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Abstract: This manuscript introduces novel rough approximation operators inspired by topological 

structures, which offer a more flexible approach than existing methods by extending the scope of 

applications through a reliance on a general binary relation without constraints. Initially, four distinct 

types of neighborhoods, termed basic-minimal neighborhoods, are generated from any binary relation. 

The relationships between these neighborhoods and their properties are elucidated. Subsequently, new 

rough set models are constructed from these neighborhoods, outlining the main characteristics of their 

lower and upper approximations. These approximations are applied to classify the subset regions and to 

compute the accuracy measures. The primary advantages of this approach include its ability to achieve 

the highest accuracy values compared to all approaches in the published literature and to maintain the 

monotonicity property of the accuracy and roughness measures. Furthermore, the efficacy of the 

proposed technique is demonstrated through the analysis of heart failure diagnosis data, showcasing a 

100% accuracy rate compared to previous methods, thus highlighting its clinical significance. 

Additionally, the topological properties of the proposed approaches and the topologies generated from 

the suggested neighborhoods are discussed, positioning these methods as a bridge to more topological 

applications in the rough set theory. Finally, an algorithm and flowchart are developed to illustrate the 

determination and utilization of basic-minimal exact sets in decision-making problems. 
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1. Introduction 

The rough set (RS) theory and its extensions have garnered increasing attention, particularly in 

computer science, artificial intelligence, and medical applications. Though other uncertainty theories, 

such as fuzzy or grey, and hybrid theories such as fuzzy-rough, have their merits, RS offers distinct 

advantages. Unlike the fuzzy theory, which relies on membership degrees, RS handles incomplete 

knowledge by classifying objects based on equivalence relations, thus allowing for the determination 

of information completeness within a set. Similarly, the RS provides a structured approach to handle 

uncertainty, which distinguishes it from the grey theory. Moreover, the RS theory's flexibility in dealing 

with imprecise and uncertain data sets outshines hybrid theories such as fuzzy-rough, which may face 

challenges in balancing complexity and interpretability. By focusing on these theories, we aim to 

underscore the novelty and significance of our research. We provide a comparative analysis in Table 1, 

outlining the advantages and limitations of the RS theory against other uncertainty theories, thereby 

emphasizing the unique contributions and potential applications of our proposed approach. 

Table 1. Comparison of advantages and limitations of rough set theory with other 

uncertainty theories and hybrid theories like fuzzy-rough. 

Theory Advantages Limitations 

Rough set 

(RS) 

Handles incomplete knowledge 

effectively 
Strict requirement of equivalence relations 

Fuzzy theory Deals with membership degrees May struggle with handling uncertainty 

Grey theory Addresses uncertainty effectively Limited flexibility in data representation 

Fuzzy-rough 
Integrates fuzzy and rough set 

concepts 
Complexity may hinder interpretability 

Pawlak's pioneering work in 1982 [1,2] established RS theory as an effective tool to handle 

incomplete knowledge by classifying objects based on equivalence relations, thus allowing for the 

determination of information completeness within a set. The fundamental principles of this theory 

include approximation operators and accuracy measures, which provide crucial insights to decision-

makers regarding the structures and sizes of the boundary regions. However, the strict requirement of 

an equivalence relation limits the applicability of the traditional RS theory. These limitations have 

driven researchers to propose various generalizations that use either arbitrary or specific relations to 

broaden the scope of the theory. Yao [3] initiated this line of research in 1996, which led to the emergence 

of numerous proposals that present generalized rough sets, such as tolerance [4], similarity [5,6], quasi-

order [7], and general relations [8–10]. These advancements have significantly expanded the 

applicability of the RS theory. 

In 2014, Abd El-Monsef et al. introduced the concept of the 𝑘 -neighborhood space (𝑘 -𝑵𝑺 ), 

which provided a generalized framework derived from binary relations [11]. This expansion extended 

Pawlak's model by incorporating various induced topologies. Subsequently, many researchers used 

these models to increase the applications of topology in RS's, resulting in various generalizations of 

this theory from a topological perspective. For instance, in 2020, Nawar et al. [12] applied the 𝑘-𝑵𝑺 

concept to develop and establish the concept of adhesion neighborhoods within the context of generalized 

covering approximation spaces [13], thereby building upon the concept of adhesion sets [14]. 
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Additionally, in the same year, Atef et al. [15] developed the 𝑘 - 𝑵𝑺  concept to introduce eight 

generalized types of neighborhoods (𝑘-adhesion neighborhoods), thereby proposing different models to 

generalize Pawlak's theory. However, El-Bably et al. identified numerous errors in this research and 

provided corrections and significant results in [16]. In another trajectory of 𝑘 -neighborhood 

exploration, El-Bably and Al-shami introduced core minimal-neighborhoods [17], extending Pawlak 

RSs into various generalized forms. They applied these forms in a significant medical context 

related to lung cancer diseases. The topologies derived from Abd El-Monsef et al.'s method have 

enabled diverse topological applications in RS's approaches, particularly in medicine [18–20] and 

economics [21,22]. In 2022, El-Bably et al. [23] explored new generalized closure spaces via 

binary relations using the 𝑘 -𝑵𝑺  concept, leading to new RS formulations and an enhanced 

granularity, significantly impacting real-life applications using soft RS's methodologies [24–28]. 

Several subsequent works, explored fuzzy RS's approaches [29,30], ideal structures [31], and 

corrections to prior methodologies [32], have expanded on these foundations, employing 

topological properties to define RS's methodologies and their medical applications [33–37]. These 

explorations underscore the potential of 𝑘-𝑵𝑺 in advancing neighborhood-based concepts. 

Despite these advancements, gaps remain in fully leveraging topological concepts within the RS 

theory. While powerful, traditional RS methods face limitations due to the stringent requirements of 

equivalence relations. Researchers have sought to address these limitations through generalizations 

and by introducing new structures. For instance, the pursuit of more general results and valid 

solutions has led to the development of structures such as Aczel-Alsina power Bonferroni 

aggregation operators for picture fuzzy information and decision analyses [38], hesitant fuzzy 

linguistic multigranulation decision-theoretic RS's [39], generalized 𝑍-fuzzy soft 𝛽-covering [40], 

rough neutrosophic matrices [41], and rough set-based bipolar approaches [42]. 

Following this trajectory, and building on the models of Abd El-Monsef et al. (𝑘-𝑵𝑺), we propose 

new types of RS models inspired by general binary relations without constraints, though with a 

topological nature. These models aim to bridge the RS theory and topology, thereby addressing key 

challenges and expanding the applicability of RS's. The major motivations for exploring RS models 

from a topological perspective are as follows: 

1) To alleviate some conditions imposed on the topological RS models, thereby expanding their 

applications; 

2) To preserve most of Pawlak's properties of approximation operators, which were often lost in 

previous topologically derived methods [3,6,8,9,11]; 

3) To ensure that the values of accuracy and roughness satisfy the monotonic property, making the 

approach more suitable to analyze large samples; and 

4) To demonstrate that the approximation operators obtained are superior to those defined by either 

the topological structures or binary relations, as well as the models presented in the literature in 

aiding decision-making for medical diagnoses and other applications. 

Initially, we introduce four new types of neighborhoods, which are extensions of other 

neighborhoods, such as those in the method by Abd El-Monsef et al. in [11]. These neighborhoods are 

called "basic-minimal neighborhoods" and are fundamentally based on the concept of "basic-

neighborhoods" introduced by Abu-Gdairi et al. in [9]. Then, we examine the properties of these 

neighborhoods and their relationships with other types. Based on these neighborhoods, we propose 

four different approximation models, study their fundamental properties and mutual relationships, and 

identify the best and strongest among them in terms of the highest accuracy factor. These 
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approximations are compared with the previous methods mentioned in the references through 

counterexamples and theoretical proofs, demonstrating their accuracy and robustness. It is worth noting 

that the proposed models can be compared with recent advancements, including ternary models [39,43], 

thus highlighting improvements in the accuracy and generalization. 

One of the principal contributions of this paper is the introduction of topological structures for 

these approximations, thus linking the approximation theory to topology and its applications. This 

connection facilitates further applications of topological concepts within the RS theory. We discuss 

and study methods to generate different topologies from the neighborhoods (basic-minimal 

neighborhoods) and prove that the basic-minimal lower and basic-minimal upper approximations 

represent the interior and closure operators of these topologies. Therefore, we initiate a new bridge to 

apply more topological concepts using the suggested approaches in the RS theory. 

In the realm of medical diagnostics, particularly in the context of heart failure diagnoses, our 

primary focus revolves around the development of an accurate diagnostic methodology. This endeavor 

finds its application in the medical field, thereby leveraging data gathered from a study that involved 12 

patients conducted at Al-Azhar University's Cardiology Department, within the premises of Sayed Galal 

University Hospital in Egypt [44]. Through this application, we demonstrate the effectiveness of our 

proposed methodology, showcasing a remarkable 100% accuracy coefficient, seamlessly aligning with 

the diagnoses made by physicians as documented in the dataset. In stark contrast, previous methods 

have faltered in delivering precise diagnoses for this condition. Our work signifies a notable 

breakthrough in mathematical modeling. Not only does it bolster the accuracy of decision-making 

processes, but it also furnishes a comprehensive framework for deciphering medical data pertinent to 

heart failure diagnoses. By implementing our methodology on the provided dataset, we achieve results 

that mirror the diagnoses rendered by medical professionals, thus accurately discerning patients with 

heart failure from their healthy counterparts. While other methods failed to accurately identify the 

infected patients from healthy ones, this reflects the superiority of our methods in medical diagnoses. 

Hence, it is evident that the methodologies elucidated in this paper hold promise for revolutionizing 

medical diagnostics, potentially streamlining processes, and conserving invaluable time and resources 

for patients and healthcare providers alike. 

The rest of this paper is organized as follows. 

Section 2 discusses the fundamental principles and results of the RS's and their generalizations. 

Section 3 introduces the new concept of "basic-minimal neighborhoods", detailing their 

properties and interrelationships. 

Section 4 is the principal section of this paper, presenting the primary contributions by introducing 

four distinct RS approximation approaches, referred to as basic-minimal approximations, utilizing 

these neighborhoods. This section is structured into three subsections: 

Subsection 4.1 proposes four different RS approximations. Their fundamental properties are 

analyzed, demonstrating that they satisfy Pawlak’s core axioms without any constraints or conditions. 

Additionally, the relationships among these approximations are examined, and the best method is 

identified based on the higher accuracy factor. 

Subsection 4.2 explores the generation of different topologies from basic-minimal neighborhoods 

and proves that the approximations introduced in 4.1 represent the closure and interior operators for 

these topologies. This establishes connections between the RS theory and topology, thereby facilitating 

further topological applications. Moreover, these topological structures and their properties are studied. 

Subsection 4.3 compares the proposed approximations with previous ones, such as those by Yao [3], 
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Dai et al. [6], Allam et al. [8], and Abd El-Monsef et al. [11]. This comparison demonstrates the 

superiority of the proposed methods over the previous approaches through counterexamples and proven 

theorems in various specific and general cases. 

Section 5 investigates the effectiveness of our approach to analyze heart failure data, showcasing 

its clinical significance. Additionally, an algorithm and flowchart are developed to illustrate how basic-

minimal exact sets are determined and used in decision-making problems. 

Section 6 presents the conclusions, strengths, and advantages of the proposed approaches and 

discusses potential future research directions. 

2. Basic concepts 

In this section, we review the principles and results related to RS's concepts and 𝑘-𝑵𝑺 that are 

essential to understand the context of this manuscript. Additionally, we discuss the historical 

development of several previous approaches and the motivations behind their study. Additionally, we 

provide proofs for some key results and properties of these approaches. 

2.1. Abd El-Monsef et al. approaches 

Definition  2.1. [3,8,11] The 𝑘-neighborhood of 𝓅 ∈ ℧, indicated by ℕ𝑘(𝓅) for all 𝑘 ∈ 𝒦, induced 

by a binary relation ℛ on a non-empty finite set ℧, where 𝒦 = {𝑟, 𝑙, 𝑖, 𝑢, 〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, is given 

by the following: 

a. 𝑟-neighborhood [3]: ℕ𝑟(𝓅) = {𝓆 ∈ ℧ ∶ 𝓅ℛ𝓆}; 

b. 𝑙-neighborhood [3]: ℕ𝑙(𝓅) = {𝓆 ∈ ℧ ∶ 𝓆ℛ𝓅}; 

c. 〈𝑟〉-neighborhood [8]: ℕ〈𝑟〉(𝓅) = {
⋂ ℕ𝑟(𝓆)𝓅∈ℕ𝑟(𝓆) , if 𝓅 ∈ ℕ𝑟(𝓆)

Φ,                        Otherwise
; 

d. 〈𝑙〉-neighborhood[8]: ℕ〈𝑙〉(𝓅) = {
⋂ ℕ𝑙(𝓆)𝓅∈ℕ𝑙(𝓆) ,   if 𝓅 ∈ ℕ𝑙(𝓆)

Φ,                        Otherwise
; 

e. 𝑖-neighborhood [11]: ℕ𝑖(𝓅) = ℕ𝑟(𝓅) ∩ ℕ𝑙(𝓅); 

f. 𝑢-neighborhood [11]: ℕ𝑢(𝓅) = ℕ𝑟(𝓅) ∪ ℕ𝑙(𝓅); 

g. 〈𝑖〉-neighborhood [11]: ℕ〈𝑖〉(𝓅) = ℕ〈𝑟〉(𝓅) ∩ ℕ〈𝑙〉(𝓅); and 

h. 〈𝑢〉-neighborhood [11]: ℕ〈𝑢〉(𝓅) = ℕ〈𝑟〉(𝓅) ∪ ℕ〈𝑙〉(𝓅). 

