrate that the approximation operators obtained are superior to those defined by either 

the topological structures or binary relations, as well as the models presented in the literature in 
aiding decision-making for medical diagnoses and other applications. 

Initially, we introduce four new types of neighborhoods, which are extensions of other 
neighborhoods, such as those in the method by Abd El-Monsef et al. in [11]. These neighborhoods are 
called "basic-minimal neighborhoods" and are fundamentally based on the concept of "basic-
neighborhoods" introduced by Abu-Gdairi et al. in [9]. Then, we examine the properties of these 
neighborhoods and their relationships with other types. Based on these neighborhoods, we propose 
four different approximation models, study their fundamental properties and mutual relationships, and 
identify the best and strongest among them in terms of the highest accuracy factor. These 
approximations are compared with the previous methods mentioned in the references through 
counterexamples and theoretical proofs, demonstrating their accuracy and robustness. It is worth noting 
that the proposed models can be compared with recent advancements, including ternary models [39,45], 
thus highlighting improvements in the accuracy and generalization. 

One of the principal contributions of this paper is the introduction of topological structures for 
these approximations, thus linking the approximation theory to topology and its applications. This 
connection facilitates further applications of topological concepts within the RS theory. We discuss 
and study methods to generate different topologies from the neighborhoods (basic-minimal 
neighborhoods) and prove that the basic-minimal lower and basic-minimal upper approximations 
represent the interior and closure operators of these topologies. Therefore, we initiate a new bridge to 
apply more topological concepts using the suggested approaches in the RS theory. 

In the realm of medical diagnostics, particularly in the context of heart failure diagnoses, our 
primary focus revolves around the development of an accurate diagnostic methodology. This endeavor 
finds its application in the medical field, thereby leveraging data gathered from a study that involved 12 
patients conducted at Al-Azhar University's Cardiology Department, within the premises of Sayed Galal 
University Hospital in Egypt [46]. Through this application, we demonstrate the effectiveness of our 
proposed methodology, showcasing a remarkable 100% accuracy coefficient, seamlessly aligning with 
the diagnoses made by physicians as documented in the dataset. In stark contrast, previous methods 
have faltered in delivering precise diagnoses for this condition. Our work signifies a notable 
breakthrough in mathematical modeling. Not only does it bolster the accuracy of decision-making 
processes, but it also furnishes a comprehensive framework for deciphering medical data pertinent to 
heart failure diagnoses. By implementing our methodology on the provided dataset, we achieve results 
that mirror the diagnoses rendered by medical professionals, thus accurately discerning patients with 
heart failure from their healthy counterparts. While other methods failed to accurately identify the 
infected patients from healthy ones, this reflects the superiority of our methods in medical diagnoses. 
Hence, it is evident that the methodologies elucidated in this paper hold promise for revolutionizing 
medical diagnostics, potentially streamlining processes, and conserving invaluable time and resources 
for patients and healthcare providers alike. 

The rest of this paper is organized as follows. 
Section 2 discusses the fundamental principles and results of the RS's and their generalizations. 
Section 3 introduces the new concept of "basic-minimal neighborhoods", detailing their 
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properties and interrelationships. 
Section 4 is the principal section of this paper, presenting the primary contributions by introducing 

four distinct RS approximation approaches, referred to as basic-minimal approximations, utilizing 
these neighborhoods. This section is structured into three subsections: 

Subsection 4.1 proposes four different RS approximations. Their fundamental properties are 
analyzed, demonstrating that they satisfy Pawlak’s core axioms without any constraints or conditions. 
Additionally, the relationships among these approximations are examined, and the best method is 
identified based on the higher accuracy factor. 

Subsection 4.2 explores the generation of different topologies from basic-minimal neighborhoods 
and proves that the approximations introduced in 4.1 represent the closure and interior operators for 
these topologies. This establishes connections between the RS theory and topology, thereby facilitating 
further topological applications. Moreover, these topological structures and their properties are studied. 

Subsection 4.3 compares the proposed approximations with previous ones, such as those by Yao [3], 
Dai et al. [6], Allam et al. [8], and Abd El-Monsef et al. [11]. This comparison demonstrates the 
superiority of the proposed methods over the previous approaches through counterexamples and proven 
theorems in various specific and general cases. 

Section 5 investigates the effectiveness of our approach to analyze heart failure data, showcasing 
its clinical significance. Additionally, an algorithm and flowchart are developed to illustrate how basic-
minimal exact sets are determined and used in decision-making problems. 

Section 6 presents the conclusions, strengths, and advantages of the proposed approaches and 
discusses potential future research directions. 

2. Basic concepts 

In this section, we review the principles and results related to RS's concepts and 𝑘-𝑵𝑺 that are 
essential to understand the context of this manuscript. Additionally, we discuss the historical 
development of several previous approaches and the motivations behind their study. Additionally, we 
provide proofs for some key results and properties of these approaches. 

2.1. Abd El-Monsef et al. approaches 

Definition  2.1. [3,8,11] The 𝑘-neighborhood of 𝓅 ∈ ℧, indicated by ℕ௞ሺ𝓅ሻ for all 𝑘 ∈ 𝒦, induced 
by a binary relation ℛ on a non-empty finite set ℧, where 𝒦 ൌ ሼ𝑟, 𝑙, 𝑖, 𝑢, 〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, is given 
by the following: 
a. 𝑟-neighborhood [3]: ℕ௥ሺ𝓅ሻ ൌ ሼ𝓆 ∈ ℧ ∶ 𝓅ℛ𝓆ሽ; 
b. 𝑙-neighborhood [3]: ℕ௟ሺ𝓅ሻ ൌ ሼ𝓆 ∈ ℧ ∶ 𝓆ℛ𝓅ሽ; 

c. 〈𝑟〉-neighborhood [8]: ℕ〈௥〉ሺ𝓅ሻ ൌ ൜
⋂ ℕ௥ሺ𝓆ሻ𝓅∈ℕೝሺ𝓆ሻ , if 𝓅 ∈ ℕ௥ሺ𝓆ሻ

Φ,                        Otherwise
; 

d. 〈𝑙〉-neighborhoodሾ8ሿ: ℕ〈௟〉ሺ𝓅ሻ ൌ ൜
⋂ ℕ௟ሺ𝓆ሻ𝓅∈ℕ೗ሺ𝓆ሻ ,   if 𝓅 ∈ ℕ௟ሺ𝓆ሻ

Φ,                        Otherwise
; 

e. 𝑖-neighborhood [11]: ℕ௜ሺ𝓅ሻ ൌ ℕ௥ሺ𝓅ሻ ∩ ℕ௟ሺ𝓅ሻ; 
f. 𝑢-neighborhood [11]: ℕ௨ሺ𝓅ሻ ൌ ℕ௥ሺ𝓅ሻ ∪ ℕ௟ሺ𝓅ሻ; 
g. 〈𝑖〉-neighborhood [11]: ℕ〈௜〉ሺ𝓅ሻ ൌ ℕ〈௥〉ሺ𝓅ሻ ∩ ℕ〈௟〉ሺ𝓅ሻ; and 
h. 〈𝑢〉-neighborhood [11]: ℕ〈௨〉ሺ𝓅ሻ ൌ ℕ〈௥〉ሺ𝓅ሻ ∪ ℕ〈௟〉ሺ𝓅ሻ. 
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Note that: The neighborhood ℕ௥ሺ𝓅ሻ (resp. ℕ௟ሺ𝓅ሻ) is called the ‘right’ (resp. ‘left’) neighborhood 
of an element 𝓅 ∈ ℧ , which was first provided by Yao [3]. Moreover, the neighborhood ℕ〈௥〉ሺ𝓅ሻ 
(resp. ℕ〈௟〉ሺ𝓅ሻ) is called the ‘minimal-right’ (resp. ‘minimal-left’) neighborhood of an element 𝓅 ∈
℧, which was first provided by Allam et al. [8]. 
Definition 2.2. [11] Let ℛ be a binary relation defined on ℧ and ℱ௞: ℧ ⟶ 𝛲ሺ℧ሻ be a mapping that 
assigns its 𝑘 -neighborhood in 𝛲ሺ℧ሻ  to each 𝓅 ∈ ℧ . Then, the triple ሺ℧, ℛ, ℱ௞ሻ  is termed a 𝑘 -
neighborhood space, and is abbreviated as 𝑘-𝑵𝑺. 
Theorem 2.1. [11] Let ሺ℧, ℛ, ℱ௞ሻ  be a 𝑘 - 𝑵𝑺 ; then, for each 𝑘 ∈ 𝒦 , the collection 𝔗௞ ൌ
ሼ𝛰 ⊆ ℧: ∀ 𝓅 ∈ 𝛰, ℕ௞ሺ𝓅ሻ ⊆ 𝑂 ሽ represents a topology on ℧. 
Definition 2.3. [11] If ሺ℧, ℛ, ℱ௞ሻ is a 𝑘-𝑵𝑺. A subset 𝛰 ⊆ ℧ is considered an 𝑘-open set if 𝑂 ∈
𝔗௞, and its complement is termed a 𝑘-closed set. The family 𝒞௞ of all 𝑘-closed sets of a 𝑘-𝑵𝑺 is 
defined as 𝒞௞ ൌ ሼ𝛰 ⊆ ℧ ∶ 𝑂௖  ∈ 𝔗௞ሽ. 
Definition 2.4. [11] Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺. Hence, the 𝑘-lower and 𝑘-upper approximations of 
𝒪 ⊆ ℧ are assumed, respectively, as: 

ℛ௞ሺ𝒪ሻ ൌ∪ ሼ𝒢 ∈ 𝔗௞: 𝒢 ⊆ 𝒪ሽ ൌ 𝒊𝒏𝒕௞ሺ𝒪ሻ and ℛ௞ሺ𝒪ሻ ൌ∩ ሼℋ ∈ 𝒞௞: 𝒪 ⊆ ℋሽ ൌ 𝒄𝒍௞ሺ𝒪ሻ. 

Here, 𝒊𝒏𝒕௞ሺ𝒪ሻ (resp. 𝒄𝒍௞ሺ𝒪ሻ ) represents the 𝑘-interior (resp. 𝑘-closure) of 𝒪. 
The 𝑘-boundary, 𝑘-positive, and 𝑘-negative regions of 𝒪 are provided, respectively, as follows: 

𝔅𝒿ሺ𝒪ሻ ൌ ℛ௞ሺ𝒪ሻ െ ℛ௞ሺ𝒪ሻ, 𝑝𝑜𝑠௞ሺ𝒪ሻ ൌ ℛ௞ሺ𝒪ሻ, and 𝑛𝑒𝑔௞ሺ𝒪ሻ ൌ ℧ െ ℛ௞ሺ𝒪ሻ. 

The 𝑘-accuracy of the approximations is given by the following: 

𝛾௞ሺ𝒪ሻ ൌ
หℛ௞ሺ𝒪ሻห

หℛ௞ሺ𝒪ሻห
 , 𝑤ℎ𝑒𝑟𝑒 หℛ௞ሺ𝒪ሻห ് 0. 

Definition 2.5. [11] Let ሺ℧, ℛ, ℱ௞ሻ  be a 𝑘 -𝑵𝑺  and 𝒪 ⊆ ℧ . Then, 𝒪  is called a 𝑘 -exact set if 

ℛ௞ሺ𝒪ሻ ൌ ℛ௞ሺ𝒪ሻ ൌ 𝒪. If not, it is 𝑘-rough. It is clear that 0 ൑ 𝛾௞ሺ𝒪ሻ ൑ 1 and 𝛾𝒿ሺ𝒪ሻ ൌ 1 if 𝒪 is a 

𝑘-exact set. Otherwise, it is 𝑘-rough. 

2.2. Yao approach 

Definition 2.6. [3] Consider a 𝑘-𝑵𝑺 ሺ℧, ℛ, ℱ௞ሻ. We describe the Yao-lower, denoted as 𝑌∗ሺ𝒪ሻ, and 
the Yao-upper, 𝑌∗ሺ𝒪ሻ, approximations of a subset 𝒪 ⊆ ℧ as follows: 

𝑌∗ሺ𝒪ሻ ൌ ሼ𝓅 ∈ ℧| ℕ௥ሺ𝓅ሻ ⊆ 𝒪ሽ,          

𝑌∗ሺ𝒪ሻሼ𝓅 ∈ ℧| ℕ௥ሺ𝓅ሻ ∩ 𝒪 ് Φሽ.          

