Research article

Extension of topological structures using lattices and rough sets

  • Received: 13 December 2023 Revised: 13 January 2024 Accepted: 22 January 2024 Published: 22 February 2024
  • MSC : 54A05, 54B10, 54D30, 54G99

  • This paper explores the application of rough set theory in analyzing ambiguous data within complete information systems. The study extends topological structures using equivalence relations, establishing an extension of topological lattice within lattices. Various relations on topological spaces generate different forms of exact and rough lattices. Building on Zhou's work, the research investigates rough sets within the extension topological lattice and explores the isomorphism between topology and its extension. Additionally, the paper investigates the integration of lattices and rough sets, essential mathematical tools widely used in problem-solving. Focusing on computer science's prominent lattices and Pawlak's rough sets, the study introduces extension lattices, emphasizing lower and upper extension approximations' adaptability for practical applications. These approximations enhance pattern recognition and model uncertain data with finer granularity. While acknowledging the benefits, the paper stresses the importance of empirical validations for domain-specific efficacy. It also highlights the isomorphism between topology and its extension, revealing implications for data representation, decision-making, and computational efficiency. This isomorphism facilitates accurate data representations and streamlines computations, contributing to improved efficiency. The study enhances the understanding of integrating lattices and rough sets, offering potential applications in data analysis, decision support systems, and computational modeling.

    Citation: Mostafa A. El-Gayar, Radwan Abu-Gdairi. Extension of topological structures using lattices and rough sets[J]. AIMS Mathematics, 2024, 9(3): 7552-7569. doi: 10.3934/math.2024366

    Related Papers:

  • This paper explores the application of rough set theory in analyzing ambiguous data within complete information systems. The study extends topological structures using equivalence relations, establishing an extension of topological lattice within lattices. Various relations on topological spaces generate different forms of exact and rough lattices. Building on Zhou's work, the research investigates rough sets within the extension topological lattice and explores the isomorphism between topology and its extension. Additionally, the paper investigates the integration of lattices and rough sets, essential mathematical tools widely used in problem-solving. Focusing on computer science's prominent lattices and Pawlak's rough sets, the study introduces extension lattices, emphasizing lower and upper extension approximations' adaptability for practical applications. These approximations enhance pattern recognition and model uncertain data with finer granularity. While acknowledging the benefits, the paper stresses the importance of empirical validations for domain-specific efficacy. It also highlights the isomorphism between topology and its extension, revealing implications for data representation, decision-making, and computational efficiency. This isomorphism facilitates accurate data representations and streamlines computations, contributing to improved efficiency. The study enhances the understanding of integrating lattices and rough sets, offering potential applications in data analysis, decision support systems, and computational modeling.