Note that: The neighborhood ℕ𝑟(𝓅) (resp. ℕ𝑙(𝓅)) is called the ‘right’ (resp. ‘left’) neighborhood 

of an element 𝓅 ∈ ℧ , which was first provided by Yao [3]. Moreover, the neighborhood ℕ〈𝑟〉(𝓅) 

(resp. ℕ〈𝑙〉(𝓅)) is called the ‘minimal-right’ (resp. ‘minimal-left’) neighborhood of an element 𝓅 ∈

℧, which was first provided by Allam et al. [8]. 

Definition 2.2. [11] Let ℛ be a binary relation defined on ℧ and ℱ𝑘: ℧ ⟶ 𝛲(℧) be a mapping that 

assigns its 𝑘 -neighborhood in 𝛲(℧)  to each 𝓅 ∈ ℧ . Then, the triple  (℧, ℛ, ℱ𝑘)  is termed a 𝑘 -

neighborhood space, and is abbreviated as 𝑘-𝑵𝑺. 

Theorem 2.1. [11] Let (℧, ℛ, ℱ𝑘)  be a 𝑘 - 𝑵𝑺 ; then, for each 𝑘 ∈ 𝒦 , the collection 𝔗𝑘 =

{𝛰 ⊆ ℧: ∀ 𝓅 ∈ 𝛰, ℕ𝑘(𝓅) ⊆ 𝑂 } represents a topology on ℧. 

Definition 2.3. [11] If (℧, ℛ, ℱ𝑘) is a 𝑘-𝑵𝑺. A subset 𝛰 ⊆ ℧ is considered an 𝑘-open set if 𝑂 ∈

𝔗𝑘, and its complement is termed a 𝑘-closed set. The family 𝒞𝑘 of all 𝑘-closed sets of a 𝑘-𝑵𝑺 is 

defined as 𝒞𝑘 = {𝛰 ⊆ ℧ ∶ 𝑂𝑐  ∈ 𝔗𝑘}. 

Definition 2.4. [11] Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺. Hence, the 𝑘-lower and 𝑘-upper approximations of 
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𝒪 ⊆ ℧ are assumed, respectively, as: 

ℛ𝑘(𝒪) =∪ {𝒢 ∈ 𝔗𝑘: 𝒢 ⊆ 𝒪} = 𝒊𝒏𝒕𝑘(𝒪) and ℛ𝑘(𝒪) =∩ {ℋ ∈ 𝒞𝑘: 𝒪 ⊆ ℋ} = 𝒄𝒍𝑘(𝒪). 

Here, 𝒊𝒏𝒕𝑘(𝒪) (resp. 𝒄𝒍𝑘(𝒪) ) represents the 𝑘-interior (resp. 𝑘-closure) of 𝒪. 

The 𝑘-boundary, 𝑘-positive, and 𝑘-negative regions of 𝒪 are provided, respectively, as follows: 

𝔅𝒿(𝒪) = ℛ𝑘(𝒪) − ℛ𝑘(𝒪), 𝑝𝑜𝑠𝑘(𝒪) = ℛ𝑘(𝒪), and 𝑛𝑒𝑔𝑘(𝒪) = ℧ − ℛ𝑘(𝒪). 

The 𝑘-accuracy of the approximations is given by the following: 

𝛾𝑘(𝒪) =
|ℛ𝑘(𝒪)|

|ℛ𝑘(𝒪)|
 , 𝑤ℎ𝑒𝑟𝑒 |ℛ𝑘(𝒪)| ≠ 0. 

Definition 2.5. [11] Let (℧, ℛ, ℱ𝑘)  be a 𝑘 -𝑵𝑺  and 𝒪 ⊆ ℧ . Then, 𝒪  is called a 𝑘 -exact set if 

ℛ𝑘(𝒪) = ℛ𝑘(𝒪) = 𝒪. If not, it is 𝑘-rough. It is clear that 0 ≤ 𝛾𝑘(𝒪) ≤ 1 and 𝛾𝒿(𝒪) = 1 if 𝒪 is a 

𝑘-exact set. Otherwise, it is 𝑘-rough. 

2.2. Yao approach 

Definition 2.6. [3] Consider a 𝑘-𝑵𝑺 (℧, ℛ, ℱ𝑘). We describe the Yao-lower, denoted as 𝑌∗(𝒪), and 

the Yao-upper, 𝑌∗(𝒪), approximations of a subset 𝒪 ⊆ ℧ as follows: 

𝑌∗(𝒪) = {𝓅 ∈ ℧| ℕ𝑟(𝓅) ⊆ 𝒪},          

𝑌∗(𝒪){𝓅 ∈ ℧| ℕ𝑟(𝓅) ∩ 𝒪 ≠ Φ}.          

The Yao-boundary, Yao-positive, and Yao-negative regions of 𝒪 are defined as follows: 

⚫ The Yao-boundary 𝔅(𝒪)  comprises points in 𝒪  whose neighborhoods partially intersect 

with 𝒪 and partially lie outside of it. 

⚫ The Yao-positive region 𝑝𝑜𝑠(𝒪)  includes points in 𝒪  for which the r-neighborhood is 

entirely contained within 𝒪. 

⚫ The Yao-negative region 𝑛𝑒𝑔(𝒪)  encompasses points in ℧  outside of 𝒪  whose 

neighborhoods do not intersect with 𝒪. 

The 𝑘-accuracy of the approximations is given by the following: 

𝛾(𝒪) =
|𝑌∗(𝒪)|

|𝑌∗(𝒪)|
 , 𝑤ℎ𝑒𝑟𝑒 |𝑌∗(𝒪)| ≠ 0. 

2.3. Allam et al. approach 

Definition 2.7. [8] Suppose we have a 𝑘-𝑵𝑺 (℧, ℛ, ℱ𝑘), where each 𝑘 = 〈𝑟〉. In this context, we 

describe the Minimal-lower and Minimal-upper approximations of a subset 𝒪 ⊆ ℧ by the following: 

⚫ The Minimal-lower approximation, denoted as 𝒜𝑘(𝒪), comprises points 𝓅 in ℧ for which 

the 𝑘-neighborhood of 𝓅 is entirely contained within 𝒪. 
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⚫ Similarly, the Minimal-upper approximation, denoted as 𝒜𝑘(𝒪), consists of points 𝓅 in ℧ 

for which the 𝑘-neighborhood of 𝓅 intersects with 𝒪. 

Now, let's define the regions associated with 𝒪: 

⚫ The Minimal-boundary region, denoted as ℬ𝑘(𝒪) , encompasses points in 𝒪  whose 𝑘 -

neighborhoods partially intersect with 𝒪 and partially lie outside of it; 

⚫ The Positive region, denoted as 𝑃𝑂𝑆𝑘(𝒪) , includes points in 𝒪  for which the 𝑘 -

neighborhood is entirely contained within 𝒪; 

⚫ The Negative region, denoted as 𝑁𝐸𝐺𝑘(𝒪), covers points in in ℧ outside of 𝒪 whose 𝑘-

neighborhoods do not intersect with 𝒪; and 

⚫ The Maximal-accuracy of the approximations is given by the following: 

𝜇𝑘(𝒪) =
|𝒜𝑘(𝒪)|

|𝒜𝑘(𝒪)|
 , 𝑤ℎ𝑒𝑟𝑒 |𝒜𝑘(𝒪)| ≠ 0. 

2.4. Dai et al. approach 

Definition 2.8. [6] Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺. Then, the maximal-neighborhood of 𝓅 ∈ ℧ is well- 

defined as follows: 

ℕ𝑚(𝓅) = {
⋃ ℕ𝑟(𝓆)𝓅∈ℕ𝑟(𝓆) ,   if 𝓅 ∈ ℕ𝑟(𝓆)

Φ,                        Otherwise
. 

Definition 2.9. [6] Let (℧, ℛ, ℱ𝑘)  be a 𝑘 - 𝑵𝑺 . Then, the Maximal-lower and Maximal-upper 

approximations of 𝒪 ⊆ ℧ are well-defined, respectively, as follows: 

ℛ𝑚(𝒪) = {𝓅 ∈ ℧: ℕ𝑚(𝓅) ⊆ 𝒪} and ℛ𝑚(𝒪) = {𝓅 ∈ ℧: ℕ𝑚(𝓅) ∩ 𝒪 ≠ Φ}. 

The Maximal-boundary (resp. positive and negative) regions of 𝒪 are given, respectively, as follows: 

𝔅𝑚(𝒪) = ℛ𝑚(𝒪) − ℛ𝑚(𝒪), 𝑝𝑜𝑠𝑚(𝒪) = ℛ𝑚(𝒪), and 𝑛𝑒𝑔𝑚(𝒪) = ℧ − ℛ𝑚(𝒪). 

The Maximal-accuracy of the approximations is given by the following: 

𝛾𝑚(𝒪) =
|ℛ𝑚(𝒪)|

|ℛ𝑚(𝒪)|
, 𝑤ℎ𝑒𝑟𝑒 |ℛ𝑚(𝒪)| ≠ 0. 

Lemma 2.1. [6,8] Let ℛ be a binary relation on ℧: 

(i) If 𝓆 ∈ ℕ𝑘(𝓅), then ℕ𝑘(𝓆) ⊆ ℕ𝑘(𝓅), for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉}; and 

(ii) If 𝓆 ∈ ℕ𝑚(𝓅), then ℕ𝑚(𝓆) ⊆ ℕ𝑚(𝓅). 

Proof. 

(i) In the paper [8], the property was proven for each 𝑘 = 〈𝑟〉. Therefore, we can similarly prove the 

other cases; and 

(ii) The property was proven in [6]. 

Lemma 2.2. If ℛ constitutes a reflexive relation on ℧, then for every 𝓅 ∈ ℧, the following holds: 
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(i) 𝓅 ∈ ℕ𝑘(𝓅) for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}; and 

(ii) 𝓅 ∈ ℕ𝑚(𝓅). 

Proof. We will explain the first statement in a case of 𝑘 = 〈𝑟〉 and the others similarly. 

If ℛ is reflexive, then 𝓅 ∈ ℕ𝑟(𝓅), ∀𝓅 ∈ ℧. Thus ⋂ ℕ𝑟(𝓆)𝓅∈ℕ𝑟(𝓆) ≠ Φ and we get: 

𝓅 ∈ ⋂ ℕ𝑟(𝓆)𝓅∈ℕ𝑟(𝓆) = ℕ〈𝑟〉(𝓅). 

Lemma 2.3. If ℛ is a reflexive relation on ℧, then for every 𝓅 ∈ ℧, the following holds: 

(i) ℕ〈𝑟〉(𝓅) ⊆ ℕ𝑟(𝓅) ⊆ ℕ𝑚(𝓅); and 

(ii) ℕ〈𝑘〉(𝓅) ⊆ ℕ𝑘(𝓅), for each 𝑘 ∈ {𝑟, 𝑙, 𝑖, 𝑢}. 

Proof. By using Definitions 2.1 and 2.8, the proof is clear. 

According to Theorem 2.1, we can generate a general topology by using the maximal-

neighborhoods as the following result illustrates. 

Theorem 2.2. Let (℧, ℛ, ℱ𝑘)  be a 𝑘 -𝑵𝑺 ; then, the class 𝔗𝑚 = {𝛰 ⊆ ℧: ∀ 𝓅 ∈ 𝛰, ℕ𝑚(𝓅) ⊆ 𝑂} 

represents a topology on ℧. 

3. Basic minimal-neighborhoods and their properties 

This section is dedicated to the generalization of the idea of the 'basic neighborhood' [9] into new 

types, thereby yielding four distinct topologies derived from these neighborhoods. 