The Yao-boundary, Yao-positive, and Yao-negative regions of 𝒪 are defined as follows: 
 The Yao-boundary 𝔅ሺ𝒪ሻ  comprises points in 𝒪  whose neighborhoods partially intersect 

with 𝒪 and partially lie outside of it. 
 The Yao-positive region 𝑝𝑜𝑠ሺ𝒪ሻ  includes points in 𝒪  for which the r-neighborhood is 

entirely contained within 𝒪. 
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 The Yao-negative region 𝑛𝑒𝑔ሺ𝒪ሻ  encompasses points in ℧  outside of 𝒪  whose 
neighborhoods do not intersect with 𝒪. 

The 𝑘-accuracy of the approximations is given by the following: 

𝛾ሺ𝒪ሻ ൌ
|𝑌∗ሺ𝒪ሻ|
|𝑌∗ሺ𝒪ሻ|

 , 𝑤ℎ𝑒𝑟𝑒 |𝑌∗ሺ𝒪ሻ| ് 0. 

2.3. Allam et al. approach 

Definition 2.7. [8] Suppose we have a 𝑘-𝑵𝑺 ሺ℧, ℛ, ℱ௞ሻ, where each 𝑘 ൌ 〈𝑟〉. In this context, we 
describe the Minimal-lower and Minimal-upper approximations of a subset 𝒪 ⊆ ℧ by the following: 
 The Minimal-lower approximation, denoted as 𝒜௞ሺ𝒪ሻ, comprises points 𝓅 in ℧ for which 

the 𝑘-neighborhood of 𝓅 is entirely contained within 𝒪. 

 Similarly, the Minimal-upper approximation, denoted as 𝒜௞ሺ𝒪ሻ, consists of points 𝓅 in ℧ 

for which the 𝑘-neighborhood of 𝓅 intersects with 𝒪. 
Now, let's define the regions associated with 𝒪: 
 The Minimal-boundary region, denoted as ℬ௞ሺ𝒪ሻ , encompasses points in 𝒪  whose 𝑘 -

neighborhoods partially intersect with 𝒪 and partially lie outside of it; 
 The Positive region, denoted as 𝑃𝑂𝑆௞ሺ𝒪ሻ , includes points in 𝒪  for which the 𝑘 -

neighborhood is entirely contained within 𝒪; 
 The Negative region, denoted as 𝑁𝐸𝐺௞ሺ𝒪ሻ, covers points in in ℧ outside of 𝒪 whose 𝑘-

neighborhoods do not intersect with 𝒪; and 
 The Maximal-accuracy of the approximations is given by the following: 

𝜇௞ሺ𝒪ሻ ൌ
ห𝒜௞ሺ𝒪ሻห

ห𝒜௞ሺ𝒪ሻห
 , 𝑤ℎ𝑒𝑟𝑒 ห𝒜௞ሺ𝒪ሻห ് 0. 

2.4. Dai et al. approach 

Definition 2.8. [6] Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺. Then, the maximal-neighborhood of 𝓅 ∈ ℧ is well- 
defined as follows: 

ℕ௠ሺ𝓅ሻ ൌ ൜
⋃ ℕ௥ሺ𝓆ሻ𝓅∈ℕೝሺ𝓆ሻ ,   if 𝓅 ∈ ℕ௥ሺ𝓆ሻ

Φ,                        Otherwise
. 

Definition 2.9. [6] Let ሺ℧, ℛ, ℱ௞ሻ  be a 𝑘 - 𝑵𝑺 . Then, the Maximal-lower and Maximal-upper 
approximations of 𝒪 ⊆ ℧ are well-defined, respectively, as follows: 

ℛ௠ሺ𝒪ሻ ൌ ሼ𝓅 ∈ ℧: ℕ௠ሺ𝓅ሻ ⊆ 𝒪ሽ and ℛ௠ሺ𝒪ሻ ൌ ሼ𝓅 ∈ ℧: ℕ௠ሺ𝓅ሻ ∩ 𝒪 ് Φሽ. 

The Maximal-boundary (resp. positive and negative) regions of 𝒪 are given, respectively, as follows: 

𝔅௠ሺ𝒪ሻ ൌ ℛ௠ሺ𝒪ሻ െ ℛ௠ሺ𝒪ሻ, 𝑝𝑜𝑠௠ሺ𝒪ሻ ൌ ℛ௠ሺ𝒪ሻ, and 𝑛𝑒𝑔௠ሺ𝒪ሻ ൌ ℧ െ ℛ௠ሺ𝒪ሻ. 
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The Maximal-accuracy of the approximations is given by the following: 

𝛾௠ሺ𝒪ሻ ൌ
หℛ௠ሺ𝒪ሻห

หℛ௠ሺ𝒪ሻห
, 𝑤ℎ𝑒𝑟𝑒 หℛ௠ሺ𝒪ሻห ് 0. 

Lemma 2.1. [6,8] Let ℛ be a binary relation on ℧: 
(i) If 𝓆 ∈ ℕ௞ሺ𝓅ሻ, then ℕ௞ሺ𝓆ሻ ⊆ ℕ௞ሺ𝓅ሻ, for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉ሽ; and 
(ii) If 𝓆 ∈ ℕ௠ሺ𝓅ሻ, then ℕ௠ሺ𝓆ሻ ⊆ ℕ௠ሺ𝓅ሻ. 
Proof. 
(i) In the paper [8], the property was proven for each 𝑘 ൌ 〈𝑟〉. Therefore, we can similarly prove the 

other cases; and 
(ii) The property was proven in [6]. 
Lemma 2.2. If ℛ constitutes a reflexive relation on ℧, then for every 𝓅 ∈ ℧, the following holds: 

(i) 𝓅 ∈ ℕ௞ሺ𝓅ሻ for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ; and 
(ii) 𝓅 ∈ ℕ௠ሺ𝓅ሻ. 

Proof. We will explain the first statement in a case of 𝑘 ൌ 〈𝑟〉 and the others similarly. 

If ℛ is reflexive, then 𝓅 ∈ ℕ௥ሺ𝓅ሻ, ∀𝓅 ∈ ℧. Thus ⋂ ℕ௥ሺ𝓆ሻ𝓅∈ℕೝሺ𝓆ሻ ് Φ and we get: 

𝓅 ∈ ⋂ ℕ௥ሺ𝓆ሻ𝓅∈ℕೝሺ𝓆ሻ ൌ ℕ〈௥〉ሺ𝓅ሻ. 

Lemma 2.3. If ℛ is a reflexive relation on ℧, then for every 𝓅 ∈ ℧, the following holds: 
(i) ℕ〈௥〉ሺ𝓅ሻ ⊆ ℕ௥ሺ𝓅ሻ ⊆ ℕ௠ሺ𝓅ሻ; and 
(ii) ℕ〈௞〉ሺ𝓅ሻ ⊆ ℕ௞ሺ𝓅ሻ, for each 𝑘 ∈ ሼ𝑟, 𝑙, 𝑖, 𝑢ሽ. 
Proof. By using Definitions 2.1 and 2.8, the proof is clear. 

According to Theorem 2.1, we can generate a general topology by using the maximal-
neighborhoods as the following result illustrates. 
Theorem 2.2. Let ሺ℧, ℛ, ℱ௞ሻ  be a 𝑘 -𝑵𝑺 ; then, the class 𝔗௠ ൌ ሼ𝛰 ⊆ ℧: ∀ 𝓅 ∈ 𝛰, ℕ௠ሺ𝓅ሻ ⊆ 𝑂ሽ 
represents a topology on ℧. 

3. Basic minimal-neighborhoods and their properties 

This section is dedicated to the generalization of the idea of the 'basic neighborhood' [9] into new 
types, thereby yielding four distinct topologies derived from these neighborhoods. It is worth noting 
that this definition was also referred to as a "containment neighborhood" in [43]. 
Definition  3.1. [43] Assume that ℛ  is a binary relation on ℧ . Then, we define the following 
neighborhoods of 𝓅 ∈ ℧: 

(i) Basic 〈𝑟〉-neighborhood: ℕ〈௥〉
𝔟 ሺ𝓅ሻ ൌ ൛𝓆 ∈ ℧ ∶ ℕ〈௥〉ሺ𝓆ሻ ⊆ ℕ〈௥〉ሺ𝓅ሻൟ; 

(ii) Basic 〈𝑙〉-neighborhood: ℕ〈௟〉
𝔟 ሺ𝓅ሻ ൌ ൛𝓆 ∈ ℧ ∶ ℕ〈௟〉ሺ𝓆ሻ ⊆ ℕ〈௟〉ሺ𝓅ሻൟ; 

(iii) Basic 〈𝑖〉-neighborhood: ℕ〈௜〉
𝔟 ሺ𝓅ሻ ൌ ℕ〈௥〉

𝔟 ሺ𝓅ሻ ∩ ℕ〈௟〉
𝔟 ሺ𝓅ሻ; and 

(iv) Basic 〈𝑢〉-neighborhood:  ℕ〈௨〉
𝔟 ሺ𝓅ሻ ൌ ℕ〈௥〉

𝔟 ሺ𝓅ሻ ∪ ℕ〈௟〉
𝔟 ሺ𝓅ሻ. 



21824 

AIMS Mathematics  Volume 9, Issue 8, 21816–21847. 

In the following, we illustrate some characteristics of the aforementioned neighborhoods. 
Lemma 3.1. Suppose there exists a binary relation ℛ defined on ℧. Thus, the following holds: 
(i) 𝓅 ∈ ℕ௞

𝔟 ሺ𝓅ሻ, ∀𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ; 
(ii) ℕ௞

𝔟 ሺ𝓅ሻ ് Φ, ∀𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ; and 
(iii) If 𝓆 ∈ ℕ௞

𝔟 ሺ𝓅ሻ, then ℕ௞
𝔟 ሺ𝓆ሻ ⊆ ℕ௞

𝔟 ሺ𝓅ሻ, for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉ሽ. 
Proof. First, (i) and (ii) are obvious. Now, we prove (iii) in a case 𝑘 ൌ 〈𝑟〉, and the others similarly. 

If 𝓆 ∈ ℕ〈௥〉
𝔟 ሺ𝓅ሻ, then 

ℕ〈௥〉ሺ𝓆ሻ ⊆ ℕ〈௥〉ሺ𝓅ሻ.         (3.1) 

Let 𝓌 ∈ ℕ〈௥〉
𝔟 ሺ𝓆ሻ ; then, ℕ〈௥〉ሺ𝓌ሻ ⊆ ℕ〈௥〉ሺ𝓆ሻ . Therefore, by Eq (3.1), ℕ〈௥〉ሺ𝓌ሻ ⊆ ℕ〈௥〉ሺ𝓅ሻ  implies 

𝓌 ∈ ℕ〈௥〉
𝔟 ሺ𝓅ሻ. Hence, ℕ〈௥〉

𝔟 ሺ𝓆ሻ ⊆ ℕ〈௥〉
𝔟 ሺ𝓅ሻ. 

Remark 3.1. Example 3.1 highlights the following observations: 
(i) The statement (iii) of Lemma 3.1 does not hold true in the case of 𝑘 ൌ 〈𝑢〉. 
(ii) In the general case, for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ , the basic 𝑘 -neighborhoods and the 𝑘 -

neighborhoods are independent (non-comparable) when ℛ is a binary relation on ℧. 
Example 3.1. Let ℧ ൌ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷ, 𝓏ସሽ  and ℛ ൌ ሼሺ𝓏ଵ, 𝓏ଵሻ, ሺ𝓏ଵ, 𝓏ସሻ, ሺ𝓏ଶ, 𝓏ଵሻ, ሺ𝓏ଶ, 𝓏ଷሻ, ሺ𝓏ଷ, 𝓏ସሻ, 
ሺ𝓏ଷ, 𝓏ଵሻሽ be a binary relation on ℧. Consequently, we obtain the following tables (Tables 2–4) which 
contain all neighborhoods generated by ℛ. 

Table 2. 𝑘-neighborhoods of 𝓅 ∈ ℧. 