    加载中


    [1] M. E. Abd El Monsef, M. A. El-Gayar, R. M. Aqeel, A comparison of three types of rough fuzzy sets based on two universal sets, Int. J. Mach. Learn. Cybern., 8 (2017), 343–353. https://doi.org/10.1007/s13042-015-0327-8 doi: 10.1007/s13042-015-0327-8
    [2] M. E. Abd El Monsef, A. M. Kozae, M. K. El-Bably, On generalizing covering approximation space, J. Egypt Math. Soc., 23 (2015), 535–545.
    [3] M. E. Abd El Monsef, M. A. El-Gayar, R. M. Aqeel, On relationships between revised rough fuzzy approximation operators and fuzzy topological spaces, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 257–271. https://doi.org/10.1504/IJGCRSIS.2014.068022 doi: 10.1504/IJGCRSIS.2014.068022
    [4] M. E. Abd El Monsef, O. A, Embaby, M. K. El-Bably, Comparison between rough set approximations based on different topologies, Int. J. Granul. Comput. Rough Sets Intell. Syst., 3 (2014), 292–305. https://doi.org/10.1504/IJGCRSIS.2014.068032 doi: 10.1504/IJGCRSIS.2014.068032
    [5] R. Abu-Gdairi, A. A. El Atik, M. K. El-Bably, Topological visualization and graph analysis of rough sets via neighborhoods: A medical application using human heart data, AIMS Math., 8 (2023), 26945–26967. https://doi.org/10.3934/math.20231379 doi: 10.3934/math.20231379
    [6] R. Abu-Gdairi, A. A. Nasef, M. A. El-Gayar, M. K. El-Bably, On fuzzy point applications of fuzzy topological spaces, Int. J. Fuzz. Logic Intell. Sys., 23 (2023), 162–172. https://doi.org/10.5391/IJFIS.2023.23.2.162 doi: 10.5391/IJFIS.2023.23.2.162
    [7] R. Abu-Gdairi, M. A. El-Gayar, M. K. El-Bably, K. K. Fleifel, Two different views for generalized rough sets with applications, Mathematics, 9 (2022), 2275. https://doi.org/10.3390/math9182275 doi: 10.3390/math9182275
    [8] R. Abu-Gdairi, M. A. El-Gayar, T. M. Al-shami, A. S. Nawar, M. K. El-Bably, Some topological approaches for generalized rough sets and their decision-making applications, Symmetry, 14 (2022). https://doi.org/10.3390/sym14010095
    [9] M. I. Ali, M. K. El-Bably, E. A. Abo-Tabl, Topological approach to generalized soft rough sets via near concepts, Soft Comput., 26 (2022), 499–509. https://doi.org/10.1007/s00500-021-06456-z doi: 10.1007/s00500-021-06456-z
    [10] A. A. Azzam, A topological tool to develop novel rough set, J. Math Comput., 32 (2024), 204–216.
    [11] A. A. Azzam, Comparison of two types of rough approximation via grill, Italian J. Pure Appl. Math., 47 (2022), 258–270.
    [12] N. Ba$\breve{g}$irmaz, I. Icen, A. F. $\ddot{O}$zcan, Topological rough groups, Topol. Algebra Appl., 4 (2016), 31–38.
    [13] B. Banaschewski, Extensions of topological spaces, Canad. Math. Bull., 7 (1964), 1–2.
    [14] G. Birkhoff, Lattice theory, Providence: American Mathematical Society Colloquium Publications, 1967.
    [15] C. J. R. Borges, On extensions of topologies, Canadian J. Math., 9 (1967), 474–487.
    [16] J. Chen, J. Li, Y. Lin, G. Lin, Z. Ma, Relations of reduction between covering generalized rough sets and concept lattices, Inform. Sci., 304 (2015), 16–27.
    [17] D. Chen, W. Zhang, D. Yeung, E. C. C. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inform. Sci., 176 (2006), 1829–1848.
    [18] P. Crawley, R. P. Dilworth, Algebraic theory of lattices, Prent. Hall, 1973.
    [19] B. A. Davey, H. A. Priestely, Introduction to lattice and order, Cambr. Univ. Press, 1990.
    [20] B. A. Davey, H. A. Priestely, Introduction to lattice and order, Sec. Ed. Cambr. Univ. Press, 2002.
    [21] A. A. El Atik, A. S. Wahba, Topological approaches of graphs and their applications by neighborhood systems and rough sets, J. Intell. Fuzzy Syst., 39 (2020), 6979–6992. https://doi.org/10.3233/JIFS-200126 doi: 10.3233/JIFS-200126
    [22] A. A. El Atik, A. A. Nasef, Some topological structures of fractals and their related graphs, Filomat, 34 (2020), 153–165. https://doi.org/10.2298/FIL2001153A doi: 10.2298/FIL2001153A
    [23] M. K. El-Bably, R. Abu-Gdairi, M. A. El-Gayar, Medical diagnosis for the problem of Chikungunya disease using soft rough sets, AIMS Math., 8 (2023), 9082–9105. https://doi.org/10.3934/math.2023455 doi: 10.3934/math.2023455