Definition  3.1. Assume that ℛ  is a binary relation on ℧ . Then, we define the following 

neighborhoods of 𝓅 ∈ ℧: 

(i) Basic 〈𝑟〉-neighborhood: ℕ〈𝑟〉
𝔟 (𝓅) = {𝓆 ∈ ℧ ∶ ℕ〈𝑟〉(𝓆) ⊆ ℕ〈𝑟〉(𝓅)}; 

(ii) Basic 〈𝑙〉-neighborhood: ℕ〈𝑙〉
𝔟 (𝓅) = {𝓆 ∈ ℧ ∶ ℕ〈𝑙〉(𝓆) ⊆ ℕ〈𝑙〉(𝓅)}; 

(iii) Basic 〈𝑖〉-neighborhood: ℕ〈𝑖〉
𝔟 (𝓅) = ℕ〈𝑟〉

𝔟 (𝓅) ∩ ℕ〈𝑙〉
𝔟 (𝓅); and 

(iv) Basic 〈𝑢〉-neighborhood:  ℕ〈𝑢〉
𝔟 (𝓅) = ℕ〈𝑟〉

𝔟 (𝓅) ∪ ℕ〈𝑙〉
𝔟 (𝓅). 

In the following, we illustrate some characteristics of the aforementioned neighborhoods. 

Lemma 3.1. Suppose there exists a binary relation ℛ defined on ℧. Thus, the following holds: 

(i) 𝓅 ∈ ℕ𝑘
𝔟 (𝓅), ∀𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}; 

(ii) ℕ𝑘
𝔟 (𝓅) ≠ Φ, ∀𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}; and  

(iii) If 𝓆 ∈ ℕ𝑘
𝔟 (𝓅), then ℕ𝑘

𝔟 (𝓆) ⊆ ℕ𝑘
𝔟 (𝓅), for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉}. 

Proof. First, (i) and (ii) are obvious. Now, we prove (iii) in a case 𝑘 = 〈𝑟〉, and the others similarly. 

If 𝓆 ∈ ℕ〈𝑟〉
𝔟 (𝓅), then 

ℕ〈𝑟〉(𝓆) ⊆ ℕ〈𝑟〉(𝓅).         (3.1) 

Let 𝓌 ∈ ℕ〈𝑟〉
𝔟 (𝓆) ; then, ℕ〈𝑟〉(𝓌) ⊆ ℕ〈𝑟〉(𝓆) . Therefore, by Eq (3.1), ℕ〈𝑟〉(𝓌) ⊆ ℕ〈𝑟〉(𝓅)  implies 

𝓌 ∈ ℕ〈𝑟〉
𝔟 (𝓅). Hence, ℕ〈𝑟〉

𝔟 (𝓆) ⊆ ℕ〈𝑟〉
𝔟 (𝓅). 

Remark 3.1. Example 3.1 highlights the following observations: 

(i) The statement (iii) of Lemma 3.1 does not hold true in the case of 𝑘 = 〈𝑢〉. 
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(ii) In the general case, for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉} , the basic 𝑘 -neighborhoods and the 𝑘 -

neighborhoods are independent (non-comparable) when ℛ is a binary relation on ℧. 

Example 3.1. Let ℧ = {𝓏1, 𝓏2, 𝓏3, 𝓏4}  and ℛ = {(𝓏1, 𝓏1), (𝓏1, 𝓏4), (𝓏2, 𝓏1), (𝓏2, 𝓏3), (𝓏3, 𝓏4), 

(𝓏3, 𝓏1)} be a binary relation on ℧. Consequently, we obtain the following tables (Tables 2–4) which 

contain all neighborhoods generated by ℛ. 

Table 2. 𝑘-neighborhoods of 𝓅 ∈ ℧. 

𝓍 ℕ𝑟(𝓍) ℕ𝑙(𝓍) ℕ𝑖(𝓍) ℕ𝑢(𝓍) 

𝓏1 {𝓏1, 𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1} ℧ 

𝓏2 {𝓏1, 𝓏3} Φ Φ {𝓏1, 𝓏3} 

𝓏3 {𝓏1, 𝓏4} {𝓏2} Φ {𝓏1, 𝓏2, 𝓏4} 

𝓏4 Φ {𝓏1, 𝓏3} Φ {𝓏1, 𝓏3} 

Table 3. 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝓍 ℕ〈𝑟〉(𝓍) ℕ〈𝑙〉(𝓍) ℕ〈𝑖〉(𝓍) ℕ〈𝑢〉(𝓍) 

𝓏1 {𝓏1} {𝓏1, 𝓏3} {𝓏1} {𝓏1, 𝓏3} 

𝓏2 Φ {𝓏2} Φ {𝓏2} 

𝓏3 {𝓏1, 𝓏3} {𝓏1, 𝓏3} {𝓏1, 𝓏3} {𝓏1, 𝓏3} 

𝓏4 {𝓏1, 𝓏4} Φ Φ {𝓏1, 𝓏4} 

Table 4. Basic 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝓍 
ℕ〈𝑟〉

𝔟 (𝓍) ℕ〈𝑙〉
𝔟 (𝓍) ℕ〈𝑖〉

𝔟 (𝓍) ℕ〈𝑢〉
𝔟 (𝓍) 

𝓏1 {𝓏1, 𝓏2} {𝓏1, 𝓏3, 𝓏4} {𝓏1} ℧ 

𝓏2 {𝓏2} {𝓏2, 𝓏4} {𝓏2} {𝓏2, 𝓏4} 

𝓏3 {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏3} ℧ 

𝓏4 {𝓏1, 𝓏2, 𝓏4} {𝓏4} {𝓏4} {𝓏1, 𝓏2, 𝓏4} 

The proof of the following lemma is easy; therefore, we omit it. 

Lemma 3.2. Let ℛ be a binary relation on ℧. Then, for every 𝓅 ∈ ℧, the following holds: 

(i) ℕ〈𝑖〉
𝔟 (𝓅) ⊆ ℕ〈𝑟〉

𝔟 (𝓅) ⊆ ℕ〈𝑢〉
𝔟 (𝓅); and 

(ii) ℕ〈𝑖〉
𝔟 (𝓅) ⊆ ℕ〈𝑙〉

𝔟 (𝓅) ⊆ ℕ〈𝑢〉
𝔟 (𝓅). 

The following lemma examines the connection between basic the 𝑘-neighborhoods and the 𝑘-

neighborhoods, where 𝑘 ranges over {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}. 

Lemma  3.3. In a 𝑘-𝑵𝑺 (℧, ℛ, ℱ𝑘), where ℛ is a reflexive relation, ∀𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the basic 

k-neighborhoods ℕ𝑘
𝔟 (𝓅) are equivalent to the k-neighborhoods ℕ𝑘(𝓅) for all 𝓅 ∈ ℧. 

Proof. We demonstrate the lemma for 𝑘 = 〈𝑟〉, with similar reasoning applicable to other cases. 

First, according to Definition 3.1, if 𝓆 ∈ ℕ〈𝑟〉
𝔟 (𝓅), then 

ℕ〈𝑟〉(𝓆) ⊆ ℕ〈𝑟〉(𝓅).         (3.2) 
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Given that ℛ  is reflexive, 𝓆 ∈ ℕ〈𝑟〉(𝓆) . Hence, Eq (3.2), 𝓆 ∈ ℕ〈𝑟〉(𝓅) , which implies that 

ℕ〈𝑟〉
𝔟 (𝓅) ⊆ ℕ〈𝑟〉(𝓅), for all 𝓅 in ℧. 

Conversely, utilizing Lemma 2.1, if 𝓆 ∈ ℕ〈𝑟〉(𝓅) , then ℕ〈𝑟〉(𝓆) ⊆ ℕ〈𝑟〉(𝓅) , implying 𝓆  ∈

ℕ〈𝑟〉
𝔟 (𝓅). Therefore, ℕ〈𝑟〉(𝓅) ⊆ ℕ〈𝑟〉

𝔟 (𝓅), for all 𝓅 in ℧. 

Corollary 3.1. Let (℧, ℛ, ℱ𝑘)  be a 𝑘 -𝑵𝑺 where ℛ  is an equivalence relation; then, ℕ𝑘
𝔟 (𝓅) =

ℕ𝑘(𝓅) = [𝓅]ℛ, for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, and [𝓅]ℛ signifies the equivalence class of 𝓅 ∈ ℧. 

Lemma  3.4. Let (℧, ℛ, ℱ𝑘)  be a 𝑘 -𝑵𝑺 where ℛ  is a reflexive relation; then, ∀𝑘 ∈ {𝑟, 𝑙, 𝑖, 𝑢} 
and the following holds: 

(i) ℕ〈𝑘〉
𝔟 (𝓅) ⊆ ℕ𝑘(𝓅), ∀𝓅 ∈ ℧; and 

(ii) ℕ〈𝑘〉
𝔟 (𝓅) ⊆ ℕ𝑚(𝓅), ∀𝓅 ∈ ℧. 

Proof. Utilizing Lemmas 2.3 and 3.3, the proof becomes self-evident. 

Remark 3.2. Example 3.2 illustrates that the following: 

(i) Illustrating Lemma 3.3. 

(ii) The converse of Lemma 3.4 is not generally true. 

Example 3.2. Let ℧ = {𝓏1, 𝓏2, 𝓏3, 𝓏4}  be a set, and let ℛ  be a reflexive relation on ℧  defined as 

follows: ℛ = {(𝓏1, 𝓏1), (𝓏2, 𝓏2), (𝓏3, 𝓏3), (𝓏4, 𝓏4), (𝓏1, 𝓏2), (𝓏2, 𝓏3)}. The undermentioned Tables 5–7 

illustrate the neighborhoods generated by ℛ. 

Table 5. 𝑘-neighborhoods of 𝓅 ∈ ℧. 

𝓍 ℕ𝑟(𝓍) ℕ𝑙(𝓍) ℕ𝑖(𝓍) ℕ𝑢(𝓍) 

𝓏1 {𝓏1, 𝓏2} {𝓏1} {𝓏1} {𝓏1, 𝓏2} 

𝓏2 {𝓏2, 𝓏3} {𝓏1, 𝓏2} {𝓏2} {𝓏1, 𝓏2, 𝓏3} 

𝓏3 {𝓏3} {𝓏2, 𝓏3} {𝓏3} {𝓏2, 𝓏3} 

𝓏4 {𝓏4} {𝓏4} {𝓏4} {𝓏4} 

Table 6. 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝓍 ℕ〈𝑟〉(𝓍) ℕ〈𝑙〉(𝓍) ℕ〈𝑖〉(𝓍) ℕ〈𝑢〉(𝓍) 

𝓏1 {𝓏1, 𝓏2} {𝓏1} {𝓏1} {𝓏1, 𝓏2} 

𝓏2 {𝓏2} {𝓏2} {𝓏2} {𝓏2} 

𝓏3 {𝓏3} {𝓏2, 𝓏3} {𝓏3} {𝓏2, 𝓏3} 

𝓏4 {𝓏4} {𝓏4} {𝓏4} {𝓏4} 

Table 7. Basic 〈𝑘〉-neighborhoods of 𝓅 ∈ ℧. 

𝓍 
ℕ〈𝑟〉

𝔟 (𝓍) ℕ〈𝑙〉
𝔟 (𝓍) ℕ〈𝑖〉

𝔟 (𝓍) ℕ〈𝑢〉
𝔟 (𝓍) 

𝓏1 {𝓏1, 𝓏2} {𝓏1} {𝓏1} {𝓏1, 𝓏2} 

𝓏2 {𝓏2} {𝓏2} {𝓏2} {𝓏2} 

𝓏3 {𝓏3} {𝓏2, 𝓏3} {𝓏3} {𝓏2, 𝓏3} 

𝓏4 {𝓏4} {𝓏4} {𝓏4} {𝓏4} 
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4. Basic-minimal rough approximations and topological applications 

In this section, which is divided into three subsections, we delve into a comprehensive analysis 

of various RS approximations (basic-minimal approximations) and their implications. Through a 

systematic exploration, we aim to elucidate the relationships between the RS theory and topology, 

paving the way for an enhanced understanding and practical applications in both domains. 

4.1. Generalized rough sets based on basic minimal-neighborhoods 

In this subsection, we introduce four distinct RS approximations (called basic-minimal 

approximations), dissecting their core properties and establishing their adherence to Pawlak’s 

fundamental axioms. Furthermore, we conduct a comparative analysis to identify the most effective 

approximation method based on its accuracy factor. 

Definition  4.1. Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺 where 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}. The basic-minimal lower and 

upper approximations of a subset 𝒪 ⊆ ℧ are formally defined as follows: 

ℛ𝑘
𝔟 (𝒪) = {𝓅 ∈ ℧: ℕ𝑘

𝔟 (𝓅) ⊆ 𝒪} and ℛ𝑘

𝔟
(𝒪) = {𝓅 ∈ ℧: ℕ𝑘

𝔟 (𝓅) ∩ 𝒪 ≠ Φ}. 

Furthermore, the basic-minimal boundary, basic-minimal positive, and basic-minimal negative regions 

of 𝒪, respectively, are defined as follows: 

𝔅𝑘
𝔟 (𝒪) = ℛ𝑘

𝔟
(𝒪) − ℛ𝑘

𝔟 (𝒪), 𝑝𝑜𝑠𝑘
𝔟(𝒪) = ℛ𝑘

𝔟 (𝒪), and 𝑛𝑒𝑔𝑘
𝔟(𝒪) = ℧ − ℛ𝑘

𝔟
(𝒪). 

The basic-minimal accuracy of the approximations is given by the following: 

𝛾𝑘
𝔟(𝒪) =

|ℛ𝑘
𝔟 (𝒪)|

|ℛ𝑘

𝔟
(𝒪)|

, 𝑤ℎ𝑒𝑟𝑒 |ℛ𝑘

𝔟
(𝒪)| ≠ 0. 

It is evident that 0 ≤ 𝛾𝑘
𝔟(𝒪) ≤ 1, and if 𝛾𝑘

𝔟(𝒪) = 1, then 𝒪 is termed a basic 𝑘-definable (basic 𝑘-

exact) set; otherwise, it is considered basic 𝑘-rough. 

The proposition asserts certain properties of the 𝒿-basic approximations. 

Proposition 4.1. Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺 and 𝒬, 𝒮 ⊆ ℧. Thus, the following holds: 

(i) ℛ𝑘
𝔟 (𝒬) ⊆ 𝒬 ⊆ ℛ𝑘

𝔟
(𝒬); 

(ii) ℛ𝑘
𝔟 (℧) = ℛ𝑘

𝔟
(℧) = ℧, ℛ𝑘

𝔟 (Φ) = ℛ𝑘

𝔟
(Φ) = Φ; 

(iii) If  𝒬 ⊆ 𝒮, then ℛ𝑘
𝔟 (𝒬) ⊆ ℛ𝑘

𝔟 (𝒮); 

(iv)  If  𝒬 ⊆ 𝒮, then ℛ𝑘

𝔟
(𝒬) ⊆ ℛ𝑘

𝔟
(𝒮); 

(v) ℛ𝑘
𝔟 (𝒬 ∩ 𝒮) = ℛ𝑘

𝔟 (𝒬) ∩ ℛ𝑘
𝔟 (𝒮); 

(vi)  ℛ𝑘

𝔟
(𝒬 ∪ 𝒮) = ℛ𝑘

𝔟
(𝒬) ∪ ℛ𝑘

𝔟
(𝒮); 
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(vii)  ℛ𝑘
𝔟 (𝒬 ∪ 𝒮) ⊇  ℛ𝑘

𝔟 (𝒬) ∪ ℛ𝑘
𝔟 (𝒮); 

(viii) ℛ𝑘

𝔟
(𝒬 ∩ 𝒮) ⊆ ℛ𝑘

𝔟
(𝒬) ∩ ℛ𝑘

𝔟
(𝒮); 

(ix) ℛ𝑘
𝔟 (𝒬) = [ℛ𝑘

𝔟
(𝒬𝑐)]

𝑐

, where 𝒬𝑐 represents a complement of 𝒬; 

(x) ℛ𝑘

𝔟
(𝒬) = [ℛ𝑘

𝔟 (𝒬𝑐)]
𝑐
; 

(xi)  ℛ𝑘
𝔟 (ℛ𝑘

𝔟 (𝒬)) = ℛ𝑘
𝔟 (𝒬); and 

(xii) ℛ𝑘

𝔟
(ℛ𝑘

𝔟
(𝒬)) = ℛ𝑘

𝔟
(𝒬). 

Proof. The validity of (i), (ii), (iii), and (iv) is readily apparent by using Definition 4.1. Therefore, we 

will prove the remaining items (v)-(xii) as follows. 

(v) Since (𝒬 ∩ 𝒮) ⊆ 𝒬 and (𝒬 ∩ 𝒮) ⊆ 𝒮, then ℛ𝑘
𝔟 (𝒬 ∩ 𝒮) ⊆ ℛ𝑘

𝔟 (𝒬) and ℛ𝑘
𝔟 (𝒬 ∩ 𝒮) ⊆ ℛ𝑘

𝔟 (𝒮). 

Now, let 𝜛 ∈ [ℛ𝑘
𝔟 (𝒬) ∩ ℛ𝑘

𝔟 (𝒮)] . Then, 𝜛 ∈ ℛ𝑘
𝔟 (𝒬)  and 𝜛 ∈ ℛ𝑘

𝔟 (𝒮) , which implies 

ℕ𝑘
𝔟 (𝜛) ⊆ 𝒬 and ℕ𝑘

𝔟 (𝜛) ⊆ 𝒮. Thus, ℕ𝑘
𝔟 (𝜛) ⊆ 𝒬 ∩ 𝒮 which that 𝜛 ∈ ℛ𝑘

𝔟 (𝒬 ∩ 𝒮). 

Therefore, ℛ𝑘
𝔟 (𝒬) ∩ ℛ𝑘

𝔟 (𝒮) ⊆ ℛ𝑘
𝔟 (𝒬 ∩ 𝒮); 

(vi) Similar to (v), using a comparable approach; 

(vii) Similar to (v), using a comparable approach; 

(viii) Similar to (v), using a comparable approach; 

(ix) [ℛ𝑘

𝔟
(𝒬𝑐)]

𝑐

= [{𝓅 ∈ ℧: ℕ𝑘
𝔟 (𝓅) ∩ 𝒬𝑐 ≠ Φ}]

𝑐
= {𝓅 ∈ ℧: ℕ𝑘

𝔟 (𝓅) ∩ 𝒬𝑐 = Φ} 

                             = {𝓅 ∈ ℧: ℕ𝑘
𝔟 (𝓅) ⊆ 𝒬} = ℛ𝑘

𝔟 (𝒬); 

(x) By a similar way such as (ix); 

(xi) First, by (i), ℛ𝑘
𝔟 (ℛ𝑘

𝔟 (𝒬)) ⊆ ℛ𝑘
𝔟 (𝒬). 

Now, let 𝜛 ∈ ℛ𝑘
𝔟 (𝒬). Then, 

ℕ𝑘
𝔟 (𝜛) ⊆ 𝒬.          (4.1) 

We need to prove that ℕ𝑘
𝔟 (𝜛) ⊆ ℛ𝑘

𝔟 (𝒬) as follows: 

If 𝓏 ∈ ℕ𝑘
𝔟 (𝜛), then ℕ𝑘

𝔟 (𝓏) ⊆ ℕ𝑘
𝔟 (𝜛), which implies that ℕ𝑘

𝔟 (𝓏) ⊆ 𝒬 from Eq (4.1). Therefore, 

𝓏 ∈ ℛ𝑘
𝔟 (𝒬), which means that ℕ𝑘

𝔟 (𝜛) ⊆ ℛ𝑘
𝔟 (𝒬), which implies 𝜛 ∈ ℛ𝑘

𝔟 (ℛ𝑘
𝔟 (𝒬)). Hence, ℛ𝑘

𝔟 (𝒬) ⊆

ℛ𝑘
𝔟 (ℛ𝑘

𝔟 (𝒬)); and 

(xii) By a similar way such as (xi). 

The subsequent findings, which elucidate the connections between the proposed approximations 

(basic-minimal approximations), are straightforward to demonstrate with Lemma 3.2, hence the proof 

is omitted. 

Proposition 4.2. Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺 and 𝒪 ⊆ ℧. Then, the following holds: 

(i) ℛ〈𝑢〉
𝔟 (𝒪) ⊆ ℛ〈𝑟〉

𝔟 (𝒪) ⊆ ℛ〈𝑖〉
𝔟 (𝒪); 
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(ii) ℛ〈𝑢〉
𝔟 (𝒪) ⊆ ℛ〈𝑙〉

𝔟 (𝒪) ⊆ ℛ〈𝑖〉
𝔟 (𝒪); 

(iii) ℛ〈𝑖〉

𝔟
(𝒪) ⊆ ℛ〈𝑟〉

𝔟
(𝒪) ⊆ ℛ〈𝑢〉

𝔟
(𝒪); and 

(iv) ℛ〈𝑖〉

𝔟
(𝒪) ⊆ ℛ〈𝑙〉

𝔟
(𝒪) ⊆ ℛ〈𝑢〉

𝔟
(𝒪). 

Corollary 4.1. If (℧, ℛ, ℱ𝑘) is a 𝑘-𝑵𝑺 and 𝒪 ⊆ ℧. Then, the following holds: 

(i) 𝔅〈𝑖〉
𝔟 (𝒪) ⊆ 𝔅〈𝑟〉

𝔟 (𝒪) ⊆ 𝔅〈𝑢〉
𝔟 (𝒪); 

(ii) 𝔅〈𝑖〉
𝔟 (𝒪) ⊆ 𝔅〈𝑙〉

𝔟 (𝒪) ⊆ 𝔅〈𝑢〉
𝔟 (𝒪); 

(iii) 𝛾〈𝑢〉
𝔟 (𝒪) ≤ 𝛾〈𝑟〉

𝔟 (𝒪) ≤ 𝛾〈𝑖〉
𝔟 (𝒪); 

(iv) 𝛾〈𝑢〉
𝔟 (𝒪) ≤ 𝛾〈𝑙〉

𝔟 (𝒪) ≤ 𝛾〈𝑖〉
𝔟 (𝒪); 

(v) If 𝒪 is a basic 〈𝑢〉-exact set, then it follows that 𝒪 is also a basic 〈𝑟〉-exact set, which in turn 

implies that 𝒪 is a basic 〈𝑖〉-exact set; and 

(vi) If 𝒪 is a basic 〈𝑢〉-exact set, then it follows that 𝒪 is also a basic 〈𝑙〉-exact set, which in turn 

implies that 𝒪 is a basic 〈𝑖〉-exact set. 

Remark 4.1. Example 4.1 serves to illustrate that the converse of the aforementioned results is not 

universally valid. 

Example 4.1. Let ℧ = {𝓏1, 𝓏2, 𝓏3}  and consider the binary relation ℛ  on ℧  defined as follows: 

ℛ = {(𝓏1, 𝓏1), (𝓏2, 𝓏2), (𝓏3, 𝓏3), (𝓏2, 𝓏3), (𝓏3, 𝓏1)}. 

Consequently, we construct Tables 8 and 9 to represent the basic 𝑘-lower and basic 𝑘-upper 

approximations, along with the basic 𝑘-accuracies of the approximations for all subsets ℧. 

Table 8. Comparison of various types of basic 𝑘-approximations. 

𝒪 ⊆ ℧ 

basic 〈𝑟〉-

approximations 

basic 〈𝑙〉-

approximations 

basic 〈𝑖〉-

approximations 

basic 〈𝑢〉-

approximations 

ℛ〈𝑟〉
𝔟 (𝒪) ℛ〈𝑟〉

𝔟
(𝒪) ℛ〈𝑙〉

𝔟 (𝒪) ℛ〈𝑙〉

𝔟
(𝒪) ℛ〈𝑖〉

𝔟 (𝒪) ℛ〈𝑖〉

𝔟
(𝒪) ℛ〈𝑢〉

𝔟 (𝒪) ℛ〈𝑢〉

𝔟
(𝒪) 

{𝓏1} {𝓏1} {𝓏1} Φ {𝓏1} {𝓏1} {𝓏1} Φ {𝓏1} 

{𝓏2} Φ {𝓏2} {𝓏2} {𝓏2} {𝓏2} {𝓏2} Φ {𝓏2} 

{𝓏3} {𝓏3} {𝓏2, 𝓏3} {𝓏3} {𝓏1, 𝓏3} {𝓏3} {𝓏3} {𝓏3} ℧ 

{𝓏1, 𝓏2} {𝓏1} {𝓏1, 𝓏2} {𝓏2} {𝓏1, 𝓏2} {𝓏1, 𝓏2} {𝓏1, 𝓏2} Φ {𝓏1, 𝓏2} 

{𝓏1, 𝓏3} {𝓏1, 𝓏3} ℧ {𝓏1, 𝓏3} {𝓏1, 𝓏3} {𝓏1, 𝓏3} {𝓏1, 𝓏3} {𝓏1, 𝓏3} ℧ 

{𝓏2, 𝓏3} {𝓏2, 𝓏3} {𝓏2, 𝓏3} {𝓏2, 𝓏3} ℧ {𝓏2, 𝓏3} {𝓏2, 𝓏3} {𝓏2, 𝓏3} ℧ 

℧ ℧ ℧ ℧ ℧ ℧ ℧ ℧ ℧ 
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Table 9. Comparison of various types of basic 𝑘-accuracies. 

𝒪 ⊆ ℧ γ〈r〉
𝔟 (𝒪) γ〈l〉

𝔟 (𝒪) γ〈i〉
𝔟 (𝒪) γ〈u〉

𝔟 (𝒪) 

{𝓏1} 1 0 1 0 

{𝓏2} 0 1 1 0 

{𝓏3} 1
2⁄  1

2⁄  1 1
3⁄  

{𝓏1, 𝓏2} 1
2⁄  1

2⁄  1 0 

{𝓏1, 𝓏3} 2
3⁄  1 1 2

3⁄  

{𝓏2, 𝓏3} 1 2
3⁄  1 2

3⁄  

℧ 1 1 1 1 

Remark 4.2. Based on Proposition 4.2, Corollary 4.1 and Example 4.1, the optimal method for 

approximating rough sets is the use of basic 〈𝑖〉-approximations, which provide the highest accuracy 

measures. 