𝔁 ℕ𝒓ሺ𝔁ሻ ℕ𝒍ሺ𝔁ሻ ℕ𝒊ሺ𝔁ሻ ℕ𝒖ሺ𝔁ሻ 

𝔃𝟏 ሼ𝓏ଵ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵሽ ℧ 
𝔃𝟐 ሼ𝓏ଵ, 𝓏ଷሽ Φ Φ ሼ𝓏ଵ, 𝓏ଷሽ 
𝔃𝟑 ሼ𝓏ଵ, 𝓏ସሽ ሼ𝓏ଶሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ 
𝔃𝟒 Φ ሼ𝓏ଵ, 𝓏ଷሽ Φ ሼ𝓏ଵ, 𝓏ଷሽ 

Table 3. 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝔁 ℕ〈𝒓〉ሺ𝔁ሻ ℕ〈𝒍〉ሺ𝔁ሻ ℕ〈𝒊〉ሺ𝔁ሻ ℕ〈𝒖〉ሺ𝔁ሻ 

𝔃𝟏 ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଷሽ 
𝔃𝟐 Φ ሼ𝓏ଶሽ Φ ሼ𝓏ଶሽ 
𝔃𝟑 ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ 
𝔃𝟒 ሼ𝓏ଵ, 𝓏ସሽ Φ Φ ሼ𝓏ଵ, 𝓏ସሽ 

Table 4. Basic 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝔁 
ℕ〈𝒓〉

𝖇 ሺ𝔁ሻ ℕ〈𝒍〉
𝖇 ሺ𝔁ሻ ℕ〈𝒊〉

𝖇 ሺ𝔁ሻ ℕ〈𝒖〉
𝖇 ሺ𝔁ሻ 

𝔃𝟏 ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵሽ ℧ 
𝔃𝟐 ሼ𝓏ଶሽ ሼ𝓏ଶ, 𝓏ସሽ ሼ𝓏ଶሽ ሼ𝓏ଶ, 𝓏ସሽ 
𝔃𝟑 ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷሽ ℧ 
𝔃𝟒 ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ 

The proof of the following lemma is easy; therefore, we omit it. 
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Lemma 3.2. Let ℛ be a binary relation on ℧. Then, for every 𝓅 ∈ ℧, the following holds: 

(i) ℕ〈௜〉
𝔟 ሺ𝓅ሻ ⊆ ℕ〈௥〉

𝔟 ሺ𝓅ሻ ⊆ ℕ〈௨〉
𝔟 ሺ𝓅ሻ; and 

(ii) ℕ〈௜〉
𝔟 ሺ𝓅ሻ ⊆ ℕ〈௟〉

𝔟 ሺ𝓅ሻ ⊆ ℕ〈௨〉
𝔟 ሺ𝓅ሻ. 

The following lemma examines the connection between basic the 𝑘-neighborhoods and the 𝑘-
neighborhoods, where 𝑘 ranges over ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ. 
Lemma  3.3. In a 𝑘-𝑵𝑺 ሺ℧, ℛ, ℱ௞ሻ, where ℛ is a reflexive relation, ∀𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the basic 
k-neighborhoods ℕ௞

𝔟 ሺ𝓅ሻ are equivalent to the k-neighborhoods ℕ௞ሺ𝓅ሻ for all 𝓅 ∈ ℧. 
Proof. We demonstrate the lemma for 𝑘 ൌ 〈𝑟〉, with similar reasoning applicable to other cases. 

First, according to Definition 3.1, if 𝓆 ∈ ℕ〈௥〉
𝔟 ሺ𝓅ሻ, then 

ℕ〈௥〉ሺ𝓆ሻ ⊆ ℕ〈௥〉ሺ𝓅ሻ.         (3.2) 

Given that ℛ  is reflexive, 𝓆 ∈ ℕ〈௥〉ሺ𝓆ሻ . Hence, Eq (3.2), 𝓆 ∈ ℕ〈௥〉ሺ𝓅ሻ , which implies that 
ℕ〈௥〉

𝔟 ሺ𝓅ሻ ⊆ ℕ〈௥〉ሺ𝓅ሻ, for all 𝓅 in ℧. 
Conversely, utilizing Lemma 2.1, if 𝓆 ∈ ℕ〈௥〉ሺ𝓅ሻ , then ℕ〈௥〉ሺ𝓆ሻ ⊆ ℕ〈௥〉ሺ𝓅ሻ , implying 𝓆  ∈

ℕ〈௥〉
𝔟 ሺ𝓅ሻ. Therefore, ℕ〈௥〉ሺ𝓅ሻ ⊆ ℕ〈௥〉

𝔟 ሺ𝓅ሻ, for all 𝓅 in ℧. 

Corollary 3.1. Let ሺ℧, ℛ, ℱ௞ሻ  be a 𝑘 -𝑵𝑺 where ℛ  is an equivalence relation; then, ℕ௞
𝔟 ሺ𝓅ሻ ൌ

ℕ௞ሺ𝓅ሻ ൌ ሾ𝓅ሿℛ, for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, and ሾ𝓅ሿℛ signifies the equivalence class of 𝓅 ∈ ℧. 
Lemma  3.4. Let ሺ℧, ℛ, ℱ௞ሻ  be a 𝑘 -𝑵𝑺 where ℛ  is a reflexive relation; then, ∀𝑘 ∈ ሼ𝑟, 𝑙, 𝑖, 𝑢ሽ
and the following holds: 
(i) ℕ〈௞〉

𝔟 ሺ𝓅ሻ ⊆ ℕ௞ሺ𝓅ሻ, ∀𝓅 ∈ ℧; and 

(ii) ℕ〈௞〉
𝔟 ሺ𝓅ሻ ⊆ ℕ௠ሺ𝓅ሻ, ∀𝓅 ∈ ℧. 

Proof. Utilizing Lemmas 2.3 and 3.3, the proof becomes self-evident. 
Remark 3.2. Example 3.2 illustrates that the following: 
(i) Illustrating Lemma 3.3. 
(ii) The converse of Lemma 3.4 is not generally true. 
Example 3.2. Let ℧ ൌ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷ, 𝓏ସሽ  be a set, and let ℛ  be a reflexive relation on ℧  defined as 
follows: ℛ ൌ ሼሺ𝓏ଵ, 𝓏ଵሻ, ሺ𝓏ଶ, 𝓏ଶሻ, ሺ𝓏ଷ, 𝓏ଷሻ, ሺ𝓏ସ, 𝓏ସሻ, ሺ𝓏ଵ, 𝓏ଶሻ, ሺ𝓏ଶ, 𝓏ଷሻሽ. The undermentioned Tables 5–7 
illustrate the neighborhoods generated by ℛ. 

Table 5. 𝑘-neighborhoods of 𝓅 ∈ ℧. 

𝔁 ℕ𝒓ሺ𝔁ሻ ℕ𝒍ሺ𝔁ሻ ℕ𝒊ሺ𝔁ሻ ℕ𝒖ሺ𝔁ሻ 

𝔃𝟏 ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଶሽ 
𝔃𝟐 ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ 
𝔃𝟑 ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ 
𝔃𝟒 ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ 
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Table 6. 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝔁 ℕ〈𝒓〉ሺ𝔁ሻ ℕ〈𝒍〉ሺ𝔁ሻ ℕ〈𝒊〉ሺ𝔁ሻ ℕ〈𝒖〉ሺ𝔁ሻ 

𝔃𝟏 ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଶሽ 
𝔃𝟐 ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ 
𝔃𝟑 ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ 
𝔃𝟒 ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ 

Table 7. Basic 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝔁 
ℕ〈𝒓〉

𝖇 ሺ𝔁ሻ ℕ〈𝒍〉
𝖇 ሺ𝔁ሻ ℕ〈𝒊〉

𝖇 ሺ𝔁ሻ ℕ〈𝒖〉
𝖇 ሺ𝔁ሻ 

𝔃𝟏 ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଶሽ 
𝔃𝟐 ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ 
𝔃𝟑 ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ 
𝔃𝟒 ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ 

4. Basic-minimal rough approximations and topological applications 

In this section, which is divided into three subsections, we delve into a comprehensive analysis 
of various RS approximations (basic-minimal approximations) and their implications. Through a 
systematic exploration, we aim to elucidate the relationships between the RS theory and topology, 
paving the way for an enhanced understanding and practical applications in both domains. 

4.1. Generalized rough sets based on basic minimal-neighborhoods 

In this subsection, we introduce four distinct RS approximations (called basic-minimal 
approximations), dissecting their core properties and establishing their adherence to Pawlak’s 
fundamental axioms. Furthermore, we conduct a comparative analysis to identify the most effective 
approximation method based on its accuracy factor. 
Definition  4.1. Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺 where 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ. The basic-minimal lower and 
upper approximations of a subset 𝒪 ⊆ ℧ are formally defined as follows: 

ℛ௞
𝔟 ሺ𝒪ሻ ൌ ൛𝓅 ∈ ℧: ℕ௞

𝔟 ሺ𝓅ሻ ⊆ 𝒪ൟ and ℛ௞
𝔟

ሺ𝒪ሻ ൌ ൛𝓅 ∈ ℧: ℕ௞
𝔟 ሺ𝓅ሻ ∩ 𝒪 ് Φൟ. 

Furthermore, the basic-minimal boundary, basic-minimal positive, and basic-minimal negative regions 
of 𝒪, respectively, are defined as follows: 

𝔅௞
𝔟 ሺ𝒪ሻ ൌ ℛ௞

𝔟
ሺ𝒪ሻ െ ℛ௞

𝔟 ሺ𝒪ሻ, 𝑝𝑜𝑠௞
𝔟ሺ𝒪ሻ ൌ ℛ௞

𝔟 ሺ𝒪ሻ, and 𝑛𝑒𝑔௞
𝔟ሺ𝒪ሻ ൌ ℧ െ ℛ௞

𝔟
ሺ𝒪ሻ. 

The basic-minimal accuracy of the approximations is given by the following: 

𝛾௞
𝔟ሺ𝒪ሻ ൌ

หℛ௞
𝔟 ሺ𝒪ሻห

ቚℛ௞
𝔟

ሺ𝒪ሻቚ
, 𝑤ℎ𝑒𝑟𝑒 ቚℛ௞

𝔟
ሺ𝒪ሻቚ ് 0. 

It is evident that 0 ൑ 𝛾௞
𝔟ሺ𝒪ሻ ൑ 1, and if 𝛾௞

𝔟ሺ𝒪ሻ ൌ 1, then 𝒪 is termed a basic 𝑘-definable (basic 𝑘-



21827 

AIMS Mathematics  Volume 9, Issue 8, 21816–21847. 

exact) set; otherwise, it is considered basic 𝑘-rough. 
The proposition asserts certain properties of the 𝒿-basic approximations. 

Proposition 4.1. Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺 and 𝒬, 𝒮 ⊆ ℧. Thus, the following holds: 

(i) ℛ௞
𝔟 ሺ𝒬ሻ ⊆ 𝒬 ⊆ ℛ௞

𝔟
ሺ𝒬ሻ; 

(ii) ℛ௞
𝔟 ሺ℧ሻ ൌ ℛ௞

𝔟
ሺ℧ሻ ൌ ℧, ℛ௞

𝔟 ሺΦሻ ൌ ℛ௞
𝔟

ሺΦሻ ൌ Φ; 

(iii) If  𝒬 ⊆ 𝒮, then ℛ௞
𝔟 ሺ𝒬ሻ ⊆ ℛ௞

𝔟 ሺ𝒮ሻ; 

(iv)  If  𝒬 ⊆ 𝒮, then ℛ௞
𝔟

ሺ𝒬ሻ ⊆ ℛ௞
𝔟

ሺ𝒮ሻ; 

(v) ℛ௞
𝔟 ሺ𝒬 ∩ 𝒮ሻ ൌ ℛ௞

𝔟 ሺ𝒬ሻ ∩ ℛ௞
𝔟 ሺ𝒮ሻ; 

(vi)  ℛ௞
𝔟

ሺ𝒬 ∪ 𝒮ሻ ൌ ℛ௞
𝔟

ሺ𝒬ሻ ∪ ℛ௞
𝔟

ሺ𝒮ሻ; 

(vii)  ℛ௞
𝔟 ሺ𝒬 ∪ 𝒮ሻ ⊇  ℛ௞

𝔟 ሺ𝒬ሻ ∪ ℛ௞
𝔟 ሺ𝒮ሻ; 

(viii) ℛ௞
𝔟

ሺ𝒬 ∩ 𝒮ሻ ⊆ ℛ௞
𝔟

ሺ𝒬ሻ ∩ ℛ௞
𝔟

ሺ𝒮ሻ; 

(ix) ℛ௞
𝔟 ሺ𝒬ሻ ൌ ቂℛ௞

𝔟
ሺ𝒬௖ሻቃ

௖
, where 𝒬௖ represents a complement of 𝒬; 

(x) ℛ௞
𝔟

ሺ𝒬ሻ ൌ ൣℛ௞
𝔟 ሺ𝒬௖ሻ൧

௖
; 

(xi)  ℛ௞
𝔟 ቀℛ௞

𝔟 ሺ𝒬ሻቁ ൌ ℛ௞
𝔟 ሺ𝒬ሻ; and 

(xii) ℛ௞
𝔟

ቆℛ௞
𝔟

ሺ𝒬ሻቇ ൌ ℛ௞
𝔟

ሺ𝒬ሻ. 

Proof. The validity of (i), (ii), (iii), and (iv) is readily apparent by using Definition 4.1. Therefore, we 
will prove the remaining items (v)-(xii) as follows. 
(v) Since ሺ𝒬 ∩ 𝒮ሻ ⊆ 𝒬 and ሺ𝒬 ∩ 𝒮ሻ ⊆ 𝒮, then ℛ௞

𝔟 ሺ𝒬 ∩ 𝒮ሻ ⊆ ℛ௞
𝔟 ሺ𝒬ሻ and ℛ௞

𝔟 ሺ𝒬 ∩ 𝒮ሻ ⊆ ℛ௞
𝔟 ሺ𝒮ሻ. 

Now, let 𝜛 ∈ ሾℛ௞
𝔟 ሺ𝒬ሻ ∩ ℛ௞

𝔟 ሺ𝒮ሻሿ . Then, 𝜛 ∈ ℛ௞
𝔟 ሺ𝒬ሻ  and 𝜛 ∈ ℛ௞

𝔟 ሺ𝒮ሻ , which implies 
ℕ௞

𝔟 ሺ𝜛ሻ ⊆ 𝒬 and ℕ௞
𝔟 ሺ𝜛ሻ ⊆ 𝒮. Thus, ℕ௞

𝔟 ሺ𝜛ሻ ⊆ 𝒬 ∩ 𝒮 which that 𝜛 ∈ ℛ௞
𝔟 ሺ𝒬 ∩ 𝒮ሻ. 

Therefore, ℛ௞
𝔟 ሺ𝒬ሻ ∩ ℛ௞

𝔟 ሺ𝒮ሻ ⊆ ℛ௞
𝔟 ሺ𝒬 ∩ 𝒮ሻ; 

(vi) Similar to (v), using a comparable approach; 
(vii) Similar to (v), using a comparable approach; 
(viii) Similar to (v), using a comparable approach; 

(ix) ቂℛ௞
𝔟

ሺ𝒬௖ሻቃ
௖

ൌ ൣ൛𝓅 ∈ ℧: ℕ௞
𝔟 ሺ𝓅ሻ ∩ 𝒬௖ ് Φൟ൧

௖
ൌ ൛𝓅 ∈ ℧: ℕ௞

𝔟 ሺ𝓅ሻ ∩ 𝒬௖ ൌ Φൟ 

                             ൌ ൛𝓅 ∈ ℧: ℕ௞
𝔟 ሺ𝓅ሻ ⊆ 𝒬ൟ ൌ ℛ௞

𝔟 ሺ𝒬ሻ; 
(x) By a similar way such as (ix); 

(xi) First, by (i), ℛ௞
𝔟 ቀℛ௞

𝔟 ሺ𝒬ሻቁ ⊆ ℛ௞
𝔟 ሺ𝒬ሻ. 

Now, let 𝜛 ∈ ℛ௞
𝔟 ሺ𝒬ሻ. Then, 
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ℕ௞
𝔟 ሺ𝜛ሻ ⊆ 𝒬.          (4.1) 

We need to prove that ℕ௞
𝔟 ሺ𝜛ሻ ⊆ ℛ௞

𝔟 ሺ𝒬ሻ as follows: 

If 𝓏 ∈ ℕ௞
𝔟 ሺ𝜛ሻ, then ℕ௞

𝔟 ሺ𝓏ሻ ⊆ ℕ௞
𝔟 ሺ𝜛ሻ, which implies that ℕ௞

𝔟 ሺ𝓏ሻ ⊆ 𝒬 from Eq (4.1). Therefore, 

𝓏 ∈ ℛ௞
𝔟 ሺ𝒬ሻ, which means that ℕ௞

𝔟 ሺ𝜛ሻ ⊆ ℛ௞
𝔟 ሺ𝒬ሻ, which implies 𝜛 ∈ ℛ௞

𝔟 ቀℛ௞
𝔟 ሺ𝒬ሻቁ. Hence, ℛ௞

𝔟 ሺ𝒬ሻ ⊆

ℛ௞
𝔟 ቀℛ௞

𝔟 ሺ𝒬ሻቁ; and 

(xii) By a similar way such as (xi). 
The subsequent findings, which elucidate the connections between the proposed approximations 

(basic-minimal approximations), are straightforward to demonstrate with Lemma 3.2, hence the proof 
is omitted. 
Proposition 4.2. Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺 and 𝒪 ⊆ ℧. Then, the following holds: 

(i) ℛ〈௨〉
𝔟 ሺ𝒪ሻ ⊆ ℛ〈௥〉

𝔟 ሺ𝒪ሻ ⊆ ℛ〈௜〉
𝔟 ሺ𝒪ሻ; 

(ii) ℛ〈௨〉
𝔟 ሺ𝒪ሻ ⊆ ℛ〈௟〉

𝔟 ሺ𝒪ሻ ⊆ ℛ〈௜〉
𝔟 ሺ𝒪ሻ; 

(iii) ℛ〈௜〉
𝔟

ሺ𝒪ሻ ⊆ ℛ〈௥〉
𝔟

ሺ𝒪ሻ ⊆ ℛ〈௨〉
𝔟

ሺ𝒪ሻ; and 

(iv) ℛ〈௜〉
𝔟

ሺ𝒪ሻ ⊆ ℛ〈௟〉
𝔟

ሺ𝒪ሻ ⊆ ℛ〈௨〉
𝔟

ሺ𝒪ሻ. 

Corollary 4.1. If ሺ℧, ℛ, ℱ௞ሻ is a 𝑘-𝑵𝑺 and 𝒪 ⊆ ℧. Then, the following holds: 

(i) 𝔅〈௜〉
𝔟 ሺ𝒪ሻ ⊆ 𝔅〈௥〉

𝔟 ሺ𝒪ሻ ⊆ 𝔅〈௨〉
𝔟 ሺ𝒪ሻ; 

(ii) 𝔅〈௜〉
𝔟 ሺ𝒪ሻ ⊆ 𝔅〈௟〉

𝔟 ሺ𝒪ሻ ⊆ 𝔅〈௨〉
𝔟 ሺ𝒪ሻ; 

(iii) 𝛾〈௨〉
𝔟 ሺ𝒪ሻ ൑ 𝛾〈௥〉

𝔟 ሺ𝒪ሻ ൑ 𝛾〈௜〉
𝔟 ሺ𝒪ሻ; 

(iv) 𝛾〈௨〉
𝔟 ሺ𝒪ሻ ൑ 𝛾〈௟〉

𝔟 ሺ𝒪ሻ ൑ 𝛾〈௜〉
𝔟 ሺ𝒪ሻ; 

(v) If 𝒪 is a basic 〈𝑢〉-exact set, then it follows that 𝒪 is also a basic 〈𝑟〉-exact set, which in turn 
implies that 𝒪 is a basic 〈𝑖〉-exact set; and 

(vi) If 𝒪 is a basic 〈𝑢〉-exact set, then it follows that 𝒪 is also a basic 〈𝑙〉-exact set, which in turn 
implies that 𝒪 is a basic 〈𝑖〉-exact set. 

Remark 4.1. Example 4.1 serves to illustrate that the converse of the aforementioned results is not 
universally valid. 
Example 4.1. Let ℧ ൌ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ  and consider the binary relation ℛ  on ℧  defined as follows: 
ℛ ൌ ሼሺ𝓏ଵ, 𝓏ଵሻ, ሺ𝓏ଶ, 𝓏ଶሻ, ሺ𝓏ଷ, 𝓏ଷሻ, ሺ𝓏ଶ, 𝓏ଷሻ, ሺ𝓏ଷ, 𝓏ଵሻሽ. 

Consequently, we construct Tables 8 and 9 to represent the basic 𝑘-lower and basic 𝑘-upper 
approximations, along with the basic 𝑘-accuracies of the approximations for all subsets ℧. 
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Table 8. Comparison of various types of basic 𝑘-approximations. 

𝓞 ⊆ ℧ 

basic 〈𝒓〉-
approximations 

basic 〈𝒍〉-
approximations 

basic 〈𝒊〉-
approximations 

basic 〈𝒖〉-
approximations 

ℛ〈௥〉
𝔟 ሺ𝒪ሻ ℛ〈௥〉

𝔟
ሺ𝒪ሻ ℛ〈௟〉

𝔟 ሺ𝒪ሻ ℛ〈௟〉
𝔟

ሺ𝒪ሻ ℛ〈௜〉
𝔟 ሺ𝒪ሻ ℛ〈௜〉

𝔟
ሺ𝒪ሻ ℛ〈௨〉

𝔟 ሺ𝒪ሻ ℛ〈௨〉
𝔟

ሺ𝒪ሻ

ሼ𝔃𝟏ሽ ሼ𝓏ଵሽ ሼ𝓏ଵሽ Φ ሼ𝓏ଵሽ ሼ𝓏ଵሽ ሼ𝓏ଵሽ Φ ሼ𝓏ଵሽ 
ሼ𝔃𝟐ሽ Φ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ Φ ሼ𝓏ଶሽ 
ሼ𝔃𝟑ሽ ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଷሽ ℧ 

ሼ𝔃𝟏, 𝔃𝟐ሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଶሽ Φ ሼ𝓏ଵ, 𝓏ଶሽ

ሼ𝔃𝟏, 𝔃𝟑ሽ ሼ𝓏ଵ, 𝓏ଷሽ ℧ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ ℧ 

ሼ𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ℧ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ℧ 

℧ ℧ ℧ ℧ ℧ ℧ ℧ ℧ ℧ 

Table 9. Comparison of various types of basic 𝑘-accuracies. 

𝓞 ⊆ ℧ 𝛄〈𝐫〉
𝖇 ሺ𝓞ሻ 𝛄〈𝐥〉

𝖇 ሺ𝓞ሻ 𝛄〈𝐢〉
𝖇 ሺ𝓞ሻ 𝛄〈𝐮〉

𝖇 ሺ𝓞ሻ 

ሼ𝔃𝟏ሽ 1 0 1 0 
ሼ𝔃𝟐ሽ 0 1 1 0 

ሼ𝔃𝟑ሽ 1
2ൗ  1

2ൗ  1 1
3ൗ  

ሼ𝔃𝟏, 𝔃𝟐ሽ 1
2ൗ  1

2ൗ  1 0 

ሼ𝔃𝟏, 𝔃𝟑ሽ 2
3ൗ  1 1 2

3ൗ  

ሼ𝔃𝟐, 𝔃𝟑ሽ 1 2
3ൗ  1 2

3ൗ  

℧ 1 1 1 1 

Remark 4.2. Based on Proposition 4.2, Corollary 4.1 and Example 4.1, the optimal method for 
approximating rough sets is the use of basic 〈𝑖〉-approximations, which provide the highest accuracy 
measures. 

4.2. Different topological structures via basic-minimal neighborhoods 

Moving beyond mere approximations, this subsection investigates the generation of diverse 
topologies derived from basic-minimal neighborhoods. We rigorously demonstrate that the 
approximations proposed in Subsection 4.1 serve as closure and interior operators for these newly 
formed topologies, forging vital connections between the RS theory and topology for future 
explorations and applications. 
Theorem 4.1. Given a 𝑘-𝑵𝑺 ሺ℧, ℛ, ℱ௞ሻ, for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the set 𝔗௞

𝔟  where: 𝔗௞
𝔟 ൌ

൛𝒪 ⊆ ℧: ∀ 𝓅 ∈ 𝒪, ℕ௞
𝔟 ሺ𝓅ሻ ⊆ 𝒪ൟ forms a topology on ℧. 
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Proof. 
(T1) It is evident that ℧ and Φ belong to 𝔗௞

𝔟 . 

(T2) Suppose ൛𝒬ఉ ∶ 𝛽 ∈ ℐൟ is a class of members in 𝔗௞
𝔟 , and let 𝓆 ∈ ⋃ 𝒬ఉఉ . Then, there exists 

𝛽ఖ ∈ ℐ  such that 𝓆 ∈ 𝒬ఉഎ
 . Therefore, ℕ௞

𝔟 ሺ𝓆ሻ ⊆ 𝒬ఉഎ
 , which implies that ℕ௞

𝔟 ሺ𝓆ሻ ⊆ ⋃ 𝒬ఉఉ  . Hence, 

⋃ 𝒬ఉఉ ∈  𝔗௞
𝔟 . 

(T3) Let 𝒬ଵ, 𝒬ଶ ∈  𝔗௞
𝔟    and 𝓆 ∈ 𝒬ଵ ∩ 𝒬ଶ . Then, 𝓆 ∈ 𝒬ଵ  and 𝓆 ∈ 𝒬ଶ , which implies 

ℕ௞
𝔟 ሺ𝓆ሻ ⊆ 𝒬ଵ and ℕ௞

𝔟 ሺ𝓆ሻ ⊆ 𝒬ଶ. Thus, ℕ௞
𝔟 ሺ𝓆ሻ ⊆ ሺ𝒬ଵ ∩ 𝒬ଶሻ, and hence ሺ𝒬ଵ ∩ 𝒬ଶሻ ∈ 𝔗௞

𝔟 . 
By (T1), (T2), and (T3), we conclude that 𝔗௞

𝔟  forms a topology on ℧. 
By employing Lemma 3.2, we can readily establish the subsequent result, elucidating the 

relationships among various topologies 𝔗௞
𝔟 . 

Proposition 4.3. Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺. Then, the following holds: 

(i) 𝔗〈௨〉
𝔟 ⊆ 𝔗〈௥〉

𝔟 ⊆ 𝔗〈௜〉
𝔟 ; and 

(ii) (ii)𝔗〈௨〉
𝔟 ⊆ 𝔗〈௟〉

𝔟 ⊆ 𝔗〈௜〉
𝔟 . 

The negation of Proposition 4.3 is shown to be incorrect in Example 4.2. 
Example 4.2. Considering Example 3.1, we generate the following topologies: 
𝔗〈௥〉

𝔟 ൌ ሼ ℧, Φ, ሼ𝓏ଶሽ, ሼ𝓏ଵ, 𝓏ଶሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽሽ, 

𝔗〈௟〉
𝔟 ൌ ሼ℧, Φ, ሼ𝓏ସሽ, ሼ𝓏ଶ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽሽ, 

𝔗〈௜〉
𝔟 ൌ ሼ℧, Φ, ሼ𝓏ଵሽ, ሼ𝓏ଶሽ, ሼ𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶሽ, ሼ𝓏ଵ, 𝓏ଷሽ, ሼ𝓏ଵ, 𝓏ସሽ, ሼ𝓏ଶ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽሽ, 

and 𝔗〈௨〉
𝔟 ൌ ሼ℧, Φሽ. 

However, 𝔗〈௥〉 ൌ ሼ℧, Φ, ሼ𝓏ଵሽ, ሼ𝓏ଶሽ, ሼ𝓏ଵ, 𝓏ଶሽ, ሼ𝓏ଵ, 𝓏ଷሽ, ሼ𝓏ଵ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽሽ. 
Remark 4.3. Based on Example 4.2, the following observations can be made: 
(i) The topologies 𝔗௞ and 𝔗௞

𝔟  are generally independent, for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ. 

(ii) The topologies 𝔗〈௥〉
𝔟  and 𝔗〈௟〉

𝔟  are generally non-comparable. 

The next proposition illustrates the relationships between the topologies generated by the basic-
minimal neighborhoods and those induced by the preceding neighborhoods. 
Proposition 4.4. Let ሺ℧, ℛ, ℱ௞ሻ be a 𝑘-𝑵𝑺, where ℛ is a reflexive relation. Then, ∀𝑘 ∈ ሼ𝑟, 𝑙, 𝑖, 𝑢ሽ, 
and the following holds: 
(i) 𝔗〈௞〉 ൌ 𝔗〈௞〉

𝔟 ; 

(ii) 𝔗௞ ⊆ 𝔗〈௞〉
𝔟 ; and 

(iii) 𝔗௠ ⊆ 𝔗〈௞〉
𝔟 . 

Proof. Utilizing Lemmas 3.3 and 3.4, the proof becomes evident. 
The next example proves that the opposite of Proposition 4.4 does not hold in general. 

Example 4.3. By using Example 3.2, we compute the topologies 𝔗௞, 𝔗௠, 𝔗〈௞〉, and 𝔗〈௞〉
𝔟  in the case 

where 𝑘 ൌ 𝑟, and similarly for the other cases. 
𝔗௠ ൌ ሼ ℧, Φ, ሼ𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽሽ , 𝔗௥ ൌ  ሼ ℧, Φ, ሼ𝓏ଷሽ, ሼ𝓏ସሽ, ሼ𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଷ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଶ, 𝓏ଷ, 𝓏ସሽሽ , 
and 𝔗〈௥〉 ൌ 𝔗〈௥〉

𝔟 ൌ ሼ℧, Φ, ሼ𝓏ଶሽ, ሼ𝓏ଷሽ, ሼ𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶሽ, ሼ𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଶ, 𝓏ସሽ, ሼ𝓏ଷ, 𝓏ସሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ, ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ, ሼ𝓏ଶ, 𝓏ଷ, 𝓏ସሽሽ. 
The following theory is highly significant, as it serves as the link between the set-theoretic theory 
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of RS's approach on one hand, and topological science on the other. Consequently, it stands as the 
cornerstone to apply all the concepts of topology and its applications within the theory of RS's. This 
would greatly benefit those interested in topology applications, yet not fundamentally specialized in 
topology itself. On the other hand, the following theorem introduces another method to compute the 
basic-minimal approximations in view of topology. 
Theorem 4.2. If ሺ℧, ℛ, ℱ௞ሻ is a 𝑘-𝑵𝑺, then for each 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the basic-minimal lower 
and the basic-minimal upper approximations of 𝒪 ⊆ ℧ are well-defined, respectively, as follows: 

ℛ௞
𝔟 ሺ𝒪ሻ ൌ∪ ൛𝒢 ∈ 𝔗〈௞〉

𝔟 : 𝒢 ⊆ 𝒪ൟ and ℛ௞
𝔟

ሺ𝒪ሻ ൌ∩ ൛ℋ ∈ ℱ〈௞〉
𝔟 : 𝒪 ⊆ ℋൟ, where ℱ〈௞〉

𝔟 ൌ ൫𝔗〈௞〉
𝔟 ൯

௖
. 

Proof. We will prove the first statement and the other by the duality property. 
Necessity condition: 

Let 𝓍 ∈∪ ൛𝒢 ∈ 𝔗〈௞〉
𝔟 : 𝒢 ⊆ 𝒪ൟ ; then, ∃𝔇 ∈ 𝔗〈௞〉

𝔟   such that 𝓍 ∈ 𝔇 ⊆ 𝒪 . Hence, ℕ௞
𝔟 ሺ𝓍ሻ ⊆ 𝔇 , 

which implies that 𝓍 ∈ ൛𝓅 ∈ ℧: ℕ௞
𝔟 ሺ𝓅ሻ ⊆ 𝒪ൟ. 

Sufficiency condition: 
Let 𝓍 ∈ ℛ௞

𝔟 ሺ𝒪ሻ ; then, ℕ௞
𝔟 ሺ𝓍ሻ ⊆ 𝒪 . However, from Lemma 3.1, ∀𝓎 ∈ ℕ௞

𝔟 ሺ𝓍ሻ , ℕ௞
𝔟 ሺ𝓎ሻ ⊆

ℕ௞
𝔟 ሺ𝓍ሻ, which implies that ℕ௞

𝔟 ሺ𝓍ሻ ൌ 𝒢 ∈ 𝔗〈௞〉
𝔟  such that 𝓍 ∈ 𝒢 ⊆ 𝒪. Thus, 𝓍 ∈∪ ൛𝒢 ∈ 𝔗〈௞〉

𝔟 : 𝒢 ⊆ 𝒪ൟ. 

Remark 4.4. From Theorem 4.2, we observe that the basic-minimal lower and basic-minimal upper 
approximations correspond to the interior and closure operators of 𝒪 ⊆ ℧ , respectively. This 
connection underscores the significance of the proposed approaches, highlighting their role as a crucial 
bridge to subsequent topological applications in the RS theory. 

4.3. Comparisons between the suggested methods (basic-minimal approximations) and some of the 
others studies 

As a dedicated comparison, Subsection 4.3 scrutinizes the proposed approximations against prior 
methodologies, including those by Yao [3], Dai et al. [6], Allam et al. [8], and Abd El-Monsef et al. [11]. 
Through a meticulous analysis, bolstered by counterexamples and established theorems, we showcase 
the superiority of our proposed methods across various specific and general scenarios. 

First, we present comparative analyses between the proposed approaches in the current paper and 
some other methods in the case of a general binary relation. 
Example 4.4. Referring to Example 3.1, we proceed to calculate the approximations for all subsets of 
℧ using both the current technique and the preceding methods (Yao, Allam, Abd El-Monsef et al., and 
Dai et al. approaches), as presented in Tables 10 and 11. 
Remark 4.5 Upon examination of Tables 10 and 11, the following observations can be made: 
(i) The Yao, Allam, and Dai methods are generally to approximate RS's due to their inability to be 

generally applied across relations, lacking key properties necessary for approximations. 
Consequently, these limitations confine the scope of the RS theory applications, exemplified by 
the highlighted cells in Tables 10 & 11. Consequently, these methods introduce inconsistencies 
within the RS theory. Furthermore, it is evident that the proposed method demonstrates a superior 
accuracy compared to the approaches by Abd El-Monsef et al. Additionally, according to the 
preceding methods, all subsets are categorized as rough, thus indicating an inherent vagueness in 
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the data (see the highlighted cells in Tables 10 and 11). 
(ii) Conversely, the methods outlined in our current paper stand out as the optimal approaches to 

approximate sets across general cases. This is because the basic-approximations fulfill all of 
Pawlak's RS properties unconditionally, devoid of any limitations or prerequisites. Additionally, 
our approaches encompass exact subsets, signifying the potential of our suggested method in 
unveiling the inherent vagueness within the data. 

The next results elucidate the relationships among the current approaches and the methodologies 
proposed by Yao [3], Abd El-Monsef et al. [11], Allam et al. [8], and Dai et al. [6]. 

Theorem 4.3. If ሺ℧, ℛ, ℱ௞ሻ is a 𝑘-𝑵𝑺 , where ℛ is a reflexive relation, then for all 𝒪 ⊆ ℧ and 𝑘 ∈
ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the following holds: 

(i) ℛ௞ሺ𝒪ሻ ⊆ ℛ௞
𝔟 ሺ𝒪ሻ ⊆ 𝒪 ⊆ ℛ௞

𝔟
ሺ𝒪ሻ ⊆ ℛ௞ሺ𝒪ሻ; 

(ii) 𝔅௞
𝔟 ሺ𝒪ሻ ⊆ 𝔅௞ሺ𝒪ሻ and 𝛾௞ሺ𝒪ሻ ൑ 𝛾௞

𝔟ሺ𝒪ሻ; and 
(iii) If 𝒪 is 𝑘-exact, then it is basic 𝑘-exact. 
Proof. By employing Proposition 4.4, the proof becomes evident. 

Table 10. Comparison between Yao, Allam, and the current approach in general case. 

𝓞 ⊆ ℧ 
Yao’s method [3] Allam et al.’s method [8] Current method 

𝑌∗ሺ𝒪ሻ 𝑌∗ሺ𝒪ሻ 𝒜〈௥〉ሺ𝒪ሻ 𝒜〈௥〉ሺ𝒪ሻ ℛ〈௥〉
𝔟 ሺ𝒪ሻ ℛ〈௥〉

𝔟
ሺ𝒪ሻ 

ሼ𝔃𝟏ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐ሽ ሼ𝓏ସሽ Φ ሼ𝓏ଶሽ Φ ሼ𝓏ଶሽ ℧
ሼ𝔃𝟑ሽ ሼ𝓏ସሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଷሽ Φ ሼ𝓏ଷሽ
ሼ𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଶሽ ሼ𝓏ସሽ Φ ሼ𝓏ସሽ

ሼ𝔃𝟏, 𝔃𝟐ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶሽ ℧
ሼ𝔃𝟏, 𝔃𝟑ሽ ሼ𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟏, 𝔃𝟒ሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ସሽ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ሼ𝓏ଷሽ ሼ𝓏ଶሽ ℧
ሼ𝔃𝟐, 𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷሽ ሼ𝓏ଶሽ ሼ𝓏ସሽ ሼ𝓏ଶሽ ℧
ሼ𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶሽ ሼ𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଷ, 𝓏ସሽ

ሼ𝔃𝟏, 𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ℧
ሼ𝔃𝟏, 𝔃𝟐, 𝔃𝟒ሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ℧
ሼ𝔃𝟏, 𝔃𝟑, 𝔃𝟒ሽ ℧ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ℧ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐, 𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶሽ ሼ𝓏ଷ, 𝓏ସሽ ሼ𝓏ଶሽ ℧

℧ ℧ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ℧ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ℧ ℧
𝚽 ሼ𝓏ସሽ Φ ሼ𝓏ଶሽ Φ Φ Φ
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Table 11. Comparison between the methods of Abd El-Monsef et al., Dai et al. and the 
current method in general case. 

𝓞 ⊆ ℧ 
Dai et al.’s method [6] Abd El-Monsef et al. method [11] Current method 

ℛ௠ሺ𝒪ሻ ℛ௠ሺ𝒪ሻ ℛ௥ሺ𝒪ሻ ℛ௥ሺ𝒪ሻ ℛ〈௥〉
𝔟 ሺ𝒪ሻ ℛ〈௥〉

𝔟
ሺ𝒪ሻ 

ሼ𝔃𝟏ሽ ሼ𝔃𝟐ሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐ሽ ሼ𝓏ଶሽ 𝚽 Φ ሼ𝓏ଶሽ ሼ𝓏ଶሽ ℧ 
ሼ𝔃𝟑ሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷሽ Φ ሼ𝓏ଶ, 𝓏ଷሽ Φ ሼ𝓏ଷሽ 
ሼ𝔃𝟒ሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ସሽ ሼ𝓏ସሽ ℧ Φ ሼ𝓏ସሽ 

ሼ𝔃𝟏, 𝔃𝟐ሽ ሼ𝓏ଶሽ ሼ𝔃𝟏, 𝔃𝟑, 𝔃𝟒ሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶሽ ℧ 
ሼ𝔃𝟏, 𝔃𝟑ሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟏, 𝔃𝟒ሽ ሼ𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ସሽ ℧ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷሽ Φ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶሽ ℧ 
ሼ𝔃𝟐, 𝔃𝟒ሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ସሽ ሼ𝓏ସሽ ℧ ሼ𝓏ଶሽ ℧ 
ሼ𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ସሽ ℧ Φ ሼ𝓏ଷ, 𝓏ସሽ 

ሼ𝔃𝟏, 𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ℧ 
ሼ𝔃𝟏, 𝔃𝟐, 𝔃𝟒ሽ ሼ𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ସሽ ℧ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ℧ 
ሼ𝔃𝟏, 𝔃𝟑, 𝔃𝟒ሽ ℧ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ℧ Φ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐, 𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ସሽ ℧ ሼ𝓏ଶሽ ℧ 

℧ ℧ ሼ𝔃𝟏, 𝔃𝟑, 𝔃𝟒ሽ ℧ ℧ ℧ ℧ 
𝚽 ሼ𝔃𝟐ሽ Φ Φ Φ Φ Φ 

Remark 4.6. The following are observed from Example 4.4: 
(i) The converse of Theorem 4.3 does not hold generally; and 
(ii) The basic-minimal approaches demonstrate greater accuracy compared to the methods proposed 

by Abd El-Monsef et al. [11]. 
The subsequent results delineate the connections between the proposed basic-minimal 

approximations and previous methodologies, encompassing Yao [3], Allam et al. [8], and Dai et al. [6], 
especially concerning a reflexive relation. 

Utilizing Lemmas 3.3 and 3.4, the subsequent theorem can be established. Hence, the proof is deleted. 
Theorem 4.4. If ሺ℧, ℛ, ℱ௞ሻ  constitutes a 𝑘 -𝑵𝑺  with ℛ  being a reflexive relation, then for each 
𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the following holds: 

(i) 𝒜௞ሺ𝒪ሻ ൌ ℛ௞
𝔟 ሺ𝒪ሻ and 𝒜௞ሺ𝒪ሻ ൌ ℛ௞

𝔟
ሺ𝒪ሻ; 

(ii) 𝑌∗ሺ𝒪ሻ ⊆ ℛ௞
𝔟 ሺ𝒪ሻ ⊆ 𝒪 ⊆ ℛ௞

𝔟
ሺ𝒪ሻ ⊆ 𝑌∗ሺ𝒪ሻ; and 

(iii) ℛ௠ሺ𝒪ሻ ⊆ ℛ௞
𝔟 ሺ𝒪ሻ ⊆ 𝒪 ⊆ ℛ௞

𝔟
ሺ𝒪ሻ ⊆ ℛ௠ሺ𝒪ሻ. 

Corollary 4.2. If ሺ℧, ℛ, ℱ௞ሻ constitutes a 𝑘-𝑵𝑺 with ℛ being a reflexive relation, then for each 
𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the following holds: 
(i) 𝔅௞

𝔟 ሺ𝒪ሻ ൌ ℬ௞ሺ𝒪ሻ; 
(ii) 𝔅௞

𝔟 ሺ𝒪ሻ ⊆ 𝔅ሺ𝒪ሻ ⊆ 𝔅௠ሺ𝒪ሻ; 
(iii) 𝛾௞

𝔟ሺ𝒪ሻ ൌ 𝜇௞ሺ𝒪ሻ; and 
(iv) 𝜇௠ሺ𝒪ሻ ൑ 𝛾ሺ𝒪ሻ ൑ 𝛾௞

𝔟ሺ𝒪ሻ. 
Corollary 4.3. If ሺ℧, ℛ, ℱ௞ሻ constitutes a 𝑘-𝑵𝑺 with ℛ being a reflexive relation, then for each 
𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, the following holds: 
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(i) If 𝒪 is a maximal-exact set, then it implies that 𝒪 is Yao-exact, consequently making it a basic-
exact set; and 

(ii) If 𝒪  is a maximal-exact set, then it implies that 𝒪  is Yao-exact, consequently rendering it a 
minimal-exact set. 

Note: It should be noted that the converse of the preceding results is not generally true, as demonstrated 
by Example 4.5. 
Example 4.5. According to Example 3.2, we calculate the approximations for all subsets of ℧ using 
the current technique and the preceding methods (Yao [3] technique and Dai et al. [6] approach), as 
shown in Table 12. 

Table 12. Comparison between the Yao technique, Dai approach and the current method 
in the case of a reflexive relation. 

𝓞 ⊆ ℧ 
Yao’s method [3] Dai et al.’s method Current method 

𝑌∗ሺ𝒪ሻ 𝑌∗ሺ𝒪ሻ ℛ௠ሺ𝒪ሻ ℛ௠ሺ𝒪ሻ ℛ〈௥〉
𝔟 ሺ𝒪ሻ ℛ〈௥〉

𝔟
ሺ𝒪ሻ 

ሼ𝔃𝟏ሽ Φ ሼ𝓏ଵሽ Φ ሼ𝓏ଵ, 𝓏ଶሽ Φ ሼ𝓏ଵሽ 
ሼ𝔃𝟐ሽ Φ ሼ𝓏ଵ, 𝓏ଶሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଶሽ 
ሼ𝔃𝟑ሽ ሼ𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ Φ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଷሽ 
ሼ𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ସሽ 

ሼ𝔃𝟏, 𝔃𝟐ሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶሽ ሼ𝓏ଵ, 𝓏ଶሽ 
ሼ𝔃𝟏, 𝔃𝟑ሽ ሼ𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ Φ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଷሽ 
ሼ𝔃𝟏, 𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ସሽ 
ሼ𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ
ሼ𝔃𝟐, 𝔃𝟒ሽ ሼ𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ସሽ ℧ ሼ𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ
ሼ𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ଷ, 𝓏ସሽ ሼ𝓏ଶ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ସሽ ሼ𝓏ଶ, 𝓏ଷ, 𝓏ସሽ ሼ𝓏ଷ, 𝓏ସሽ ሼ𝓏ଷ, 𝓏ସሽ 

ሼ𝔃𝟏, 𝔃𝟐, 𝔃𝟑ሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ଷሽ
ሼ𝔃𝟏, 𝔃𝟐, 𝔃𝟒ሽ ሼ𝓏ଵ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ସሽ ℧ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଶ, 𝓏ସሽ
ሼ𝔃𝟏, 𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ଷ, 𝓏ସሽ ℧ ሼ𝓏ସሽ ℧ ሼ𝓏ଷ, 𝓏ସሽ ሼ𝓏ଵ, 𝓏ଷ, 𝓏ସሽ
ሼ𝔃𝟐, 𝔃𝟑, 𝔃𝟒ሽ ሼ𝓏ଶ, 𝓏ଷ, 𝓏ସሽ ℧ ሼ𝓏ଷ, 𝓏ସሽ ℧ ሼ𝓏ଶ, 𝓏ଷ, 𝓏ସሽ ℧

℧ ℧ ℧ ℧ ℧ ℧ ℧ 
𝚽 Φ Φ Φ Φ Φ Φ 

Remark 4.7. As observed from Theorem 4.4, Corollaries 4.2 and 4.3, and Example 4.5, the basic-
minimal approaches demonstrate a greater accuracy compared to the methods proposed by Yao and 
Dai et al. 

5. Decision-making in diagnosing heart failure using basic-minimal approaches 

In this section, we emphasize the crucial role of a minimally structured framework in medical 
science, particularly in addressing decision-making complexities. Our focus is on applying this 
framework within the context of heart failure. The dataset includes the outcomes of five symptoms 
observed in twelve patients. This study was conducted at the Cardiology Department of Al-Azhar 
University, located at Sayed Galal University Hospital in Egypt [46]. The research involved twelve 
patients with diverse symptoms, all of whom underwent thorough medical assessments, including 
comprehensive medical histories, physical examinations, extensive laboratory analyses, resting 
electrocardiograms (ECGs), and traditional echocardiographic evaluations. Based on these 
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assessments, the diagnosis of heart failure was either confirmed or excluded. This study analyzed the 
experimental results of an initial investigation that examined five symptoms correlated with heart 
disease, as delineated by Dickstein et al. [47]. 

Table 13 provides an overview of the heart failure issue, where the columns signify symptoms 
('Yes' meaning symptom presence and 'No' indicating absence) associated with heart failure diagnoses 
(considered as condition attributes ' 𝓒 '). Specifically, 𝓗𝟏  stands for breathlessness, 𝓗𝟐  for 
orthopnea, 𝓗𝟑 for paroxysmal nocturnal dyspnea, 𝓗𝟒 for a reduced exercise tolerance, and 𝓗𝟓 
for ankle swelling. The '𝒟' attribute represents the decision regarding heart failure. Within Table 13, 
the rows designated as 𝒫 ൌ ሼ𝓹𝟏, 𝓹𝟐, 𝓹𝟑, … , 𝓹𝟏𝟐ሽ correspond to the individual patients 

Table 13. Original medical information system [46]. 

Person (𝓟) 
symptoms (𝓒ሻ 

Decision (𝓓) 
ℋଵ ℋଶ ℋଷ ℋସ ℋହ 

𝓹𝟏 Yes Yes Yes Yes No Yes 
𝓹𝟐 No No No Yes Yes No 
𝓹𝟑 Yes Yes Yes Yes Yes Yes 
𝓹𝟒 No No No Yes No No 
𝓹𝟓 Yes No No Yes Yes No 
𝓹𝟔 No No No Yes No No 
𝓹𝟕 Yes Yes Yes Yes Yes Yes 
𝓹𝟖 Yes Yes No Yes Yes Yes 
𝓹𝟗 Yes No Yes Yes No Yes 
𝓹𝟏𝟎 No No No Yes Yes No 
𝓹𝟏𝟏 Yes No Yes Yes No Yes 
𝓹𝟏𝟐 Yes No No Yes Yes No 

We initiate the application process by transforming the descriptive attributes (condition attributes) 
𝓒 ൌ ሼ𝓗𝟏, 𝓗𝟐, 𝓗𝟑, 𝓗𝟒, 𝓗𝟓ሽ into qualitative terms, as presented in Table 13. This table encapsulates 

the resemblances among the patient symptoms, where the degree of similarity 𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ is defined 

by: 

𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ ൌ
∑ ሾ𝒶ℊሺ𝓅𝒾ሻୀ𝒶ℊሺ𝓅𝒿ሻሿ𝓃

ℊసభ

𝓃
, 

where: 
 𝒾, 𝒿 ∈ ሼ1,2,3, … ,12ሽ; 

 𝒶ℊ represents an attribute, i.e., 𝒶ℊ ∈ 𝓒; 

 𝓃 represents the number of condition attributes. 
Therefore, we compute the similarities between the symptoms of the 12 patients as follows: 
For 𝓹𝟏 : It is evident that 𝓹𝟏  and 𝓹𝟐  share the same value for symptom 𝓗𝟒 , thus the 

similarity between 𝓹𝟏 and 𝓹𝟐 is 
ଵ

ହ
. 
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Similarly, 𝓹𝟏 and 𝓹𝟑 share the same values for symptoms 𝓗𝟏, 𝓗𝟐, 𝓗𝟑, and 𝓗𝟒, thus the 

similarity between 𝓹𝟏 and 𝓹𝟑 is 
ସ

ହ
. 

Using the same method, we evaluate the similarities between all the patients, as illustrated in 
Table 14. 

Table 14. Similarities between symptoms of twelve of patients. 

 𝓹𝟏 𝓹𝟐 𝓹𝟑 𝓹𝟒 𝓹𝟓 𝓹𝟔 𝓹𝟕 𝓹𝟖 𝓹𝟗 𝓹𝟏𝟎 𝓹𝟏𝟏 𝓹𝟏𝟐 

𝓹𝟏 1 
1
5

 
4
5

 
2
5

 
2
5

 
2
5

 
4
5

 
3
5

 
4
5

 
1
5

 
4
5

 
2
5

 

𝓹𝟐 
1
5

 1 
2
5

 
4
5

 
4
5

 
4
5

 
2
5

 
3
5

 
2
5

 1 
2
5

 
4
5

 

𝓹𝟑 
4
5

 
2
5

 1 
1
5

 
3
5

 
1
5

 1 
4
5

 
3
5

 
2
5

 
3
5

 
3
5

 

𝓹𝟒 
2
5

 
4
5

 
1
5

 1 
3
5

 1 
1
5

 
2
5

 
3
5

 
4
5

 
3
5

 
3
5

 

𝓹𝟓 
2
5

 
4
5

 
3
5

 
3
5

 1 
3
5

 
3
5

 
4
5

 
3
5

 
4
5

 
3
5

 1 

𝓹𝟔 
2
5

 
4
5

 
1
5

 1 
3
5

 1 
1
5

 
2
5

 
3
5

 
4
5

 
3
5

 
3
5

 

𝓹𝟕 
4
5

 
2
5

 1 
1
5

 
3
5

 
1
5

 1 
4
5

 
3
5

 
2
5

 
3
5

 
3
5

 

𝓹𝟖 
3
5

 
3
5

 
4
5

 
2
5

 
4
5

 
2
5

 
4
5

 1 
2
5

 
3
5

 
2
5

 
4
5

 

𝓹𝟗 
4
5

 
2
5

 
3
5

 
3
5

 
3
5

 
3
5

 
3
5

 
2
5

 1 
2
5

 1 
3
5

 

𝓹𝟏𝟎 
1
5

 1 
2
5

 
4
5

 
4
5

 
4
5

 
2
5

 
3
5

 
2
5

 1 
2
5

 
4
5

 

𝓹𝟏𝟏 
4
5

 
2
5

 
3
5

 
3
5

 
3
5

 
3
5

 
3
5

 
2
5

 1 
2
5

 1 
3
5

 

𝓹𝟏𝟐 
2
5

 
4
5

 
3
5

 
3
5

 1 
3
5

 
3
5

 
4
5

 
3
5

 
4
5

 
3
5

 1 

Our next step involves constructing a minimal structured space based on the relationship that 
aligns with the inherent nature of the problem under study. It's important to highlight that we describe 
the connection within each issue constructed by the criteria specified by the experts. In this context, 

we denote 𝓅𝒾ℛ 𝓅𝒿 ⟺ 𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ ൒ ସ

ହ
 , ∀𝒾 , 𝒿 ൌ ሼ1,2,3, … ,12ሽ , where 𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ  represents the 

sum of similar symptoms between '𝓅𝒾 ' and '𝓅𝒿 ' divided by the total number of symptoms. 

Note: The above process suggests a relation based on the requirements of system experts' perspective. 
It is assumed that this relation, along with the number 4/5, represents a similar degree, with a higher 
number indicating an increased similarity, thus providing more accurate results. Furthermore, both this 
relation and the number 4/5 can be adjusted according to the concepts of system experts. It is evident 
that the suggested relation is reflexive and symmetric, but not transitive, which renders the Pawlak 
approximations space inadequate to describe system. 

Therefore, to compute all the 𝑟-neighborhoods, for each patient, we proceed as follows: 
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For 𝓹𝟏: ℕ𝒓ሺ𝓅ଵሻ ൌ ሼ𝓅𝒾 ∈ 𝒫| 𝜓 ሺ𝓅ଵ, 𝓅𝒾ሻ ൒ ସ

ହ
ሽ ൌ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅ଽ, 𝓅ଵଵሽ. In a similar way, the 𝑟-

neighborhoods for the other patients are determined and presented in Table 15. 
Next, we construct all the 𝑚-neighborhoods for each patient as follows: 
For 𝓹𝟏: ℕ௠ሺ𝓅ଵሻ ൌ ⋃ ℕ𝒓ሺ𝓅𝒾ሻ𝓅భ∈ℕ𝒓ሺ𝓅𝒾ሻ ൌ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅଼, 𝓅ଽ, 𝓅ଵଵሽ. 
Similarly, the 𝑚-neighborhoods for the other patients are derived and shown in Table 15. 

Now, to compute the basic-minimal neighborhoods ℕ〈𝒓〉
𝖇 ሺ𝔁ሻ , we first determine the minimal-

neighborhoods ℕ〈𝒓〉ሺ𝔁ሻ for each patient as follows: 

For 𝓹𝟏 : ℕ〈𝒓〉ሺ𝓅ଵሻ ൌ ⋂ ℕ𝒓ሺ𝓅𝒾ሻ𝓅భ∈ℕ𝒓ሺ𝓅𝒾ሻ ൌ ሼ𝓅ଵሽ . Following the same procedure, the ℕ〈𝒓〉ሺ𝔁ሻ 

for the other patients is calculated. 

Consequently, the basic-minimal neighborhoods ℕ〈𝒓〉
𝖇 ሺ𝔁ሻ for each patient as follows: 

For 𝓹𝟏: ℕ〈𝒓〉
𝖇 ሺ𝓅ଵሻ ൌ ሼ𝓅𝒾 ∈ 𝒫: ℕ〈𝒓〉ሺ𝓅𝒾ሻ ⊆ ℕ〈𝒓〉ሺ𝓅ଵሻሽ ൌ ሼ𝓅ଵሽ. 

Similarly, the ℕ〈𝒓〉
𝖇 ሺ𝔁ሻ for the other patients are calculated and listed in Table 15. 

Therefore, we proceed to construct the right neighborhoods, the maximal neighborhoods, and the 
basic-minimal right neighborhoods for each patient within the universe, as displayed in Table 15. These 
constructions utilize the relationship that corresponds to the specific nature of the problem under study. 

Table 15. 𝑟-neighborhoods, 𝑚-neighborhoods, and basic 〈𝑟〉-neighborhoods of each patient. 

 ℕ𝒓ሺ𝔁ሻ ℕ𝒎ሺ𝔁ሻ ℕ〈𝒓〉
𝖇 ሺ𝔁ሻ 

𝓹𝟏 ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅଼, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଵሽ 
𝓹𝟐 ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅଼, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶሽ 
𝓹𝟑 ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅଼ሽ ሼ𝓅ଵ, 𝓅ଷ, 𝓅ହ, 𝓅଻, 𝓅଼, 𝓅ଽ, 𝓅ଵଵ, 𝓅ଵଶሽ ሼ𝓅ଷ, 𝓅଻ሽ 
𝓹𝟒 ሼ𝓅ଶ, 𝓅ସ, 𝓅଺, 𝓅ଵ଴ሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅଺, 𝓅ଵ଴ሽ 
𝓹𝟓 ሼ𝓅ଶ, 𝓅ହ, 𝓅଼, 𝓅ଵ଴, 𝓅ଵଶሽ 𝒫-ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ହ, 𝓅ଵଶሽ 
𝓹𝟔 ሼ𝓅ଶ, 𝓅ସ, 𝓅଺, 𝓅ଵ଴ሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅଺, 𝓅ଵ଴ሽ 
𝓹𝟕 ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅଼ሽ ሼ𝓅ଵ, 𝓅ଶ, 𝓅ଷ, 𝓅ହ, 𝓅଻, 𝓅଼, 𝓅ଵଶሽ ሼ𝓅ଷ, 𝓅଻ሽ 
𝓹𝟖 ሼ𝓅ଷ, 𝓅ହ, 𝓅଻, 𝓅଼,, 𝓅ଵଶሽ 𝒫-ሼ𝓅ସ, 𝓅଺, 𝓅ଽ, 𝓅ଵଵሽ  ሼ𝓅଼ሽ 
𝓹𝟗 ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ 
𝓹𝟏𝟎 ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅଼, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶ, 𝓅ଵ଴ሽ 
𝓹𝟏𝟏 ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ 
𝓹𝟏𝟐 ሼ𝓅ଶ, 𝓅ହ, 𝓅଼,, 𝓅ଵଶሽ 𝒫-ሼ𝓅ଵ, 𝓅ଵଵሽ ሼ𝓅ହ, 𝓅ଵଶሽ 

From Table 13, the universe is divided into the following two independent sets are: 
 The group of patients diagnosed with the disease: 𝕊 ൌ ሼ𝓹𝟏, 𝓹𝟑, 𝓹𝟕, 𝓹𝟖, 𝓹𝟗, 𝓹𝟏𝟏ሽ; and 
 The group of patients without a diagnosis of heart failure: 𝕋 ൌ ሼ𝓹𝟐, 𝓹𝟒, 𝓹𝟓, 𝓹𝟔, 𝓹𝟏𝟎, 𝓹𝟏𝟐ሽ. 

Therefore, by employing the suggested approximations (basic-minimal approximations) 
alongside previous approaches (Yao [3] and Dai et al. [6]), we can assess the accuracy of the decision-
making for the two patient groups, as illustrated in Table 16. Following this, we present the Discussions 
section, which summarizes the concluding remarks and provides an analysis of this application. The 
discussion on the results has been expanded to offer a more in-depth analysis. Additionally, the 
validation section includes comparisons with the existing applications in the field and discusses the 
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advantages of our approach. 

Table 16. Comparison among the present technique and the alternative methods. 

Set 
𝕊 𝕋 

ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅଼, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅ହ, 𝓅଺, 𝓅ଵ଴, 𝓅ଵଶሽ 

Yao method 

𝑌∗ሺ𝒪ሻ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ଶ, 𝓅ସ, 𝓅଺, 𝓅ଵ଴} 

𝑌∗ሺ𝒪ሻ 𝒫-ሼ𝓅ଶ, 𝓅ସ, 𝓅଺, 𝓅ଵ଴} 𝒫-ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅ଽ, 𝓅ଵଵሽ 

𝔅ሺ𝒪ሻ ሼ𝓅ହ, 𝓅଼, 𝓅ଵଶ} ሼ𝓅ହ, 𝓅଼, 𝓅ଵଶ} 

𝛾ሺ𝒪ሻ 
5
8

 
4
7

 

Dai et al. 
method 

ℛ௠ሺ𝒪ሻ ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ ሼ𝓅ସ, 𝓅଺} 

ℛ௠ሺ𝒪ሻ 𝒫- ሼ𝓅ସ, 𝓅଺} 𝒫-ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ 

𝔅௠ሺ𝒪ሻ ሼ𝓅ଶ, 𝓅ଷ, 𝓅ହ, 𝓅଻, 𝓅଼, 𝓅ଵ଴, 𝓅ଵଶሽ ሼ𝓅ଶ, 𝓅ଷ, 𝓅ହ, 𝓅଻, 𝓅଼, 𝓅ଵ଴, 𝓅ଵଶሽ 

𝛾௠ሺ𝒪ሻ 
3

10
2
9

 

Current 
method 

ℛ௞
𝔟 ሺ𝒪ሻ 𝕊 𝕋 

ℛ௞
𝔟

ሺ𝒪ሻ 𝕊 𝕋 

𝔅௞
𝔟 ሺ𝒪ሻ Φ Φ 

𝛾௞
𝔟ሺ𝒪ሻ 1 1 

6. Discussions 

In the realm of medical science, effective decision-making frameworks play a pivotal role in 
navigating the complexities inherent in diagnoses, particularly in conditions such as heart failure. Our 
focus in this study was to highlight the application of a minimally structured framework within the 
context of diagnosing heart failure, leveraging data obtained from the Cardiology Department of Al-
Azhar University, situated at the Sayed Galal University Hospital in Egypt. 

The dataset encompassed observations from twelve patients exhibited a spectrum of symptoms 
associated with heart failure. Thorough medical assessments, including detailed medical histories, 
physical examinations, laboratory analyses, electrocardiograms, and echocardiographic evaluations, 
were conducted to ascertain the diagnosis. Through a structured inquiry, we sought to elucidate the 
efficacy of our proposed methodologies to enhance diagnostic accuracy within this medical domain. 

The initial investigation focused on analyzing five key symptoms correlated with heart disease, 
as identified by Dickstein et al. [47]. The subsequent transformation of the descriptive attributes into 
qualitative terms facilitated the computation of similarities among patient symptoms, which was a 
critical step in our diagnostic approach. By constructing the minimal structured spaces based on these 
relationships, we aimed to delineate distinct the patient groups based on their symptom profiles. 

From the constructed structured spaces, it became apparent that the universe could be divided into 
two independent sets: patients diagnosed with heart failure and those without. This segmentation 
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provided a foundational basis for further analyses, enabling the evaluation of the diagnostic accuracy 
across patient groups. 

The application of our proposed methodologies, particularly the basic-minimal approximations, 
alongside traditional approaches such as those by Yao [3] and Dai et al. [6], yielded insightful 
comparisons. Notably, our methodologies exhibited high accuracy coefficients, which closely aligned 
with the medical diagnoses derived from empirical data. In contrast, the previous methods 
demonstrated limitations in accurately identifying patients with heart failure, underscoring the need 
for more refined diagnostic frameworks (see the highlighted cells in Table 16). 

 

Figure 1. Flowchart for using basic-minimal approximations in decision-making problems. 
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For instance, the set of patients diagnosed with the disease according to the doctor's decision was 
𝕊 ൌ ሼ𝓅ଵ, 𝓅ଷ, 𝓅଻, 𝓅଼, 𝓅ଽ, 𝓅ଵଵሽ . Using the method by Dai et al., the lower approximation was 
ሼ𝓅ଵ, 𝓅ଽ, 𝓅ଵଵሽ, which indicated that only patients 𝓅ଵ, 𝓅ଽ, and 𝓅ଵଵ were identified as having heart 
failure, which contradicts the decision table and the doctor's decision. Conversely, our methods yielded 
an accuracy measure of 100%, meaning that the set of patients with heart failure was equivalent to the 
set 𝕊 determined by the doctor's decision.  

Moreover, the boundary region, which represents the doubtful or uncertain region of two sets 
(patients with heart failure and healthy individuals), was the same according to Dai et al.'s technique, 
namely ሼ𝓅ଶ, 𝓅ଷ, 𝓅ହ, 𝓅଻, 𝓅଼, 𝓅ଵ଴, 𝓅ଵଶሽ . This means that these individuals could not be definitively 
identified as patients with or without heart failure. On the other hand, our approach resulted in an 
empty boundary region, which provided an accurate measure for diagnosis. 

Our findings underscored the superiority of the proposed approaches in enhancing the 
approximation operators and the accuracy measures under diverse binary relations. Importantly, these 
methodologies upheld the core principles of Pawlak's framework without imposing restrictive 
conditions, thereby expanding the scope of the practical problems amenable to effective solutions. 

In conclusion, our study not only sheds light on the efficacy of minimally structured frameworks 
in medical decision-making, but also underscores the transformative potential of advanced 
methodologies to enhance the diagnostic accuracy and clinical outcomes. Moving forward, further 
research in this direction holds promise to advance the frontiers of medical diagnostics and improve 
patient care outcomes. 

We present an algorithm and a corresponding flowchart of the proposed techniques (basic-
minimal approximations) to aid in decision-making problems. This algorithm (Algorithm 1), illustrated 
in (Figure 1) serves as a straightforward tool that can be utilized in MATLAB. 

Algorithm 1. A Framework for using basic-minimal approximations in decision-making problems.

Input: Table of information data consists of a set of objects ℧ in the first column and a set of 
attributes 𝓒 in the first row. 
Output: Provide accurate determinations for exactness and roughness. 

Step 1: Evaluate the degrees of similarity 𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ among all attributes for each object using 

the following formula: 𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ ൌ
∑ ሾ𝒶ℊሺ𝓅𝒾ሻୀ𝒶ℊሺ𝓅𝒿ሻሿ𝓃

ℊసభ

𝓃
 , where 𝓃 represents the number of 

condition attributes. Then, generate the table illustrating similarities among the attributes for all 
objects. 

Step 2: Establish the binary relation 𝓅𝒾ℛ 𝓅𝒿 ⟺ 𝜓 ሺ𝓅𝒾, 𝓅𝒿ሻ ൒ 𝛿, where 𝛿 denotes the degree 

of similarity, which is tailored to the expert requirements. 
Step 3: For each 𝓅 ∈ ℧, compute the following: 

(i) All 𝑘-neighborhoods, where 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, as defined in Definition 2.1. 
(ii) All basic 𝑘-neighborhoods, where 𝑘 ∈ ሼ〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉ሽ, as defined in Definition 3.1. 

Step 4: For every 𝒪 ⊆ ℧, perform the following: 

(i) By using Definition 4.1, calculate the basic-minimal lower approximation ℛ௞
𝔟 ሺ𝒪ሻ; 
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(ii) If ℛ௞
𝔟 ሺ𝒪ሻ ൌ Φ, conclude that 𝒪 is a rough set; and 

(iii)Otherwise, perform the following steps: 

Step 5: Calculate the basic-minimal upper approximation ℛ௞
𝔟

ሺ𝒪ሻ, following Definition 4.1; 

Step 6: Determine the basic-minimal accuracy 𝛾௞
𝔟ሺ𝒪ሻ ൌ

หℛೖ
𝔟 ሺ𝒪ሻห

ฬℛೖ
𝔟

ሺ𝒪ሻฬ
; 

(i) If 𝛾௞
𝔟ሺ𝒪ሻ = 1, designate 𝒪 as an exact set. 

(ii) Otherwise, conclude that 𝒪 is a rough set. 
Step 7: End. 

7. Conclusions and future work 

The RS theory significantly hinges on the RS operators and precision values, which are crucial 
elements that underpin its practical applications. These components not only offer insights into the 
data within subsets, but also gauge the representation of these subsets within the broader dataset. 
Enhanced operators and precision values can invariably lead to more accurate predictions, thus driving 
research efforts towards refining these aspects.  

In this pursuit, there has been a focused exploration into the "basic-minimal approximations" 
derived from general binary relations, leveraging novel neighborhood constructions, termed basic-
minimal neighborhoods. This endeavor expands the horizons of Pawlak's approximation theory, 
aiming to more effectively capture nuances in data representation. These advanced approximations, 
characterized by their minimal basics, have demonstrated a marked superiority over the preceding 
methodologies, notably surpassing the effectiveness of approaches proposed by the methods of Yao [3], 
Dai et al. [6], Allam et al. [8], Abu-Gdairi [9], and Abd El-Monsef et al. [11]. Particularly in navigating 
the diagnostic complexities that arise from the symptom similarity, they have substantially enhanced 
the diagnostic accuracy. The robustness of these methods is substantiated by rigorous mathematical 
proofs, as encapsulated in Theorem 4.3, Theorem 4.4, and their accompanying corollaries. These 
analyses underscore the heightened accuracy achieved by the proposed basic-minimal approximations 
compared to the alternative methodologies. Furthermore, concrete illustrations provided through 
Examples 4.4 and 4.5, which were complemented by tabulated data (Table 10–12), served to elucidate 
and reinforce these findings. 

One of the noteworthy contributions of this study lies in its endeavor to bridge the RS theory with 
topology, thereby unveiling topological structures inherent in these approximations. This 
interdisciplinary approach opens avenues for deeper explorations into topology within the realm of the 
RS theory, accentuating the pivotal role played by these approximations in delineating topologies. 

In essence, this research not only delves into fortifying the theoretical underpinnings of RS 
theory, but also accentuates its practical ramifications, especially in scenarios characterized by 
overlapping symptoms. The exceptional accuracy achieved in diagnosing heart failure, as evidenced 
by a perfect 100% accuracy rate in a dataset sourced from Al-Azhar University's Cardiology 
Department, underscores the efficacy and real-world applicability of these methodologies. In contrast, 
conventional methods, such as Dai et al.'s approach, have exhibited limitations in discerning between 
patients with heart failure and healthy individuals, thereby engendering uncertainty in decision-making 
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processes. Moving forward, the proposed methodologies hold promise for broader applications beyond 
medical diagnostics. The formulation of a streamlined algorithm, complemented by a structured 
workflow to be implemented in programming languages such as MATLAB, paves the way for seamless 
integration into decision-making frameworks across diverse domains. 
• Strengths and advantages of the approaches: 

Based on the above, challenges, benefits, and strengths of the presented methods can be 
summarized as follows: 

1) The methodology articulated in this paper hinges on generalized neighborhood systems derived 
from binary relations, which are devoid of restrictive conditions. This inclusivity not only 
amplifies its applicability, but also underscores its robustness across varied domains. 

2) The versatility of this approach shines through its ability to tackle practical challenges under 
arbitrary relations, circumventing the constraints associated with equivalence relations, as 
prevalent in conventional methodologies. 

3) The delineation of four distinct approaches, with the model predicated on the basic 〈𝑖〉 -
neighborhood emerging as the most accurate, facilitates nuanced comparisons and insights into 
different approximation techniques and precision values, as demonstrated in the results 
obtained see (see Proposition 4.2 and Corollary 4.1). 

4) Proposition 4.1 serves as a testament to the fidelity of the methodologies proposed herein, 
preserving the foundational tenets of Pawlak's framework without imposing arbitrary restrictions. 

5) The scalability of this approach renders it well-suited to handle large datasets, owing to its 
reliance on neighborhood constructs that are readily discernible through data classification. 

6) Notably, the methodologies outlined in this paper offer a heightened accuracy in decision-
making processes, particularly in scenarios where accuracy is paramount, such as in infectious 
disease management cases such as COVID-19, where precision directly correlates with the 
sample size. 

7) Focusing on diagnosing heart failure, the application described in this paper achieves an 
exceptional accuracy, reaching 100% in a dataset from Al-Azhar University's Cardiology 
Department. The mathematical results closely align with the decisions made by physicians, 
which accurately identified patients with heart failure. In contrast, previous methods (such as 
Yao, and Dai et al.'s methods) have faltered in distinguishing between patients with heart failure 
and healthy individuals, thereby introducing uncertainty into decision-making processes. 

In conclusion, the methodologies delineated in this study not only advance the theoretical frontiers 
of the RS theory, but also hold profound implications for practical decision-making across diverse 
domains, promising an enhanced accuracy and reliability in complex decision-making scenarios. 
Future works: 

In our forthcoming investigations, we will delve into the following areas: 
1) Conducting comparative studies: We plan to conduct comprehensive comparative studies of 

the suggested approaches (basic-minimal approximations) against other methodologies. 
Notably, we aim to compare our proposed models with recent advancements, including ternary 
models [39,45], to highlight improvements in the accuracy and generalization. 

2) Exploring expanded domains: Our research will extend to explore the application of the 
proposed methods in expanded domains, particularly within medical contexts [48–50] and 
economic applications [21,22]. By venturing into these diverse domains, we aim to assess the 
versatility and efficacy of our methodologies across varied application scenarios. 
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3) Implementation across various frameworks: We intend to shed light on the implementation 
of basic-minimal approximations across various frameworks, including fuzzy sets [49], soft 
sets [50], soft RS's [51], and their utilization in Multicriteria decision-making applications. 
Additionally, we aim to explore their application in decision-theoretic RS's [24–27], rough 
fuzzy sets [29,30], fuzzy topological spaces [52], Fuzzy soft topological structures [53,54], 
Ideals and girll applications [55–57], as well as Rough lattice, Graph medical applications, and 
Generalized picture fuzzy soft sets [58–62].In essence, our future endeavors aim to further 
validate and extend the applicability of our proposed methodologies across diverse domains, 
paving the way for advancements in both theoretical frameworks and practical applications. 
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