    [24] M. K. El-Bably, A. A. El Atik, Soft $\beta$-rough sets and their application to determine COVID-19, Turk. J. Math., 45 (2021), 1133–1148. https://doi.org/10.3906/mat-2008-93 doi: 10.3906/mat-2008-93
    [25] M. A. El-Gayar, R. Abu-Gdairi, M. K. El-Bably, D. I. Taher, Economic decision-making using rough topological structures, J. Math., 2023 (2023). https://doi.org/10.1155/2023/4723233
    [26] M. A. El-Gayar, A. El Atik, Topological models of rough sets and decision making of COVID-19, Complexity, 2022 (2022). https://doi.org/10.1155/2022/2989236
    [27] A. A. Estaji, M. R. Hooshmandas, Z. B. Davva, Rough set theory applied to lattice theory, Inform. Sci., 200 (2012), 108–122.
    [28] R. B. Esmaeel, M. O. Mustafa, On nano topological spaces with grill-generalized open and closed sets, AIP Conf. Proc., 2414 (2023). https://doi.org/10.1063/5.0117062
    [29] R. B. Esmaeel, N. M. Shahadhuh, On grill-semi-P-separation axioms, AIP Conf. Proc., 2414 (2023). https://doi.org/10.1063/5.0117064
    [30] S. Fomin, Extensions of topological spaces, Ann. Math., Second Series, 44 (1943), 471–480.
    [31] G. Grätzer, General lattice theory, Basel: Birkhäuser Verlag, 1978.
    [32] C. Guido, On a characterization of simple extensions of topologies, Note De Mat., 1981.
    [33] J. Guti$\acute{e}$rrez Garcia, I. Mardones-P$\acute{e}$rez, M. A. de Prada Vicente, Insertion and extension theorems for lattice-valued functions on preordered topological spaces, Topology Appl., 158 (2011), 60–68.
    [34] G. Gr$\ddot{a}$tzer, Lattice theory: Foundation, Springer Basel, 2011. https://doi.org/10.1007/978-3-0348-0018-1
    [35] W. He, D. Peng, M. Tkachenko, Z. Xiao, Gaps in lattices of (para) topological group topologies and cardinal functions, Topology Appl., 264 (2019), 89–104.
    [36] K. Hu, Y. Sui, Y. Lu, J. Wang, C. Shi, Concept approximation in concept lattice, knowledge discovery and data mining, Lecture Notes Comput. Sci., 2035 (2001), 167–173.
    [37] Z. Huang, J. Li, Covering based multi-granulation rough fuzzy sets with applications to feature selection, Expert Syst. Appl., 238 (2024), 121908. https://doi.org/10.1016/j.eswa.2023.121908 doi: 10.1016/j.eswa.2023.121908
    [38] Z. Huang, J. Li, C. Wang, Robust feature selection using multigranulation variable-precision distinguishing indicators for fuzzy covering decision systems, IEEE Trans. Syst. Man. Cyber. Syst., 2023. https://doi.org/10.1109/TSMC.2023.3321315
    [39] Z. Huang, J. Li, Multi-level granularity entropies for fuzzy coverings and feature subset selection, Artif. Intell. Rev., 56 (2023), 12171–12200. https://doi.org/10.1007/s10462-023-10479-3 doi: 10.1007/s10462-023-10479-3
    [40] Z. Huang, J. Li, Y. Qian, Noise-Tolerant Fuzzy-$\beta$-Covering-based multigranulation rough sets and feature subset selection, IEEE Trans. Fuzzy Syst., 30 (2022), 2721–2735. https://doi.org/10.1109/TFUZZ.2021.3093202 doi: 10.1109/TFUZZ.2021.3093202
    [41] Z. Huang, J. Li, Discernibility measures for fuzzy-$\beta$-covering and their application, IEEE Trans. Cyber., 52 (2022), 9722–9735. https://doi.org/10.1109/TCYB.2021.3054742 doi: 10.1109/TCYB.2021.3054742
    [42] J. Järvinen, Approximations and rough sets based on tolerances, Berlin Heidelberg: Springer-Verlag, 2001.
    [43] J. Järvinen, The ordered set of rough sets, Berlin Heidelberg: Springer-Verlag, 2004.
    [44] J. Järvinen, Lattice theory for rough sets, Berlin Heidelberg: Springer-Verlag, 2007.
    [45] N. Levine, Simple extensions of topologies, Amer. Math. Monthly, 71 (1964), 22–25.
    [46] M. Liu, M. Shao, W. Zhang, C. Wu, Reduction method for concept lattices based on rough set theory and its application, Comput. Math. Appl., 53 (2007), 1390–1410.
    [47] G. L. Liu, W. Zhu, The algebraic structures of generalized rough set theory, Inform. Sci., 178 (2008), 4105–4113.
    [48] R. E. Larson, S. J. Andima, The lattice of topologies, Rocky Mountain J. Math., 5 (1975), 177–198.
    [49] X. Li, H. Yi, S. Liu, Rough sets and matroids from a lattice-theoretic viewpoint, Inform. Sci., 342 (2016), 37–52.