4.2. Different topological structures via basic-minimal neighborhoods 

Moving beyond mere approximations, this subsection investigates the generation of diverse 

topologies derived from basic-minimal neighborhoods. We rigorously demonstrate that the 

approximations proposed in Subsection 4.1 serve as closure and interior operators for these newly 

formed topologies, forging vital connections between the RS theory and topology for future 

explorations and applications. 

Theorem 4.1. Given a 𝑘-𝑵𝑺 (℧, ℛ, ℱ𝑘), for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the set 𝔗𝑘
𝔟  where: 𝔗𝑘

𝔟 =

{𝒪 ⊆ ℧: ∀ 𝓅 ∈ 𝒪, ℕ𝑘
𝔟 (𝓅) ⊆ 𝒪} forms a topology on ℧. 

Proof. 

(T1) It is evident that ℧ and Φ belong to 𝔗𝑘
𝔟 . 

(T2) Suppose {𝒬𝛽 ∶ 𝛽 ∈ ℐ} is a class of members in 𝔗𝑘
𝔟 , and let 𝓆 ∈ ⋃ 𝒬𝛽𝛽 . Then, there exists 

𝛽𝜊 ∈ ℐ  such that 𝓆 ∈ 𝒬𝛽𝜊
 . Therefore, ℕ𝑘

𝔟 (𝓆) ⊆ 𝒬𝛽𝜊
 , which implies that ℕ𝑘

𝔟 (𝓆) ⊆ ⋃ 𝒬𝛽𝛽  . Hence, 

⋃ 𝒬𝛽𝛽 ∈  𝔗𝑘
𝔟 . 

(T3) Let 𝒬1, 𝒬2 ∈  𝔗𝑘
𝔟    and 𝓆 ∈ 𝒬1 ∩ 𝒬2 . Then, 𝓆 ∈ 𝒬1  and 𝓆 ∈ 𝒬2 , which implies 

ℕ𝑘
𝔟 (𝓆) ⊆ 𝒬1 and ℕ𝑘

𝔟 (𝓆) ⊆ 𝒬2. Thus, ℕ𝑘
𝔟 (𝓆) ⊆ (𝒬1 ∩ 𝒬2), and hence (𝒬1 ∩ 𝒬2) ∈ 𝔗𝑘

𝔟 . 

By (T1), (T2), and (T3), we conclude that 𝔗𝑘
𝔟  forms a topology on ℧. 

By employing Lemma 3.2, we can readily establish the subsequent result, elucidating the 

relationships among various topologies 𝔗𝑘
𝔟 . 

Proposition 4.3. Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺. Then, the following holds: 
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(i) 𝔗〈𝑢〉
𝔟 ⊆ 𝔗〈𝑟〉

𝔟 ⊆ 𝔗〈𝑖〉
𝔟 ; and 

(ii) (ii)𝔗〈𝑢〉
𝔟 ⊆ 𝔗〈𝑙〉

𝔟 ⊆ 𝔗〈𝑖〉
𝔟 . 

The negation of Proposition 4.3 is shown to be incorrect in Example 4.2. 

Example 4.2. Considering Example 3.1, we generate the following topologies: 

𝔗〈𝑟〉
𝔟 = { ℧, Φ, {𝓏2}, {𝓏1, 𝓏2}, {𝓏1, 𝓏2, 𝓏3}, {𝓏1, 𝓏2, 𝓏4}}, 

𝔗〈𝑙〉
𝔟 = {℧, Φ, {𝓏4}, {𝓏2, 𝓏4}, {𝓏1, 𝓏3, 𝓏4}}, 

𝔗〈𝑖〉
𝔟 = {℧, Φ, {𝓏1}, {𝓏2}, {𝓏4}, {𝓏1, 𝓏2}, {𝓏1, 𝓏3}, {𝓏1, 𝓏4}, {𝓏2, 𝓏4}, {𝓏1, 𝓏2, 𝓏3}, {𝓏1, 𝓏2, 𝓏4}, {𝓏1, 𝓏3, 𝓏4}}, 

and 𝔗〈𝑢〉
𝔟 = {℧, Φ}. 

However, 𝔗〈𝑟〉 = {℧, Φ, {𝓏1}, {𝓏2}, {𝓏1, 𝓏2}, {𝓏1, 𝓏3}, {𝓏1, 𝓏4}, {𝓏1, 𝓏2, 𝓏3}, {𝓏1, 𝓏2, 𝓏4}, {𝓏1, 𝓏3, 𝓏4}}. 

Remark 4.3. Based on Example 4.2, the following observations can be made: 

(i) The topologies 𝔗𝑘 and 𝔗𝑘
𝔟  are generally independent, for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}. 

(ii) The topologies 𝔗〈𝑟〉
𝔟  and 𝔗〈𝑙〉

𝔟  are generally non-comparable. 

The next proposition illustrates the relationships between the topologies generated by the basic-

minimal neighborhoods and those induced by the preceding neighborhoods. 

Proposition 4.4. Let (℧, ℛ, ℱ𝑘) be a 𝑘-𝑵𝑺, where ℛ is a reflexive relation. Then, ∀𝑘 ∈ {𝑟, 𝑙, 𝑖, 𝑢}, 

and the following holds: 

(i) 𝔗〈𝑘〉 = 𝔗〈𝑘〉
𝔟 ; 

(ii) 𝔗𝑘 ⊆ 𝔗〈𝑘〉
𝔟 ; and 

(iii) 𝔗𝑚 ⊆ 𝔗〈𝑘〉
𝔟 . 

Proof. Utilizing Lemmas 3.3 and 3.4, the proof becomes evident. 

The next example proves that the opposite of Proposition 4.4 does not hold in general. 

Example 4.3. By using Example 3.2, we compute the topologies 𝔗𝑘, 𝔗𝑚, 𝔗〈𝑘〉, and 𝔗〈𝑘〉
𝔟  in the case 

where 𝑘 = 𝑟, and similarly for the other cases. 

𝔗𝑚 = { ℧, Φ, {𝓏4}, {𝓏1, 𝓏2, 𝓏3}} , 𝔗𝑟 =  { ℧, Φ, {𝓏3}, {𝓏4}, {𝓏2, 𝓏3}, {𝓏3, 𝓏4}, {𝓏1, 𝓏2, 𝓏3}, {𝓏2, 𝓏3, 𝓏4}} , 

and 𝔗〈𝑟〉 = 𝔗〈𝑟〉
𝔟 = {℧, Φ, {𝓏2}, {𝓏3}, {𝓏4}, {𝓏1, 𝓏2}, {𝓏2, 𝓏3}, {𝓏2, 𝓏4}, {𝓏3, 𝓏4}, {𝓏1, 𝓏2, 𝓏3}, {𝓏1, 𝓏2, 𝓏4}, {𝓏2, 𝓏3, 𝓏4}}. 

The following theory is highly significant, as it serves as the link between the set-theoretic theory 

of RS's approach on one hand, and topological science on the other. Consequently, it stands as the 

cornerstone to apply all the concepts of topology and its applications within the theory of RS's. This 

would greatly benefit those interested in topology applications, yet not fundamentally specialized in 

topology itself. On the other hand, the following theorem introduces another method to compute the 

basic-minimal approximations in view of topology. 

Theorem 4.2. If (℧, ℛ, ℱ𝑘) is a 𝑘-𝑵𝑺, then for each 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the basic-minimal lower 

and the basic-minimal upper approximations of 𝒪 ⊆ ℧ are well-defined, respectively, as follows: 

ℛ𝑘
𝔟 (𝒪) =∪ {𝒢 ∈ 𝔗〈𝑘〉

𝔟 : 𝒢 ⊆ 𝒪} and ℛ𝑘

𝔟
(𝒪) =∩ {ℋ ∈ ℱ〈𝑘〉

𝔟 : 𝒪 ⊆ ℋ}, where ℱ〈𝑘〉
𝔟 = (𝔗〈𝑘〉

𝔟 )
𝑐
. 

Proof. We will prove the first statement and the other by the duality property. 

Necessity condition: 

Let 𝓍 ∈∪ {𝒢 ∈ 𝔗〈𝑘〉
𝔟 : 𝒢 ⊆ 𝒪} ; then, ∃𝔇 ∈ 𝔗〈𝑘〉

𝔟   such that 𝓍 ∈ 𝔇 ⊆ 𝒪 . Hence, ℕ𝑘
𝔟 (𝓍) ⊆ 𝔇 , 
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which implies that 𝓍 ∈ {𝓅 ∈ ℧: ℕ𝑘
𝔟 (𝓅) ⊆ 𝒪}. 

Sufficiency condition: 

Let 𝓍 ∈ ℛ𝑘
𝔟 (𝒪) ; then, ℕ𝑘

𝔟 (𝓍) ⊆ 𝒪 . However, from Lemma 3.1, ∀𝓎 ∈ ℕ𝑘
𝔟 (𝓍) , ℕ𝑘

𝔟 (𝓎) ⊆

ℕ𝑘
𝔟 (𝓍), which implies that ℕ𝑘

𝔟 (𝓍) = 𝒢 ∈ 𝔗〈𝑘〉
𝔟  such that 𝓍 ∈ 𝒢 ⊆ 𝒪. Thus, 𝓍 ∈∪ {𝒢 ∈ 𝔗〈𝑘〉

𝔟 : 𝒢 ⊆ 𝒪}. 

Remark 4.4. From Theorem 4.2, we observe that the basic-minimal lower and basic-minimal upper 

approximations correspond to the interior and closure operators of 𝒪 ⊆ ℧ , respectively. This 

connection underscores the significance of the proposed approaches, highlighting their role as a crucial 

bridge to subsequent topological applications in the RS theory. 

4.3. Comparisons between the suggested methods (basic-minimal approximations) and some of the 

others studies 

As a dedicated comparison, Subsection 4.3 scrutinizes the proposed approximations against prior 

methodologies, including those by Yao [3], Dai et al. [6], Allam et al. [8], and Abd El-Monsef et al. [11]. 

Through a meticulous analysis, bolstered by counterexamples and established theorems, we showcase 

the superiority of our proposed methods across various specific and general scenarios. 

First, we present comparative analyses between the proposed approaches in the current paper and 

some other methods in the case of a general binary relation. 

Example 4.4. Referring to Example 3.1, we proceed to calculate the approximations for all subsets of 

℧ using both the current technique and the preceding methods (Yao, Allam, Abd El-Monsef et al., and 

Dai et al. approaches), as presented in Tables 10 and 11. 

Remark 4.5 Upon examination of Tables 10 and 11, the following observations can be made: 

(i) The Yao, Allam, and Dai methods are generally to approximate RS's due to their inability to be 

generally applied across relations, lacking key properties necessary for approximations. 

Consequently, these limitations confine the scope of the RS theory applications, exemplified by 

the highlighted cells in Tables 10 & 11. Consequently, these methods introduce inconsistencies 

within the RS theory. Furthermore, it is evident that the proposed method demonstrates a superior 

accuracy compared to the approaches by Abd El-Monsef et al. Additionally, according to the 

preceding methods, all subsets are categorized as rough, thus indicating an inherent vagueness in 

the data (see the highlighted cells in Tables 10 and 11). 

(ii) Conversely, the methods outlined in our current paper stand out as the optimal approaches to 

approximate sets across general cases. This is because the basic-approximations fulfill all of 

Pawlak's RS properties unconditionally, devoid of any limitations or prerequisites. Additionally, 

our approaches encompass exact subsets, signifying the potential of our suggested method in 

unveiling the inherent vagueness within the data. 

The next results elucidate the relationships among the current approaches and the methodologies 

proposed by Yao [3], Abd El-Monsef et al. [11], Allam et al. [8], and Dai et al. [6]. 

Theorem 4.3. If (℧, ℛ, ℱ𝑘) is a 𝑘-𝑵𝑺 , where ℛ is a reflexive relation, then for all 𝒪 ⊆ ℧ and 𝑘 ∈

{〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the following holds: 

(i) ℛ𝑘(𝒪) ⊆ ℛ𝑘
𝔟 (𝒪) ⊆ 𝒪 ⊆ ℛ𝑘

𝔟
(𝒪) ⊆ ℛ𝑘(𝒪); 

(ii) 𝔅𝑘
𝔟 (𝒪) ⊆ 𝔅𝑘(𝒪) and 𝛾𝑘(𝒪) ≤ 𝛾𝑘

𝔟(𝒪); and 

(iii) If 𝒪 is 𝑘-exact, then it is basic 𝑘-exact. 
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Proof. By employing Proposition 4.4, the proof becomes evident. 

Table 10. Comparison between Yao, Allam, and the current approach in general case. 

𝒪 ⊆ ℧ 
Yao’s method [3] Allam et al.’s method [8] Current method 

𝑌∗(𝒪) 𝑌∗(𝒪) 𝒜〈𝑟〉(𝒪) 𝒜〈𝑟〉(𝒪) ℛ〈𝑟〉
𝔟 (𝒪) ℛ〈𝑟〉

𝔟
(𝒪) 

{𝓏1} {𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2} {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏3, 𝓏4} 
{𝓏2} {𝓏4} Φ {𝓏2} Φ {𝓏2} ℧ 
{𝓏3} {𝓏4} {𝓏2} {𝓏2} {𝓏3} Φ {𝓏3} 
{𝓏4} {𝓏4} {𝓏1, 𝓏3} {𝓏2} {𝓏4} Φ {𝓏4} 

{𝓏1, 𝓏2} {𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏2} ℧ 
{𝓏1, 𝓏3} {𝓏2, 𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏3, 𝓏4} 
{𝓏1, 𝓏4} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏4} {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏3, 𝓏4} 
{𝓏2, 𝓏3} {𝓏4} {𝓏2} {𝓏2} {𝓏3} {𝓏2} ℧ 
{𝓏2, 𝓏4} {𝓏4} {𝓏1, 𝓏3} {𝓏2} {𝓏4} {𝓏2} ℧ 
{𝓏3, 𝓏4} {𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏2} {𝓏3, 𝓏4} Φ {𝓏3, 𝓏4} 

{𝓏1, 𝓏2, 𝓏3} {𝓏2, 𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏2, 𝓏3} ℧ 
{𝓏1, 𝓏2, 𝓏4} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏4} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏2, 𝓏4} ℧ 
{𝓏1, 𝓏3, 𝓏4} ℧ {𝓏1, 𝓏2, 𝓏3} ℧ {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏3, 𝓏4} 
{𝓏2, 𝓏3, 𝓏4} {𝓏4} {𝓏1, 𝓏2, 𝓏3} {𝓏2} {𝓏3, 𝓏4} {𝓏2} ℧ 

℧ ℧ {𝓏1, 𝓏2, 𝓏3} ℧ {𝓏1, 𝓏3, 𝓏4} ℧ ℧ 
Φ {𝓏4} Φ {𝓏2} Φ Φ Φ 

Table 11. Comparison between the methods of Abd El-Monsef et al., Dai et al. and the 

current method in general case. 

𝓞 ⊆ ℧ 
Dai et al.’s method [6] Abd El-Monsef et al. method [11] Current method 

ℛ𝑚(𝒪) ℛ𝑚(𝒪) ℛ𝑟(𝒪) ℛ𝑟(𝒪) ℛ〈𝑟〉
𝔟 (𝒪) ℛ〈𝑟〉

𝔟
(𝒪) 

{𝔃𝟏} {𝔃𝟐} {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏2, 𝓏3} Φ {𝓏1, 𝓏3, 𝓏4} 

{𝔃𝟐} {𝓏2} 𝚽 Φ {𝓏2} {𝓏2} ℧ 

{𝔃𝟑} {𝓏2} {𝓏1, 𝓏3} Φ {𝓏2, 𝓏3} Φ {𝓏3} 

{𝔃𝟒} {𝓏2} {𝓏1, 𝓏4} {𝓏4} ℧ Φ {𝓏4} 

{𝔃𝟏, 𝔃𝟐} {𝓏2} {𝔃𝟏, 𝔃𝟑, 𝔃𝟒} Φ {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2} ℧ 

{𝔃𝟏, 𝔃𝟑} {𝓏2, 𝓏3} {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏2, 𝓏3} Φ {𝓏1, 𝓏3, 𝓏4} 

{𝔃𝟏, 𝔃𝟒} {𝓏2, 𝓏4} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏4} ℧ Φ {𝓏1, 𝓏3, 𝓏4} 

{𝔃𝟐, 𝔃𝟑} {𝓏2} {𝓏1, 𝓏3} Φ {𝓏2, 𝓏3} {𝓏2} ℧ 

{𝔃𝟐, 𝔃𝟒} {𝓏2} {𝓏1, 𝓏4} {𝓏4} ℧ {𝓏2} ℧ 

{𝔃𝟑, 𝔃𝟒} {𝓏2} {𝓏1, 𝓏3, 𝓏4} {𝓏4} ℧ Φ {𝓏3, 𝓏4} 

{𝔃𝟏, 𝔃𝟐, 𝔃𝟑} {𝓏2, 𝓏3} {𝓏1, 𝓏3, 𝓏4} Φ {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} ℧ 

{𝔃𝟏, 𝔃𝟐, 𝔃𝟒} {𝓏2, 𝓏4} {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏4} ℧ {𝓏1, 𝓏2, 𝓏4} ℧ 

{𝔃𝟏, 𝔃𝟑, 𝔃𝟒} ℧ {𝓏1, 𝓏3, 𝓏4} {𝓏1, 𝓏3, 𝓏4} ℧ Φ {𝓏1, 𝓏3, 𝓏4} 

{𝔃𝟐, 𝔃𝟑, 𝔃𝟒} {𝓏2} {𝓏1, 𝓏3, 𝓏4} {𝓏4} ℧ {𝓏2} ℧ 

℧ ℧ {𝔃𝟏, 𝔃𝟑, 𝔃𝟒} ℧ ℧ ℧ ℧ 

Φ {𝔃𝟐} Φ Φ Φ Φ Φ 

 

  



21833 

AIMS Mathematics  Volume 9, Issue 8, 21816–21847. 

Remark 4.6. The following are observed from Example 4.4: 

(i) The converse of Theorem 4.3 does not hold generally; and 

(ii) The basic-minimal approaches demonstrate greater accuracy compared to the methods proposed 

by Abd El-Monsef et al. [11]. 

The subsequent results delineate the connections between the proposed basic-minimal 

approximations and previous methodologies, encompassing Yao [3], Allam et al. [8], and Dai et al. [6], 

especially concerning a reflexive relation. 

Utilizing Lemmas 3.3 and 3.4, the subsequent theorem can be established. Hence, the proof is deleted. 

Theorem 4.4. If (℧, ℛ, ℱ𝑘)  constitutes a 𝑘 -𝑵𝑺  with ℛ  being a reflexive relation, then for each 

𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the following holds: 

(i) 𝒜𝑘(𝒪) = ℛ𝑘
𝔟 (𝒪) and 𝒜𝑘(𝒪) = ℛ𝑘

𝔟
(𝒪); 

(ii) 𝑌∗(𝒪) ⊆ ℛ𝑘
𝔟 (𝒪) ⊆ 𝒪 ⊆ ℛ𝑘

𝔟
(𝒪) ⊆ 𝑌∗(𝒪); and 

(iii) ℛ𝑚(𝒪) ⊆ ℛ𝑘
𝔟 (𝒪) ⊆ 𝒪 ⊆ ℛ𝑘

𝔟
(𝒪) ⊆ ℛ𝑚(𝒪). 

Corollary 4.2. If (℧, ℛ, ℱ𝑘) constitutes a 𝑘-𝑵𝑺 with ℛ being a reflexive relation, then for each 

𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the following holds: 

(i) 𝔅𝑘
𝔟 (𝒪) = ℬ𝑘(𝒪); 

(ii) 𝔅𝑘
𝔟 (𝒪) ⊆ 𝔅(𝒪) ⊆ 𝔅𝑚(𝒪); 

(iii) 𝛾𝑘
𝔟(𝒪) = 𝜇𝑘(𝒪); and 

(iv) 𝜇𝑚(𝒪) ≤ 𝛾(𝒪) ≤ 𝛾𝑘
𝔟(𝒪). 

Corollary 4.3. If (℧, ℛ, ℱ𝑘) constitutes a 𝑘-𝑵𝑺 with ℛ being a reflexive relation, then for each 

𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, the following holds: 

(i) If 𝒪 is a maximal-exact set, then it implies that 𝒪 is Yao-exact, consequently making it a basic-

exact set; and 

(ii) If 𝒪  is a maximal-exact set, then it implies that 𝒪  is Yao-exact, consequently rendering it a 

minimal-exact set. 

Note: It should be noted that the converse of the preceding results is not generally true, as demonstrated 

by Example 4.5. 

Example 4.5. According to Example 3.2, we calculate the approximations for all subsets of ℧ using 

the current technique and the preceding methods (Yao [3] technique and Dai et al. [6] approach), as 

shown in Table 12. 
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Table 12. Comparison between the Yao technique, Dai approach and the current method 

in the case of a reflexive relation. 

𝒪 ⊆ ℧ 
Yao’s method [3] Dai et al.’s method Current method 

𝑌∗(𝒪) 𝑌∗(𝒪) ℛ𝑚(𝒪) ℛ𝑚(𝒪) ℛ〈𝑟〉
𝔟 (𝒪) ℛ〈𝑟〉

𝔟
(𝒪) 

{𝓏1} Φ {𝓏1} Φ {𝓏1, 𝓏2} Φ {𝓏1} 
{𝓏2} Φ {𝓏1, 𝓏2} Φ {𝓏1, 𝓏2, 𝓏3} {𝓏2} {𝓏1, 𝓏2} 
{𝓏3} {𝓏3} {𝓏2, 𝓏3} Φ {𝓏2, 𝓏3} {𝓏3} {𝓏3} 
{𝓏4} {𝓏4} {𝓏4} {𝓏4} {𝓏4} {𝓏4} {𝓏4} 

{𝓏1, 𝓏2} {𝓏1} {𝓏1, 𝓏2} {𝓏1} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2} {𝓏1, 𝓏2} 
{𝓏1, 𝓏3} {𝓏3} {𝓏1, 𝓏2, 𝓏3} Φ {𝓏1, 𝓏2, 𝓏3} {𝓏3} {𝓏1, 𝓏3} 
{𝓏1, 𝓏4} {𝓏4} {𝓏1, 𝓏4} {𝓏4} {𝓏1, 𝓏2, 𝓏4}  {𝓏4} {𝓏1, 𝓏4} 
{𝓏2, 𝓏3} {𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} 
{𝓏2, 𝓏4} {𝓏4} {𝓏1, 𝓏2, 𝓏4} {𝓏4} ℧ {𝓏2, 𝓏4} {𝓏1, 𝓏2, 𝓏4} 
{𝓏3, 𝓏4} {𝓏3, 𝓏4} {𝓏2, 𝓏3, 𝓏4} {𝓏4} {𝓏2, 𝓏3, 𝓏4} {𝓏3, 𝓏4} {𝓏3, 𝓏4} 

{𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} {𝓏1, 𝓏2, 𝓏3} 
{𝓏1, 𝓏2, 𝓏4} {𝓏1, 𝓏4} {𝓏1, 𝓏2, 𝓏4} {𝓏1, 𝓏4} ℧ {𝓏1, 𝓏2, 𝓏4} {𝓏1, 𝓏2, 𝓏4} 
{𝓏1, 𝓏3, 𝓏4} {𝓏3, 𝓏4} ℧ {𝓏4} ℧ {𝓏3, 𝓏4} {𝓏1, 𝓏3, 𝓏4} 
{𝓏2, 𝓏3, 𝓏4} {𝓏2, 𝓏3, 𝓏4} ℧ {𝓏3, 𝓏4} ℧ {𝓏2, 𝓏3, 𝓏4} ℧ 

℧ ℧ ℧ ℧ ℧ ℧ ℧ 

Φ Φ Φ Φ Φ Φ Φ 

Remark 4.7. As observed from Theorem 4.4, Corollaries 4.2 and 4.3, and Example 4.5, the basic-

minimal approaches demonstrate a greater accuracy compared to the methods proposed by Yao and 

Dai et al. 

5. Decision-making in diagnosing heart failure using basic-minimal approaches 

In this section, we emphasize the crucial role of a minimally structured framework in medical 

science, particularly in addressing decision-making complexities. Our focus is on applying this 

framework within the context of heart failure. The dataset includes the outcomes of five symptoms 

observed in twelve patients. This study was conducted at the Cardiology Department of Al-Azhar 

University, located at Sayed Galal University Hospital in Egypt [44]. The research involved twelve 

patients with diverse symptoms, all of whom underwent thorough medical assessments, including 

comprehensive medical histories, physical examinations, extensive laboratory analyses, resting 

electrocardiograms (ECGs), and traditional echocardiographic evaluations. Based on these 

assessments, the diagnosis of heart failure was either confirmed or excluded. This study analyzed the 

experimental results of an initial investigation that examined five symptoms correlated with heart 

disease, as delineated by Dickstein et al. [46]. 

Table 13 provides an overview of the heart failure issue, where the columns signify symptoms 

('Yes' meaning symptom presence and 'No' indicating absence) associated with heart failure diagnoses 

(considered as condition attributes ' 𝓒 '). Specifically, 𝓗𝟏  stands for breathlessness, 𝓗𝟐  for 

orthopnea, 𝓗𝟑 for paroxysmal nocturnal dyspnea, 𝓗𝟒 for a reduced exercise tolerance, and 𝓗𝟓 

for ankle swelling. The '𝒟' attribute represents the decision regarding heart failure. Within Table 13, 

the rows designated as 𝒫 = {𝓹𝟏, 𝓹𝟐, 𝓹𝟑, … , 𝓹𝟏𝟐} correspond to the individual patients 
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Table 13. Original medical information system [44]. 

Person (𝒫) 
symptoms (𝒞) 

Decision (𝒟) 
ℋ1 ℋ2 ℋ3 ℋ4 ℋ5 

𝓅1 Yes Yes Yes Yes No Yes 

𝓅2 No No No Yes Yes No 

𝓅3 Yes Yes Yes Yes Yes Yes 

𝓅4 No No No Yes No No 

𝓅5 Yes No No Yes Yes No 

𝓅6 No No No Yes No No 

𝓅7 Yes Yes Yes Yes Yes Yes 

𝓅8 Yes Yes No Yes Yes Yes 

𝓅9 Yes No Yes Yes No Yes 

𝓅10 No No No Yes Yes No 

𝓅11 Yes No Yes Yes No Yes 

𝓅12 Yes No No Yes Yes No 

We initiate the application process by transforming the descriptive attributes (condition attributes) 

𝓒 = {𝓗𝟏, 𝓗𝟐, 𝓗𝟑, 𝓗𝟒, 𝓗𝟓} into qualitative terms, as presented in Table 13. This table encapsulates 

the resemblances among the patient symptoms, where the degree of similarity 𝜓 (𝓅𝒾, 𝓅𝒿) is defined 

by: 

𝜓 (𝓅𝒾, 𝓅𝒿) =
∑ [𝒶ℊ(𝓅𝒾)=𝒶ℊ(𝓅𝒿)]𝓃

ℊ=1

𝓃
, 

where: 

⚫ 𝒾, 𝒿 ∈ {1,2,3, … ,12}; 

⚫ 𝒶ℊ represents an attribute, i.e., 𝒶ℊ ∈ 𝓒; 

⚫ 𝓃 represents the number of condition attributes. 

Therefore, we compute the similarities between the symptoms of the 12 patients as follows: 

For 𝓹𝟏 : It is evident that 𝓹𝟏  and 𝓹𝟐  share the same value for symptom 𝓗𝟒 , thus the 

similarity between 𝓹𝟏 and 𝓹𝟐 is 
1

5
. 

Similarly, 𝓹𝟏 and 𝓹𝟑 share the same values for symptoms 𝓗𝟏, 𝓗𝟐, 𝓗𝟑, and 𝓗𝟒, thus the 

similarity between 𝓹𝟏 and 𝓹𝟑 is 
4

5
. 

Using the same method, we evaluate the similarities between all the patients, as illustrated in 

Table 14. 
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Table 14. Similarities between symptoms of twelve of patients. 

 𝓅1 𝓅2 𝓅3 𝓅4 𝓅5 𝓅6 𝓅7 𝓅8 𝓅9 𝓅10 𝓅11 𝓅12 

𝓅1 1 
1

5
 

4

5
 

2

5
 

2

5
 

2

5
 

4

5
 

3

5
 

4

5
 

1

5
 

4

5
 

2

5
 

𝓅2 
1

5
 1 

2

5
 

4

5
 

4

5
 

4

5
 

2

5
 

3

5
 

2

5
 1 

2

5
 

4

5
 

𝓅3 
4

5
 

2

5
 1 

1

5
 

3

5
 

1

5
 1 

4

5
 

3

5
 

2

5
 

3

5
 

3

5
 

𝓅4 
2

5
 

4

5
 

1

5
 1 

3

5
 1 

1

5
 

2

5
 

3

5
 

4

5
 

3

5
 

3

5
 

𝓅5 
2

5
 

4

5
 

3

5
 

3

5
 1 

3

5
 

3

5
 

4

5
 

3

5
 

4

5
 

3

5
 1 

𝓅6 
2

5
 

4

5
 

1

5
 1 

3

5
 1 

1

5
 

2

5
 

3

5
 

4

5
 

3

5
 

3

5
 

𝓅7 
4

5
 

2

5
 1 

1

5
 

3

5
 

1

5
 1 

4

5
 

3

5
 

2

5
 

3

5
 

3

5
 

𝓅8 
3

5
 

3

5
 

4

5
 

2

5
 

4

5
 

2

5
 

4

5
 1 

2

5
 

3

5
 

2

5
 

4

5
 

𝓅9 
4

5
 

2

5
 

3

5
 

3

5
 

3

5
 

3

5
 

3

5
 

2

5
 1 

2

5
 1 

3

5
 

𝓅10 
1

5
 1 

2

5
 

4

5
 

4

5
 

4

5
 

2

5
 

3

5
 

2

5
 1 

2

5
 

4

5
 

𝓅11 
4

5
 

2

5
 

3

5
 

3

5
 

3

5
 

3

5
 

3

5
 

2

5
 1 

2

5
 1 

3

5
 

𝓅12 
2

5
 

4

5
 

3

5
 

3

5
 1 

3

5
 

3

5
 

4

5
 

3

5
 

4

5
 

3

5
 1 

Our next step involves constructing a minimal structured space based on the relationship that 

aligns with the inherent nature of the problem under study. It's important to highlight that we describe 

the connection within each issue constructed by the criteria specified by the experts. In this context, 

we denote 𝓅𝒾ℛ 𝓅𝒿 ⟺ 𝜓 (𝓅𝒾, 𝓅𝒿) ≥
4

5
 , ∀𝒾 , 𝒿 = {1,2,3, … ,12} , where 𝜓 (𝓅𝒾, 𝓅𝒿)  represents the 

sum of similar symptoms between '𝓅𝒾 ' and '𝓅𝒿 ' divided by the total number of symptoms. 

Note: The above process suggests a relation based on the requirements of system experts' perspective. 

It is assumed that this relation, along with the number 4/5, represents a similar degree, with a higher 

number indicating an increased similarity, thus providing more accurate results. Furthermore, both this 

relation and the number 4/5 can be adjusted according to the concepts of system experts. It is evident 

that the suggested relation is reflexive and symmetric, but not transitive, which renders the Pawlak 

approximations space inadequate to describe system. 

Therefore, to compute all the 𝑟-neighborhoods, for each patient, we proceed as follows: 

For 𝓹𝟏: ℕ𝒓(𝓅1) = {𝓅𝒾 ∈ 𝒫| 𝜓 (𝓅1, 𝓅𝒾) ≥
4

5
} = {𝓅1, 𝓅3, 𝓅7, 𝓅9, 𝓅11}. In a similar way, the 𝑟-

neighborhoods for the other patients are determined and presented in Table 15. 

Next, we construct all the 𝑚-neighborhoods for each patient as follows: 

For 𝓹𝟏: ℕ𝑚(𝓅1) = ⋃ ℕ𝒓(𝓅𝒾)𝓅1∈ℕ𝒓(𝓅𝒾) = {𝓅1, 𝓅3, 𝓅7, 𝓅8, 𝓅9, 𝓅11}. 

Similarly, the 𝑚-neighborhoods for the other patients are derived and shown in Table 15. 
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Now, to compute the basic-minimal neighborhoods ℕ〈𝒓〉
𝖇 (𝔁) , we first determine the minimal-

neighborhoods ℕ〈𝒓〉(𝔁) for each patient as follows: 

For 𝓹𝟏 : ℕ〈𝒓〉(𝓅1) = ⋂ ℕ𝒓(𝓅𝒾)𝓅1∈ℕ𝒓(𝓅𝒾) = {𝓅1} . Following the same procedure, the ℕ〈𝒓〉(𝔁) 

for the other patients is calculated. 

Consequently, the basic-minimal neighborhoods ℕ〈𝒓〉
𝖇 (𝔁) for each patient as follows: 

For 𝓹𝟏: ℕ〈𝒓〉
𝖇 (𝓅1) = {𝓅𝒾 ∈ 𝒫: ℕ〈𝒓〉(𝓅𝒾) ⊆ ℕ〈𝒓〉(𝓅1)} = {𝓅1}. 

Similarly, the ℕ〈𝒓〉
𝖇 (𝔁) for the other patients are calculated and listed in Table 15. 

Therefore, we proceed to construct the right neighborhoods, the maximal neighborhoods, and the 

basic-minimal right neighborhoods for each patient within the universe, as displayed in Table 15. These 

constructions utilize the relationship that corresponds to the specific nature of the problem under study. 

Table 15. 𝑟-neighborhoods, 𝑚-neighborhoods, and basic 〈𝑟〉-neighborhoods of each patient. 

 ℕ𝑟(𝓍) ℕ𝑚(𝓍) ℕ〈𝑟〉
𝔟 (𝓍) 

𝓅1 {𝓅1, 𝓅3, 𝓅7, 𝓅9, 𝓅11} {𝓅1, 𝓅3, 𝓅7, 𝓅8, 𝓅9, 𝓅11} {𝓅1} 

𝓅2 {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅10, 𝓅12} {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅8, 𝓅10, 𝓅12} {𝓅2} 

𝓅3 {𝓅1, 𝓅3, 𝓅7, 𝓅8} {𝓅1, 𝓅3, 𝓅5, 𝓅7, 𝓅8, 𝓅9, 𝓅11, 𝓅12} {𝓅3, 𝓅7} 

𝓅4 {𝓅2, 𝓅4, 𝓅6, 𝓅10} {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅10, 𝓅12} {𝓅2, 𝓅4, 𝓅6, 𝓅10} 

𝓅5 {𝓅2, 𝓅5, 𝓅8, 𝓅10, 𝓅12} 𝒫-{𝓅1, 𝓅9, 𝓅11} {𝓅5, 𝓅12} 

𝓅6 {𝓅2, 𝓅4, 𝓅6, 𝓅10} {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅10, 𝓅12} {𝓅2, 𝓅4, 𝓅6, 𝓅10} 

𝓅7 {𝓅1, 𝓅3, 𝓅7, 𝓅8} {𝓅1, 𝓅2, 𝓅3, 𝓅5, 𝓅7, 𝓅8, 𝓅12} {𝓅3, 𝓅7} 

𝓅8 {𝓅3, 𝓅5, 𝓅7, 𝓅8,, 𝓅12} 𝒫-{𝓅4, 𝓅6, 𝓅9, 𝓅11}  {𝓅8} 

𝓅9 {𝓅1, 𝓅9, 𝓅11} {𝓅1, 𝓅3, 𝓅7, 𝓅9, 𝓅11} {𝓅1, 𝓅9, 𝓅11} 

𝓅10 {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅10, 𝓅12} {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅8, 𝓅10, 𝓅12} {𝓅2, 𝓅10} 

𝓅11 {𝓅1, 𝓅9, 𝓅11} {𝓅1, 𝓅3, 𝓅7, 𝓅9, 𝓅11} {𝓅1, 𝓅9, 𝓅11} 

𝓅12 {𝓅2, 𝓅5, 𝓅8,, 𝓅12} 𝒫-{𝓅1, 𝓅11} {𝓅5, 𝓅12} 

From Table 13, the universe is divided into the following two independent sets are: 

• The group of patients diagnosed with the disease: 𝕊 = {𝓹𝟏, 𝓹𝟑, 𝓹𝟕, 𝓹𝟖, 𝓹𝟗, 𝓹𝟏𝟏}; and 

• The group of patients without a diagnosis of heart failure: 𝕋 = {𝓹𝟐, 𝓹𝟒, 𝓹𝟓, 𝓹𝟔, 𝓹𝟏𝟎, 𝓹𝟏𝟐}. 

Therefore, by employing the suggested approximations (basic-minimal approximations) 

alongside previous approaches (Yao [3] and Dai et al. [6]), we can assess the accuracy of the decision-

making for the two patient groups, as illustrated in Table 16. Following this, we present the Discussions 

section, which summarizes the concluding remarks and provides an analysis of this application. The 

discussion on the results has been expanded to offer a more in-depth analysis. Additionally, the 

validation section includes comparisons with the existing applications in the field and discusses the 

advantages of our approach. 
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Table 16. Comparison among the present technique and the alternative methods. 

Set 
𝕊 𝕋 

{𝓅1, 𝓅3, 𝓅7, 𝓅8, 𝓅9, 𝓅11} {𝓅2, 𝓅4, 𝓅5, 𝓅6, 𝓅10, 𝓅12} 

Yao method 

𝑌∗(𝒪) {𝓅1, 𝓅3, 𝓅7, 𝓅9, 𝓅11} {𝓅2, 𝓅4, 𝓅6, 𝓅10} 

𝑌∗(𝒪) 𝒫-{𝓅2, 𝓅4, 𝓅6, 𝓅10} 𝒫-{𝓅1, 𝓅3, 𝓅7, 𝓅9, 𝓅11} 

𝔅(𝒪) {𝓅5, 𝓅8, 𝓅12} {𝓅5, 𝓅8, 𝓅12} 

𝛾(𝒪) 
5

8
 

4

7
 

Dai et al. 

method 

ℛ𝑚(𝒪) {𝓅1, 𝓅9, 𝓅11} {𝓅4, 𝓅6} 

ℛ𝑚(𝒪) 𝒫- {𝓅4, 𝓅6} 𝒫-{𝓅1, 𝓅9, 𝓅11} 

𝔅𝑚(𝒪) {𝓅2, 𝓅3, 𝓅5, 𝓅7, 𝓅8, 𝓅10, 𝓅12} {𝓅2, 𝓅3, 𝓅5, 𝓅7, 𝓅8, 𝓅10, 𝓅12} 

𝛾𝑚(𝒪) 
3

10
 

2

9
 

Current 

method 

ℛ𝑘
𝔟 (𝒪) 𝕊 𝕋 

ℛ𝑘

𝔟
(𝒪) 𝕊 𝕋 

𝔅𝑘
𝔟 (𝒪) Φ Φ 

𝛾𝑘
𝔟(𝒪) 1 1 

6. Discussions 

In the realm of medical science, effective decision-making frameworks play a pivotal role in 

navigating the complexities inherent in diagnoses, particularly in conditions such as heart failure. Our 

focus in this study was to highlight the application of a minimally structured framework within the 

context of diagnosing heart failure, leveraging data obtained from the Cardiology Department of Al-

Azhar University, situated at the Sayed Galal University Hospital in Egypt. 

The dataset encompassed observations from twelve patients exhibited a spectrum of symptoms 

associated with heart failure. Thorough medical assessments, including detailed medical histories, 

physical examinations, laboratory analyses, electrocardiograms, and echocardiographic evaluations, 

were conducted to ascertain the diagnosis. Through a structured inquiry, we sought to elucidate the 

efficacy of our proposed methodologies to enhance diagnostic accuracy within this medical domain. 

The initial investigation focused on analyzing five key symptoms correlated with heart disease, 

as identified by Dickstein et al. [46]. The subsequent transformation of the descriptive attributes into 

qualitative terms facilitated the computation of similarities among patient symptoms, which was a 

critical step in our diagnostic approach. By constructing the minimal structured spaces based on these 

relationships, we aimed to delineate distinct the patient groups based on their symptom profiles. 

From the constructed structured spaces, it became apparent that the universe could be divided into 

two independent sets: patients diagnosed with heart failure and those without. This segmentation 

provided a foundational basis for further analyses, enabling the evaluation of the diagnostic accuracy 

across patient groups. 
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The application of our proposed methodologies, particularly the basic-minimal approximations, 

alongside traditional approaches such as those by Yao [3] and Dai et al. [6], yielded insightful 

comparisons. Notably, our methodologies exhibited high accuracy coefficients, which closely aligned 

with the medical diagnoses derived from empirical data. In contrast, the previous methods 

demonstrated limitations in accurately identifying patients with heart failure, underscoring the need 

for more refined diagnostic frameworks (see the highlighted cells in Table 16). 

For instance, the set of patients diagnosed with the disease according to the doctor's decision was 

𝕊 = {𝓅1, 𝓅3, 𝓅7, 𝓅8, 𝓅9, 𝓅11} . Using the method by Dai et al., the lower approximation was 

{𝓅1, 𝓅9, 𝓅11}, which indicated that only patients 𝓅1, 𝓅9, and 𝓅11 were identified as having heart 

failure, which contradicts the decision table and the doctor's decision. Conversely, our methods yielded 

an accuracy measure of 100%, meaning that the set of patients with heart failure was equivalent to the 

set 𝕊 determined by the doctor's decision.  

Moreover, the boundary region, which represents the doubtful or uncertain region of two sets 

(patients with heart failure and healthy individuals), was the same according to Dai et al.'s technique, 

namely {𝓅2, 𝓅3, 𝓅5, 𝓅7, 𝓅8, 𝓅10, 𝓅12} . This means that these individuals could not be definitively 

identified as patients with or without heart failure. On the other hand, our approach resulted in an 

empty boundary region, which provided an accurate measure for diagnosis. 

Our findings underscored the superiority of the proposed approaches in enhancing the 

approximation operators and the accuracy measures under diverse binary relations. Importantly, these 

methodologies upheld the core principles of Pawlak's framework without imposing restrictive 

conditions, thereby expanding the scope of the practical problems amenable to effective solutions. 

In conclusion, our study not only sheds light on the efficacy of minimally structured frameworks 

in medical decision-making, but also underscores the transformative potential of advanced 

methodologies to enhance the diagnostic accuracy and clinical outcomes. Moving forward, further 

research in this direction holds promise to advance the frontiers of medical diagnostics and improve 

patient care outcomes. 

We present an algorithm and a corresponding flowchart of the proposed techniques (basic-

minimal approximations) to aid in decision-making problems. This algorithm (Algorithm 1), illustrated 

in (Figure 1) serves as a straightforward tool that can be utilized in MATLAB. 
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Figure 1. Flowchart for using basic-minimal approximations in decision-making problems. 
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Algorithm 1. A Framework for using basic-minimal approximations in decision-making problems. 

Input: Table of information data consists of a set of objects ℧ in the first column and a set of 

attributes 𝓒 in the first row. 

Output: Provide accurate determinations for exactness and roughness. 

Step 1: Evaluate the degrees of similarity 𝜓 (𝓅𝒾, 𝓅𝒿) among all attributes for each object using 

the following formula: 𝜓 (𝓅𝒾, 𝓅𝒿) =
∑ [𝒶ℊ(𝓅𝒾)=𝒶ℊ(𝓅𝒿)]𝓃

ℊ=1

𝓃
 , where 𝓃 represents the number of 

condition attributes. Then, generate the table illustrating similarities among the attributes for all 

objects. 

Step 2: Establish the binary relation 𝓅𝒾ℛ 𝓅𝒿 ⟺ 𝜓 (𝓅𝒾, 𝓅𝒿) ≥ 𝛿, where 𝛿 denotes the degree 

of similarity, which is tailored to the expert requirements. 

Step 3: For each 𝓅 ∈ ℧, compute the following: 

(i) All 𝑘-neighborhoods, where 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, as defined in Definition 2.1. 

(ii) All basic 𝑘-neighborhoods, where 𝑘 ∈ {〈𝑟〉, 〈𝑙〉, 〈𝑖〉, 〈𝑢〉}, as defined in Definition 3.1. 

Step 4: For every 𝒪 ⊆ ℧, perform the following: 

(i) By using Definition 4.1, calculate the basic-minimal lower approximation ℛ𝑘
𝔟 (𝒪); 

(ii) If ℛ𝑘
𝔟 (𝒪) = Φ, conclude that 𝒪 is a rough set; and 

(iii)Otherwise, perform the following steps: 

Step 5: Calculate the basic-minimal upper approximation ℛ𝑘

𝔟
(𝒪), following Definition 4.1; 

Step 6: Determine the basic-minimal accuracy 𝛾𝑘
𝔟(𝒪) =

|ℛ𝑘
𝔟 (𝒪)|

|ℛ𝑘
𝔟

(𝒪)|
; 

(i) If 𝛾𝑘
𝔟(𝒪) = 1, designate 𝒪 as an exact set. 

(ii) Otherwise, conclude that 𝒪 is a rough set. 

Step 7: End. 

7. Conclusions and future work 

The RS theory significantly hinges on the RS operators and precision values, which are crucial 

elements that underpin its practical applications. These components not only offer insights into the 

data within subsets, but also gauge the representation of these subsets within the broader dataset. 

Enhanced operators and precision values can invariably lead to more accurate predictions, thus driving 

research efforts towards refining these aspects.  

In this pursuit, there has been a focused exploration into the "basic-minimal approximations" 

derived from general binary relations, leveraging novel neighborhood constructions, termed basic-

minimal neighborhoods. This endeavor expands the horizons of Pawlak's approximation theory, 

aiming to more effectively capture nuances in data representation. These advanced approximations, 

characterized by their minimal basics, have demonstrated a marked superiority over the preceding 
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methodologies, notably surpassing the effectiveness of approaches proposed by the methods of Yao [3], 

Dai et al. [6], Allam et al. [8], Abu-Gdairi [9], and Abd El-Monsef et al. [11]. Particularly in navigating 

the diagnostic complexities that arise from the symptom similarity, they have substantially enhanced 

the diagnostic accuracy. The robustness of these methods is substantiated by rigorous mathematical 

proofs, as encapsulated in Theorem 4.3, Theorem 4.4, and their accompanying corollaries. These 

analyses underscore the heightened accuracy achieved by the proposed basic-minimal approximations 

compared to the alternative methodologies. Furthermore, concrete illustrations provided through 

Examples 4.4 and 4.5, which were complemented by tabulated data (Table 10–12), served to elucidate 

and reinforce these findings. 

One of the noteworthy contributions of this study lies in its endeavor to bridge the RS theory with 

topology, thereby unveiling topological structures inherent in these approximations. This 

interdisciplinary approach opens avenues for deeper explorations into topology within the realm of the 

RS theory, accentuating the pivotal role played by these approximations in delineating topologies. 

In essence, this research not only delves into fortifying the theoretical underpinnings of  RS 

theory, but also accentuates its practical ramifications, especially in scenarios characterized by 

overlapping symptoms. The exceptional accuracy achieved in diagnosing heart failure, as evidenced 

by a perfect 100% accuracy rate in a dataset sourced from Al-Azhar University's Cardiology 

Department, underscores the efficacy and real-world applicability of these methodologies. In contrast, 

conventional methods, such as Dai et al.'s approach, have exhibited limitations in discerning between 

patients with heart failure and healthy individuals, thereby engendering uncertainty in decision-making 

processes. Moving forward, the proposed methodologies hold promise for broader applications beyond 

medical diagnostics. The formulation of a streamlined algorithm, complemented by a structured 

workflow to be implemented in programming languages such as MATLAB, paves the way for seamless 

integration into decision-making frameworks across diverse domains. 

• Strengths and advantages of the approaches: 

Based on the above, challenges, benefits, and strengths of the presented methods can be 

summarized as follows: 

1) The methodology articulated in this paper hinges on generalized neighborhood systems derived 

from binary relations, which are devoid of restrictive conditions. This inclusivity not only 

amplifies its applicability, but also underscores its robustness across varied domains. 

2) The versatility of this approach shines through its ability to tackle practical challenges under 

arbitrary relations, circumventing the constraints associated with equivalence relations, as 

prevalent in conventional methodologies. 

3) The delineation of four distinct approaches, with the model predicated on the basic 〈𝑖〉 -

neighborhood emerging as the most accurate, facilitates nuanced comparisons and insights into 

different approximation techniques and precision values, as demonstrated in the results 

obtained see (see Proposition 4.2 and Corollary 4.1). 

4) Proposition 4.1 serves as a testament to the fidelity of the methodologies proposed herein, 

preserving the foundational tenets of Pawlak's framework without imposing arbitrary restrictions. 

5) The scalability of this approach renders it well-suited to handle large datasets, owing to its 

reliance on neighborhood constructs that are readily discernible through data classification. 

6) Notably, the methodologies outlined in this paper offer a heightened accuracy in decision-

making processes, particularly in scenarios where accuracy is paramount, such as in infectious 

disease management cases such as COVID-19, where precision directly correlates with the 
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sample size. 

7) Focusing on diagnosing heart failure, the application described in this paper achieves an 

exceptional accuracy, reaching 100% in a dataset from Al-Azhar University's Cardiology 

Department. The mathematical results closely align with the decisions made by physicians, 

which accurately identified patients with heart failure. In contrast, previous methods (such as 

Yao, and Dai et al.'s methods) have faltered in distinguishing between patients with heart failure 

and healthy individuals, thereby introducing uncertainty into decision-making processes. 

In conclusion, the methodologies delineated in this study not only advance the theoretical frontiers 

of the RS theory, but also hold profound implications for practical decision-making across diverse 

domains, promising an enhanced accuracy and reliability in complex decision-making scenarios. 

Future works: 

In our forthcoming investigations, we will delve into the following areas: 

1) Conducting comparative studies: We plan to conduct comprehensive comparative studies of 

the suggested approaches (basic-minimal approximations) against other methodologies. 

Notably, we aim to compare our proposed models with recent advancements, including ternary 

models [39,43], to highlight improvements in the accuracy and generalization. 

2) Exploring expanded domains: Our research will extend to explore the application of the 

proposed methods in expanded domains, particularly within medical contexts [45–48] and 

economic applications [21,22]. By venturing into these diverse domains, we aim to assess the 

versatility and efficacy of our methodologies across varied application scenarios. 

3) Implementation across various frameworks: We intend to shed light on the implementation 

of basic-minimal approximations across various frameworks, including fuzzy sets [49], soft 

sets [50], soft RS's [51], and their utilization in Multicriteria decision-making applications [51]. 

Additionally, we aim to explore their application in decision-theoretic RS's [24-27], rough 

fuzzy sets [29,30], fuzzy topological spaces [52], Fuzzy soft topological structures [53,54], 

Ideals and girll applications [55–57], as well as Rough lattice, Graph medical applications, and 

Generalized picture fuzzy soft sets [58–60].In essence, our future endeavors aim to further 

validate and extend the applicability of our proposed methodologies across diverse domains, 

paving the way for advancements in both theoretical frameworks and practical applications. 
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