    [50] H. Lu, A. M. Khalil, W.d. Alharbi, M. A. El-Gayar, A new type of generalized picture fuzzy soft set and its application in decision making, J. Intell. Fuzzy Syst., 40 (2021), 12459–12475.
    [51] M. N. Mukherjee, B. Roy, R. Sen, On extensions of topological spaces in terms of ideals, Topology Appl., 154 (2007), 3167–3172.
    [52] Z. M. Ma, B. Q. Hu, Topological and lattice structures of $\mathcal{L}$-fuzzy rough sets determined by lower and upper sets, Inform. Sci., 218 (2013), 194–204.
    [53] S. Mapes, Finite atomic lattices and resolutions of monomial ideals, J. Algebra, 379 (2013), 259–276.
    [54] A. S. Nawar, M. A. El-Gayar, M. K. El-Bably, R. A. Hosny, $\theta\beta$-ideal approximation spaces and their applications, AIMS Math., 7 (2022), 2479–2497. https://doi.org/10.3934/math.2022139 doi: 10.3934/math.2022139
    [55] Z. Pawlak, Rough sets, Int. J. Inform. Comput. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956
    [56] Z. Pawlak, Rough sets. Algebric and topological approach, ICS PAS Reports, 482 (1982). Available from: https://api.semanticscholar.org/CorpusID: 111800999
    [57] Z. Pawlak, Rough sets, rough relation and rough function, Fund. Inform., 27 (1996), 103–108.
    [58] Z. Pei, D. Pei, L. Zheng, Topology vs generalized rough sets, Int. J. Approx. Reason., 52 (2011), 231–239.
    [59] G. L. Qi, W. R. Liu, Rough operations on Boolean algebras, Inform. Sci., 173 (2005), 49–63.
    [60] J. Reinhold, Finite intervals in the lattice of topologies, Appl. Cat. Struct., 8 (2000), 36–376.
    [61] S. K. Roy, S. Bera, Approxiamtion of rough, soft set and its application to lattice, Fuzzy Inf. Eng., 7 (2015), 379–387.
    [62] A. Tan, J. Li, G. Lin, Connections between covering-based rough sets and concept lattices, Int. J. Approx. Reason., 56 (2015), 43–58.
    [63] M. Vlach, Algebraic and topological aspects of rough set theory, Fourth Int. Workshop Comput. Intell. Appl., 10 (2008), 23–30.
    [64] P. Whitman, Lattices, Equivalence relations, and subgroups, Bull. Amer. Math. Soc., 52 (1946), 507–522.
    [65] L. Wei, J. J. Qi, Relation between concept lattice reduction and rough set reduction, Knowl. Based Syst., 23 (2010), 934–938.
    [66] Z. Wang, Q. Feng, H. Wang, The lattice and matroid representations of definable sets in generalized rough sets based on relations, Inform. Sci., 485 (2019), 505–520.
    [67] F. Wehrung, Cevian operations on distributive lattices, J. Pure Appl. Algebra, 224 (2020), 106–202.
    [68] Q. Xiao, Q. Li, L. Guo, Rough sets induced by ideals in lattices, Inform. Sci., 271 (2014), 82–92.
    [69] J. Yang, X. Zhang, Some weaker versions of topological residuated lattices, Fuzzy Sets Sys., 373 (2019), 62–77.
    [70] Y. Y. Yao, Two views of the theory of rough sets in finite unverses, Int. J. Approx. Reason., 15 (1996), 291–317.
    [71] Y. Y. Yao, Generalized rough set models, Rough Sets Knowl. Dis., 1 (1998). 286–318.
    [72] Y. Y. Yao, Two semantic issues in probabilistic rough set model, Fund. Inform., 108 (2011), 249–265.
    [73] Z. Yu, X. Bai, Z. Yun, A study of rough sets based on $1$-neighborhood systems, Inform. Sci., 248 (2013), 103–113.
    [74] P. Zhang, T. Li, G. Wang, C. Luo, H. Chen, J. Zhang, et al., Multi-source information fusion based on rough set theory: A review, Inform. Fusion, 68 (2021), 85–117. https://doi.org/10.1016/j.inffus.2020.11.004 doi: 10.1016/j.inffus.2020.11.004
    [75] P. Zhang, T. Li, Z. Yuan, C. Luo, K. Liu, X. Yang, Heterogeneous feature selection based on neighborhood combination entropy, IEEE Trans. Neur. Net. Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3193929
    [76] N. L. Zhou, B. Q. Hu, Rough sets based on complete completely distributive lattice, Inform. Sci., 269 (2014), 378–387.
    [77] D. Zou, Y. Xu, L. Li, Z. Ma, Novel variable precision fuzzy rough sets and three-way decision model with three strategies, Inform. Sci., 629 (2023), 222–248. https://doi.org/10.1016/j.ins.2023.01.141 doi: 10.1016/j.ins.2023.01.141
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(627) PDF downloads(34) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog