
http://www.aimspress.com/journal/Math

AIMS Mathematics, 9(3): 7552–7569.
DOI: 10.3934/math.2024366
Received: 13 December 2023
Revised: 13 January 2024
Accepted: 22 January 2024
Published: 22 February 2024

Research article

Extension of topological structures using lattices and rough sets

Mostafa A. El-Gayar1,* and Radwan Abu-Gdairi2

1 Department of Mathematics, Faculty of Science, Helwan University, Helwan, 11795, Egypt
2 Mathematics Department, Faculty of Science, Zarqa University, Zarqa, 13110, Jordan

* Correspondence: Email: m.elgayar@science.helwan.edu.eg.

Abstract: This paper explores the application of rough set theory in analyzing ambiguous data within
complete information systems. The study extends topological structures using equivalence relations,
establishing an extension of topological lattice within lattices. Various relations on topological
spaces generate different forms of exact and rough lattices. Building on Zhou’s work, the research
investigates rough sets within the extension topological lattice and explores the isomorphism between
topology and its extension. Additionally, the paper investigates the integration of lattices and rough
sets, essential mathematical tools widely used in problem-solving. Focusing on computer science’s
prominent lattices and Pawlak’s rough sets, the study introduces extension lattices, emphasizing lower
and upper extension approximations’ adaptability for practical applications. These approximations
enhance pattern recognition and model uncertain data with finer granularity. While acknowledging
the benefits, the paper stresses the importance of empirical validations for domain-specific efficacy. It
also highlights the isomorphism between topology and its extension, revealing implications for data
representation, decision-making, and computational efficiency. This isomorphism facilitates accurate
data representations and streamlines computations, contributing to improved efficiency. The study
enhances the understanding of integrating lattices and rough sets, offering potential applications in
data analysis, decision support systems, and computational modeling.
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1. Introduction

Lattices and rough sets serve as potent mathematical tools extensively applied in efficiently
resolving numerous significant problems. Lattices find their utility in computer science and
approximation spaces [36], while the genesis of rough sets can be traced back to Pawlak’s introduction
in the early 1982s via the approximation space [55, 56]. Pawlak notably investigated a rough
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membership function [57].
However, the stringent requirement of an equivalence relation imposes certain limitations on

the applications of conventional rough set theory. In response, various generalizations of the
theory have surfaced, employing either arbitrary or specific relations. In the paapers [70, 71], Yao
pioneered this avenue of research. Here, specific relations were considered to establish distinct
types of generalized rough sets, encompassing tolerance [42, 43], and a general relation (see for
instance [5, 7, 24–26, 46, 47, 54, 58]). Topological structures were used in rough set generalizations
(for examples the papers [4, 8, 10, 11]), fuzzy set applications (see [1, 3, 50]), and covering [2].

The abstract consideration of topological structures involves analyzing the universal set U using
its family of open sets. Each space within this framework can be viewed as a lattice, denoted LA(U),
associated with every subset of U. The study of these lattices is contingent upon the elements of LA(U),
not the points in U. Initial explorations into topological extensions were conducted for Kolmogorov
spaces [13, 15, 30, 45]. Diverse extension methodologies include employing ideals [28, 29, 53, 68],
algebraic concepts [5, 6, 32, 51], matroids [49, 62, 65], graphs [5, 21, 22], and preordered topological
structures [9, 20, 28, 29, 31, 33–35, 60, 69]. In the realm of topology, many researchers regard open
sets as points in the topology lattice, with Pawlak’s traditional approximation structure resembling a
quasi-discrete topology where each subset is open [48,61,63]. This concept introduces rough sets that
may not necessarily be open. Thus, within a quasi-discrete topology, two distinct types of sets exist:
Pawlak’s upper and lower approximations manifest as open sets. In the topological lattice, these open
sets correspond to the interior and closure of sets within a quasi-discrete topology. Furthermore, the
lower (or upper) approximation in the topological lattice signifies the largest (or smallest) open set
containing (or contained within) a given set, termed as the greatest lower bound (or least upper bound)
in the lattice. Zhou and Hu [76] explored rough sets on a complete completely distributive lattice.

In fact, Zhou and Hu focused on the crisp power set of a universe, represented as an atomic Boolean
lattice. Pawlak’s rough sets were introduced, where equivalence classes were identified as elements
of this power set lattice. The study then delved into lower and upper approximations based on the
lattice order relation, leading to the exploration of natural ideals within a lattice. To extend this line
of inquiry, they introduced a novel perspective by investigating rough sets from the standpoint of
lattice theory. They took the lattice itself as the universe and explored the definition of lower and
upper approximations within this lattice context. Building upon Järvinen’s framework, Mordeson’s
approximation operators, and the work of Qi and Liu [59] on rough sets and generalized rough sets,
their contribution lies in defining rough sets on a complete completely distributive (CCD) lattice using
an arbitrary binary relation. Unlike existing approaches that primarily focus on covers or partitions,
they proposed a unified framework for the study of rough sets by employing a binary relation on a
CCD lattice. This framework encompasses rough sets based on ordinary binary relations, rough fuzzy
sets, and interval-valued rough fuzzy sets. The adoption of a binary relation introduces a new level of
generality, allowing them to establish a connection between relations and partitions on CCD lattices.
Furthermore, their paper established a pair of lower and upper approximation operators on CCD lattices
based on this binary relation, offering a broader generalization of rough sets. They emphasized that
their approach is not only applicable to CCD lattices but also extends the understanding of rough sets
on Boolean lattices and power lattices. By demonstrating that the rough sets defined in [17] are special
cases within their framework, they underscored the uniqueness and irreplaceability of their proposed
rough sets.
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In summary, their manuscript contributes significantly to the field by introducing a comprehensive
study of rough sets on lattices, specifically CCD lattices, through the innovative use of binary relations.
We believe that this approach brings a fresh perspective to rough set theory, paving the way for new
horizons in the understanding and application of rough sets, while others investigated them on general
lattices (for example, see the references [12, 16, 17, 27, 52, 66, 67]).

The applications of rough sets in many fields, such as information fusion [74], feature
selection [37, 75], fuzzy covering based rough sets [38, 39], multi-level granularity entropies for
fuzzy coverings [39], fuzzy-β-covering-based multigranulation rough sets [40, 41], and three-way
decision [77].

Our research introduces lower and upper extension approximations within an extension lattice
framework, exhibiting promise for integration into practical applications. These extension
approximations demonstrate versatility, enabling their integration with specific applications in diverse
domains. In data science and artificial intelligence, their capability to discern detailed relationships
among elements could enhance pattern recognition and data analysis methodologies, contributing to
more refined decision-making processes. Moreover, their finer granularity in defining rough and exact
sets holds the potential for modeling and handling uncertain or imprecise data in practical applications,
such as risk management systems or predictive modeling in financial markets. The advantages of
our introduced extension approximations lie in their ability to capture more detailed relationships
among elements, potentially leading to enhanced pattern recognition, data analysis, and decision-
making processes. The finer granularity they provide in defining rough and exact sets facilitates more
accurate and sophisticated modeling of uncertain or imprecise data, offering improved insights and
solutions in real-world applications. Despite these advantages, it is essential to consider the limitations
and disadvantages of existing methods that our proposed approach seeks to address. Some methods
may lack the precision and detailed relationships offered by our extension approximations, making
them less suitable for certain applications. Empirical validations and targeted studies are crucial steps
toward demonstrating the efficacy and practical utility of our approach within specific domains.

In addition to our contribution, the paper explores the extension of topological structures through
lattices, employing an equivalence relation to obtain an extension topological lattice. The comparison
between the topological lattice and its extension is scrutinized, and various types of rough-bounded
distributive lattices and their properties are investigated. The isomorphism between topology and its
extension holds significant implications, particularly in practical applications involving data analysis,
decision-making, and information retrieval systems. Understanding this isomorphism facilitates a more
comprehensive characterization of relationships and structures within complex datasets. One practical
significance lies in the realm of data representation and modeling. The isomorphism provides a bridge
between the original topology and its extended form, enabling a seamless translation of concepts and
relationships. This translation facilitates more accurate and efficient representations of complex data
structures, which is invaluable in fields like pattern recognition, where precise data representations
are critical.

Furthermore, in decision-making processes, the isomorphism allows for a clearer understanding
of relationships between different elements or features within datasets. This clarity aids in more
informed decision-making by revealing underlying connections or similarities that might otherwise
remain obscured without the isomorphic mapping. Moreover, the isomorphism between topology and
its extension has implications in the realm of computational efficiency. It can streamline algorithms
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and computations by leveraging the correspondences between the original topology and its extended
version. This streamlined approach could enhance the efficiency of various computational processes,
such as data retrieval or analysis. In essence, the isomorphism between topology and its extension
offers practical applications in data representation, decision-making, and computational efficiency.
Its ability to bridge the gap between different topological structures enriches our understanding of
complex datasets and enhances the efficacy of algorithms and processes utilized in various real-world
applications. Furthermore, the paper acknowledges the importance of fuzzy lattices in the context of
rough set theory. While our current discussion primarily centers on the representation of topological
structures using lattices and rough sets, we recognize the need to explore fuzzy lattices to address the
complexities inherent in data with fuzzy relationships. This acknowledgment opens avenues for future
research endeavors, aiming to provide a more comprehensive understanding of how rough set theory
can accommodate and address the nuances of real-world data.

2. Basic concepts and properties

Some basic concepts and results on lattices are introduced and studied in the
papers [14, 18, 19, 34, 64]. The collection of topologies on fixed set X is a partially
ordered. τ1 ≤ τ2 if τ1 ⊆ τ2. In other words, if every open set of τ1 is an open set of τ2, then τ1

is weaker than τ2. We recall the following definitions which are useful in the sequel.

2.1. Lattices

Definition 2.1. [14] A lattice LA=(U,≤) is distributive if either x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) or
x∨ (y∧ z) = (x∨ y)∧ (x∨ z) is satisfied, ∀ x, y, z ∈ U. It is bounded if it has zero as a smallest element
and unit as a greatest element of LA.

Definition 2.2. [14] An element x′ ∈ U is the complement of x ∈ U if x ∨ x′ = 1 and x ∧ x′ = 0. A
bounded, complemented, and distributive lattice is called a Boolean lattice.

Definition 2.3. [14] An equivalence relation Ω on LA is called congruence if ∀ a, b, c, d ∈ U such
that (s.t.) a Ω b and c Ω d. Moreover,

(i) If (a ∨ c) Ω (b ∨ d), then Ω is called a congruence on the join semilattice (LA,∨).

(ii) If (a ∧ c) Ω (b ∧ d), then Ω is called a congruence on meet semilattice (LA,∧).

(iii) If (a ∨ c) Ω (b ∨ d) and (a ∧ c) Ω (b ∧ d), then Ω is called a congruence on the lattice LA.

Definition 2.4. [20] Let LA be a lattice. Then,

(i) A nonempty subset J of LA is called an ideal if
(a) a, b ∈ J implies a ∨ b ∈ J .
(b) a ∈ LA, b ∈ J , and a ≤ b imply a ∈ J .

Thus, the ideal is a nonempty down set closed under join.

(ii) A nonempty subset G of LA is called a filter if
(a) a, b ∈ G implies a ∧ b ∈ G.
(b) a ∈ LA, b ∈ G, and a ≥ b implies a ∈ G.

Then, a filter is nonempty subsets closed under meet.
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Definition 2.5. [53] The atom of a lattice LA to be an element x ∈ U s.t. x covers 0 (i.e., x > 0) and
there is no element a s.t. x > a > 0. If every element in LA−{0} is the join atoms, then LA is an atomic
lattice. Furthermore, if LA is finite, then it is a finite atomic lattice.

Definition 2.6. [44] Let CLA = (B,⊆) be a complete atomic lattice, A(B) be a lattice of B, and ϕ :
A(B) → B be any function, for any element x ∈ B. The lower and upper approximation of x with
respect to ϕ are

Ω(x) = ∨{a ∈ A(B) : ϕ(x) ≤ x} , and

Ω(x) = ∨{a ∈ A(B) : ϕ(a) ∧ x , φ}, respectively.

Definition 2.7. [66] Let φ , LA ⊆ P(U) on U. If
⋂
i∈I
Xi ∈ LA for a class {Xi : i ∈ I} ⊆ LA, where I is

an index set, then LA is called a closure system.

2.2. Rough sets

Definition 2.8. [55] Let (U,Ω) be an approximation structure, where Ω be an equivalence relation
on U and U/Ω = {[x]Ω : x ∈ U} are equivalence classes of Ω. Then, for any X ⊆ U, lower and upper
approximation of X are defined by

Ω(X) = {x ∈ U : [x]Ω ⊆ X}, and

Ω(X) = {x ∈ U : [x]Ω ∩ X , φ}, respectively.
X is called rough, using Pawlak’s definition, if Ω(X) , Ω(X).

Proposition 2.9. [73] Let Ω be a relation on U. The following hold:
(L1) Ω(X) ⊆ X. (U1) X ⊆ Ω(X).
(L2) Ω(φ) = φ. (U2) Ω(φ) = φ.
(L3) Ω(U) = U. (U3) Ω(U) = U.
(L4) Ω(X ∩Y) = Ω(X)∩ Ω(Y). (U4) Ω(X ∪Y) = Ω(X)∪ Ω(Y).
(L5) If X ⊆ Y, then Ω(X) ⊆ Ω(Y). (U5) If X ⊆ Y, then Ω(X) ⊆ Ω(Y).
(L6) R(X)∪ R(Y) ⊆ R(X ∪ Y). (U6) Ω(X)∩ Ω(Y) ⊇ Ω(X ∩Y).
(L7) Ω(Xc) = (Ω(X))c. (U7) Ω(Xc) = (Ω(X))c.
(L8) Ω(Ω(X)) = Ω(X). (U8) Ω(Ω(X)) = Ω(X).
(L9) Ω((Ω(X))c) = (Ω(X))c. (U9) Ω((Ω(X))c) = (Ω(X))c.

Where Xc the complement of X in U.

Definition 2.10. [72] The boundary region for X is given by BNg(X) = Ω(X)−Ω(X). In other words,
BNg(X) =

⋃
{[x]Ω ∈ U/Ω : [x]Ω ∩ X , φ ∧ [x]Ω * X}.

3. Methods

In this section, the lattice through an equivalence relation is introduced. This relation forms an exact
lattice on its equivalence classes. In this case, the relation between exact lattices and rough lattices is
discussed. U/Ω1 ≤ U/Ω2 if U/Ω1 is a subclass of U/Ω2. A subset A of U is definable in (U,Ω) if it is a
union of Ω-classes. Otherwise, it is called undefinable.
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Definition 3.1. Let (U, τΩ) be a quasi discrete topological structure. Its lattice is called an exact lattice
and is denoted by (ELA(U), ⊆Ω) (briefly, ELAΩ(U). A zero element is ∅ and a unit element is U.

Definition 3.2. Let (U,Ω1) and (U,Ω2) be approximation structures on exact lattices (ELA(U), ⊆Ω1)
and (ELA(U), ⊆Ω2), respectively. If U/Ω1 ≤ U/Ω2, then (ELA(U), ⊆Ω1) is finer than (ELA(U), ⊆Ω2).

Definition 3.3. Let (U, τΩ) be a topological structure on (U,Ω) with a basis B = U/Ω. A topology τΩ

can be extended using a rough set A by B∗ = U/ΩS = B ∪ {B ∩ A : B ∈ B}.

Proposition 3.4. B∗ is a basis for a topological structure (U, τΩS ).

Proof. Using Definition 3.3, it is necessary to prove that τΩS is a topology on U. Clearly, U, φ ∈ τΩS ,
since φ =

⋃
{B : B ∈ ∅ ⊆ B}. Now, let {Gi : i ∈ I} be a class of members of τΩS . Then, each Gi =

⋃
x∈U

xΩS , x ∈ Gi for each i. So, each Gi is the union of elements of B and so
⋃
i∈I

Gi is a union of elements of

B∗. Similarly, G1 ∩G2 is a union of members of B∗, for each G1,G2 ∈ τΩS . �

(U, τΩS ) is called an extension topological structure. Now, we give an equivalent concept of
topological homeomorphic in a viewpoint of lattices.

Proposition 3.5. Two topologies τΩ(X) and τ∗
Ω

(Y) are homeomorphic if their topological extension
lattices are homeomorphic.

Proof. Let τΩ(X) and τ∗
Ω

(Y) be homeomorphic s.tX,Y ⊆ U is homeomorphic. To prove that (ELA(X),
⊆Ω) and (ELA(Y), ⊆Ω), it is necessary to prove that there is a homeomorphism function f from
ELAΩ(X)} onto ELAΩ(Y)}. For any G,H ⊆ ELAΩ(X)}, f (A ∩ B) = f (A) ∧ f (B) and f (A), f (B) ∈
ELAΩ(Y). Also, for any {Fi : Fi ∈ τΩ(X)}, we get, by assumption, f (

⋃
{Fi : Fi ∈ τ

∗
Ω

(Y)}) =
∨
{ f (Fi) :

f (Fi) ∈ ELAΩ(Y)}. Hence, open subsets of ELAΩ(X) and ELAΩ(Y) are in one-to-one correspondence
due to a bijective function. Therefore, f is a homeomorphism of ELAΩ(X)} onto ELAΩ(Y)}. �

Example 3.6. Let (U,Ω) be approximation structure with U = {a, b, c, d}. The basis is B = {{a}, {b},

{c, d}} and so its quasi discrete topology is τΩ ={U, φ, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}}. Set A =

{a, c}. Then, the extended basis is B∗ = {{a}, {b}, {c}, {c, d}}. Then, the extension of quasi discrete
topology is τΩS = {U, φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}}. The lattices for
each topology are shown in Figure 1.

The extension topology of quasi discrete topology (maybe for any topology) is established using
rough sets. Moreover, for each G,H ∈ τΩ s.t. G ≤ H, any element in τΩS has the form P = G∪ (H∩P).
So, if τΩ = {U, φ, {a}, {b}, {a, b}, {c, d}, {a, c, d}, {b, c, d}}. For instance, if {a, d} is a rough set, then
τΩS = {U, φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}} is shown in Figure 2. It
is noted that there is a homeomorphic between topologies of lattices which are extended by rough sets
{a, c} and {a, d}.

Definition 3.7. Let (U,Ω) be an approximation structure. A minimal equivalence class for each a ∈ U
is given by N(a) =

⋂
{Y ∈ U/Ω : ∀a ∈ Y}.

Definition 3.8. Let (U,Ω) be a approximation structure with |U| = n s.t n be finite and |U| be the
cardinality of U. A minimal basis of (U,Ω) is defined by BN = {N(ai) : ai ∈ U}.
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Figure 1. Lattice on U ={a, b, c, d} and its topological extension.

Figure 2. An extension lattice using a rough set {a, d}.

Example 3.9. Consider U = {a, b, c}. The equivalence classes on U are given by bases B{ab,c} = {{a,
b}, {c}, φ}, B{ac,b} = {{a, c}, {b}, φ}, and B{bc,a} = {{b, c}, {a}, φ}. In addition, a unit element is B{a,b,c} =

{{a}, {b}, {c}, φ}, and a zero element is B{abc} = {{a, b, c}, φ}. It is noted that the intersection of every two
lattices is a unit element, that is, B{ab,c}

⋂
B{ac,b} = {{a}, {b}, {c}, φ} = Ba,b,c. Also, the union is a zero

element, that is, B{ab,c}
⋃
B{ac,b} = {{a, b, c}, φ} = B{a,b,c}.

Remark 3.10. In the framework of (U,Ω), a subset is precisely categorized as an exact (or
definable) set or a rough (or undefinable) set based on two distinct exact sets: The lower and upper
approximation. While a rough set is defined approximately within (U,Ω), the exact set aligns with
openness in Pawlak’s approximation structure, forming a point within a lattice generated by an
extension topology. Consequently, an open set is denoted as an exact point within a topological lattice,
whereas any other set is termed a rough point. Essentially, any rough point can be defined by two
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exact points. For instance, if a, b ∈ LA(U) such that (a ≤ b), five cases exemplify their relation in the
extension lattice:

(i) Any rough point c < LA(U) such that a ≤ c ≤ b. This establishes a ≤ c and c ≤ b. (U,Ω).

(ii) If a ≤ b, then a ∨ b = b and a ∧ b = a in both lattices and their extensions.

(iii) For a ≤ c ≤ b, a ∨ c = c, a ∧ c = a, c ∨ b = b, and c ∧ b = c. This configuration is termed a rough
point approximation.

(iv) If a ∨ b = a ∨ (c ∨ b) = (a ∨ c) ∨ b = c ∨ b = b, it denotes an upper rough point approximation.

(v) When a ∧ b = (a ∧ c) ∧ b = a ∧ (c ∧ b) = a ∧ c = a, it signifies a lower rough point approximation.
Thus, a ≤ b in the extending lattice, and the rough pair of any rough point lies within (a, b) such

that a ≤ c ≤ b.

Proposition 3.11. Let ELAΩ(U) be a topology of an exact lattice and (U, τΩS ) be an extension
topological structure of (U, τΩ). Then, ELAΩ(U) and (U, τΩS ) are equivalent.

Proof. Using Definitions 3.2 and 3.3, each of ELAΩ(U) and (U, τΩS ) is a topology. It is necessary
to prove that for each A ∈ ELAΩ(U), using Proposition 3.5, there is a unique point B ∈ (U, τΩS ) s.t.
N(a,ELAΩ(U)) =M(b, (U, τΩS )) for a ∈ A and b ∈ B, respectively. Define a function f : ELAΩ(U)→
(U, τΩS ) by f (a) = b. Thus, f is a bijective function from ELAΩ(U) onto (U, τΩS ), and for each a ∈ A,
N(a,ELAΩ(U)) =N( f (a), (U, τΩS )). In particular, ∀ x ∈ U,N(β(x), ELAΩ(U)) =N( f (β(x)), (U, τΩS )),
where β(x) is a basis element containing x. Finally, it is sufficient to find a homeomorphism f from
ELAΩ(U) onto (U, τΩS ). For any G,H ⊆ τΩS with f (A ∩ B) = f (A) ∧ f (B) and f (A), f (B) ∈ ELAΩ(U).
Also, for any {Fi : Fi ∈ τΩS }, f (

⋃
{Fi : Fi ∈ τΩS }) =

∨
{ f (Fi) : f (Fi) ∈ ELAΩ(U)}. Therefore, open sets

in both of ELAΩ(U) and (U, τΩS ) in terms of a bijective function f are in a one-to-one correspondence.
Hence, f is homeomorphism. �

Definition 3.12. Let (U, τΩS ) be an extension of (U,Ω). A lower and upper extension approximation
for a rough set X are

app
S
(X) =

⋃
{Y ∈ U/ΩS : Y ⊆ X}.

appS (X) =
⋂
{Y ∈ U/ΩS : X ⊆ Y}, respectively.

The product of approximations of ELAΩ(U) has the form ELAΩ(U) ×ELAΩ(U) =

{(app(X), app(X)) : X ⊆ U}. The location of each subset A in (U,Ω) is assigned with a function P :

P(U)→ Z+ and is calculated by P(A) = 1
|U|

(
|app(A)|+|app(A)|

2 ). Similarly, the location of each subset A in

(U,ΩS ) is assigned with a function PS : P(U)→ Z+ and is calculated by PS (A) = 1
|U|

(
|appS (A)|+|appS (A)|

2 ).
Note that: The introduced lower and upper extension approximations differ from the classical

Pawlak approximation operators in the context of their construction within an extension lattice. The
classical Pawlak approximation structure relies on exact sets (lower and upper approximations) to
delineate between definable (exact) and undefinable (rough) sets within (U,Ω). However, the extension
lattice enriches this paradigm by incorporating an equivalence relation-based extension of the Pawlak
structure. Here, the lower and upper extension approximations transcend the classical approach
by utilizing a generalized binary relation. This extension allows for a more nuanced depiction of
relationships between elements, offering a refined characterization of rough and exact sets within a
topological lattice.
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Lemma 3.13. Let (ELA(U) × ELA(U),⊆) be an approximation lattice of (U,Ω). Then, φ and U are
zero and unit elements in their lattice’s location. Otherwise, 0 ≤P(X) ≤ 1.

Proof. The locations of φ and U are 1
|U|

(0+0
2 ) = 0 and 1

|U|
( |U|+|U|2 ) = 1, respectively. Moreover, for any

φ ⊆ X ⊆ U, P(φ) ≤P(X) ≤P(U). Therefore, 0 ≤P(X) ≤ 1. �

Lemma 3.14. Let (ELA(U)×ELA(U), ⊆) be an approximation lattice of (U,Ω). Then, PS (X) = P(X),
∀ X ⊆ U.

Proof. For any X ∈ U/Ω, app(X) = app(X). Then, P(X) = 1
|U|

(
2|app(X)|

2 ) =
|app(X)|

|U|
. Also, if X ∈ U/ΩS ,

then app
S
(X) = appS (X), and so PS (X) = 1

|U|
(

2|app
S

(X)|

2 ) =
|app

S
(X)|

|U|
. Since app(X) = app

S
(X) and

app(X) = appS (X), then PS (X) = 1
|U|

(
|app

S
(X)|+|appS (X)|

2 ) = 1
|U|

(
|app(X)|+|app(X)|

2 ) = P(X). �

Example 3.15. Let U = {a, bc} with U/Ω = {{a}, {b, c}}. Lower approximation, upper approximation,
and the location P for every A ⊆ U are given and computed in Table 1 and Figure 3. If X = {a, b} is
a rough set, then the extension of the approximation structure is τΩS = {U, φ, {a}, {b}, {a, b}, {b, c}}. In
addition, the extension lower approximation and extension upper approximation are obtained and the
location PS for every A ⊆ U is determined in Table 2 and Figure 4.

Table 1. Lower and upper approximations and their locations.

A app(A) app(A) P(A) Definability
φ φ φ 0 exact
{a} {a} {a} 1/3 exact
{b} φ {b, c} 1/3 internal undefinable
{c} φ {b, c} 1/3 internal undefinable
{a, b} {a} {U} 1/3 external undefinable
{a, c} {a} {U} 2/3 external undefinable
{b, c} {b, c} {b, c} 2/3 exact
U U U 1 exact

Figure 3. Lattice of (U,Ω).

Definition 3.16. A function ψ : (U, τΩ) → (U, τΩS ) is called an order isomorphism if ∀ a, b ∈ U s.t.
a ≤ b, then ψ(a) ≤ ψ(b).
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Table 2. Extension lower and upper approximations and their location.

A app
S
(A) appS (A) PS (A) Definability

φ φ φ 0 exact
{a} {a} {a} 1/3 exact
{b} {b} {b, c} 1/2 rough
{c} φ {c} 1/6 internal undefinable
{a, b} {a, b} {U} 5/6 external undefinable
{a, c} {a} {a, c} 1/2 rough
{b, c} {b, c} {b, c} 2/3 exact
U U U 1 exact

Figure 4. Extension lattice (U,ΩS ).

Proposition 3.17. Let (U, τΩ) be topological structure and (U, τΩS ) be its extension. Then, a bijective
function ψ : (U, τΩ)→ (U, τΩS ) is an order isomorphism.

Proof. Let a, b be open sets in τΩ with app(a) and app(b), respectively. It is needed to prove that
(U, τΩ) and (U, τΩS ) have same locations. There are two cases:
Case 1. If G and H are exact points, then they have same approximations and so has a determined
location. Since G ≤ H in τΩ are exacts points, then app(H) ≤ app(H) and app(G) ≤ app(H) in the
topological lattice and its extension, since upper and lower approximation are the same. Therefore,
both lattices have the same location.
Case 2. If a and b are rough points, then their location are not the same and so they have a tide
boundary region. Then, if a, b ∈ τΩS are rough s.t. a ≤ b, then lower and upper approximations are
different. Since app(a) ≤ app(b) and app(a) ≤ app(b), then app(a) ≤ app(b) and app(a) ≤ app(b).
Thus, ∀ a, b ∈ τΩ s.t. app(a) ≤ app(b) and app(a) ≤ app(b) in τΩ. Therefore, app

S
(a) ≤ app

S
(b) and

appS (a) ≤ appS (b) in τΩS . �

4. Results and discussions

From Example 3.15, we note the following:
The set ELA(U), encompassing all definable subsets of U, constitutes a complete atomic Boolean

algebra, functioning as a sub-algebra within the Boolean algebra of U’s subsets. Given X ⊆ U,
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app(X) = sup{Y ∈ ELA(U)} represents the greatest element in ELA(U) for Y ⊆ X, while
app(X) = inf{Y ∈ ELA(U)} signifies the smallest element in ELA(U) for X ⊆ Y. Now, a rough
set X in (U,Ω) is elucidated as a pair (app(X), app(X)) in ELA(U) × ELA(U) satisfying app ⊆ app.
When app(X) = app(X) = X, the scenario emerges where sup{Y ∈ ELA(U)} = inf{Y ∈ ELA(U)},
designating the rough set as exact. It’s notable that the smallest rough set is (φ, φ), representing the
empty set, while the greatest rough set is (U,U), signifying the entire universe U.
Example 3.15 presents a concrete scenario where the extension lattice reveals a more detailed
characterization of relationships among elements compared to the original lattice. The tables (Tables 1
and 2) with figures provide a visual representation of the sets and their approximations in both the
original and extension lattices, highlighting the finer granularity achieved by our proposed approach.
This example and comparisons substantiate the claim regarding the finer granularity of the extension
lattice compared to the original lattice.

The assertion that the extension lattice offers increased granularity stems from its ability to capture
more detailed relationships among elements than the original lattice. For instance, in the context
of rough set approximations, the extension lattice, constructed through equivalence relations and
generalized binary relations, allows for a more nuanced depiction of relationships between elements
compared to the classical Pawlak approximation operators.

Consider the scenario where the extension lattice incorporates an equivalence relation-based
extension. This extension introduces a more extensive set of equivalence classes, resulting in a
refined delineation of relationships among elements. Similarly, utilizing a generalized binary relation
in defining lower and upper extension approximations enables a more detailed characterization of
rough and exact sets within the lattice. While specific examples or comparisons illustrating the finer
granularity of the extension lattice compared to the original lattice would enhance clarity, it is essential
to emphasize that the increased detail and precision in representing relationships among elements are
foundational to the claim of its finer nature.

Further empirical studies and targeted comparisons between the extension and original lattices
in specific applications would provide concrete instances demonstrating the enhanced granularity of
the extension lattice. These comparative analyses would substantiate the claim and elucidate the
practical implications of employing the extension lattice for more detailed data representations. We
will strive to incorporate specific examples or comparative analyses in our work to bolster the claim
regarding the finer nature of the extension lattice compared to the original lattice, thereby enhancing
the comprehensibility and credibility of our findings.

Proposition 4.1. Let (U,Ω) be an approximation structure. The structure (ELA(U), ∩, ∪, 0, 1) is a
bounded distributive lattice s.t. the lattice (ELA(U), ∩,∪) is distributive with a minimal element 0
corresponding to φ and maximal 1 corresponding to U.

Proof. First, for X = (app(X), app(X)) and Y = (app(Y), app(Y)), the sum ⊕ law is defined join
or union by X ⊕ Y = X ∨ Y = X ∪ Y = (app(X), app(X)) ∪ (app(Y), app(Y)) = (app(X) ∪
app(Y), app(X) ∪ app(Y)). Second, the dot � law is defined meet or intersection by as X � Y =

X ∧ Y = X ∩ Y = (app(X), app(X)) ∩ (app(Y), app(Y)) = (app(X) ∩ app(Y), app(X) ∩app(Y)),
where app(X), app(Y), app(X), and app(Y) ∈ ELA(U). Then, app(X)∩ app(Y) ∈ ELA(U)×ELA(U),
or app(X) ∪ app(Y) ∈ ELA(U) × ELA(U). app(X) ∩ app(Y) ∈ ELA(U) × ELA(U), or app(X)
∪ app(Y) ∈ ELA(U) × ELA(U). Therefore, (ELA(U), ∩, ∪) is distributive lattice and the union of
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all equivalence classes which gives the universal set. Then, (U,U) belongs to the ELA(U) and the φ
belongs to any nonempty set. So, (ELA(U), ∩, ∪, 0, 1) is bounded distributive. �

Recall that a function F : P(U) → P(U) is increasing if for any A, B ∈ P(U) with A ⊆ B, implies
F(A) ⊆ F(B). It is called a fixed point function if F(A) = F(B). A subset A is called fixed point set
if F(A) = A.

Definition 4.2. Let (U,Ω) be an approximation structure. For X ⊆ U, a rough function FΩ : P(U) ×
P(U) → ELA(U) × ELA(U) is defined by FΩ(X) = (Fapp(X),Fapp(X)) s.t. Fapp(X) =

⋃
{[x] ⊆ X : [x] ∈

U/Ω}, Fapp(X) =
⋃
{[x] ⊆ X : [x] ∩ U/Ω , φ}.

Lemma 4.3. A rough function is an increasing (resp. fixed point) function if for any A, B ∈ P(U)×P(U)
s.t. A ⊆ B, then F(A) ⊆ F(B) (resp. F(A) = F(B)), where F = (Fapp,Fapp).

Proof. First, define the rough lower approximation and rough upper approximation function by Fapp :
P(U)→ ELA (U), Fapp :P(U)→ ELA (U). From rough inclusion properties, since A ⊆ B, then app(A)
⊆ app(B) and app(A) ⊆ app(B). So, for any A, B ∈ P(U) × P(U) s.t. A ⊆ B, we get (Fapp(A),Fapp(A))
⊆ (Fapp(B),Fapp(B)). Then, F is increasing. Second, for any A ∈ ELA(U), app(A) = A = app(A) is
known. Then, Fapp(A) = Fapp(A), for any A ∈ P(U). Therefore, F is a fix point function, for any F(A)
∈ ELA(U) × ELA(U). �

Proposition 4.4. Let (P(U),⊆) be a complete lattice and F : P(U) ×P(U)→ ELA(U) × ELA(U) be an
increasing function. Then, ELA(U) , φ and (ELA(U),⊆) is also a complete lattice.

Proof. To begin, it is necessary to prove that ELA(U) is lattice using meet and join on ELA(U) through
union and intersection. Consider∨

ELA(U) = (
⋃
X

{Fapp(X) : Fapp(X) ⊆ X},
⋃
X

{Fapp(X) : X ⊆ Fapp(X)}).

Clearly,
∨
ELA(U) ∈ ELA(U) × ELA(U). Now, it is sufficient to prove that

∨
ELA(U) is the supremum

of all fixed point of (U,Ω). Consider H = (Happ,Happ) = (
⋃
X

{Fapp(X) : Fapp(X) ⊆ X},
⋃
X

{Fapp(X) :

X ⊆ Fapp(X)). Take Happ =
⋃
X

{Fapp(X) : X ⊆ Fapp(X)}. Since X ⊆ Happ, for every X ∈ U/Ω,

then X ⊂ Fapp(X). By assumption, F is an increasing function, we get F(X) ⊆ F(Happ) and Fapp(X)
⊆ Fapp(Happ). Since X is a fixed point, that is, Fapp(X) = X, then X ⊆ Fapp(Happ) and so UU =⋃
X

{Fapp(Happ) : X ⊆ Fapp(Happ)}. So, Fapp(Happ) ⊆ Happ. Since Happ ⊆ Fapp(Happ), then Fapp(Happ) =

Happ. This means that Happ is a fixed point. Similarly, Happ is also fixed point. By the same
manner, consider∧

ELA(U) = (
⋂
X

{Fapp(X) : Fapp(X) ⊆ X},
⋂
X

{Fapp(X) : X ⊆ Fapp(X)}).

Clearly,
∧
ELA(U) ∈ ELA(U) and it is the greatest lower bound of fixed points. Now, let G ⊆ U, then

(P(G),⊆) be a complete lattice. Let B = ({ELA(G),⊆}) is a complete lattice of fixed points on ELA(G).
For X ∈ ELA(G), we get X ⊆

∨
ELA(G), X = FΩ(X) ⊆ F(

∨
ELA(G)). If F(

∨
ELA(G)) ⊆ W, then

F(
∨
ELA(G)) ⊆ FΩ(W). �
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In Proposition 4.4, the existence of a fixed point for every increasing function is a necessary
condition for a complete lattice. This can be shown in Example 4.5.

Example 4.5. Let U = {a, b, c, d} with an equivalence relation Ω = {(a, a), (b, b), (c, c), (d, d), (a, b), (b, a),
(c, d), (d, c)} and so U/Ω = {{a, b}, {c, d}}. Then,

(i) If A = {a}, then FΩ({a}) = (Fapp({a}), Fapp({a})) = (φ, {a, b}) which is rough.

(ii) If A = {c, d}, then FΩ({c, d}) = (Fapp({c, d}),Fapp({c, d})) = ({c, d}, {c, d}). Then, A is exact and a
fixed point.

(iii) The set of all fixed points is ELA(U) = {U, φ, {a, b}, {c, d} which is a distributive compete lattice.
The accuracy measure is η(ELA (U)) = 0+2+2+4

0+2+2+4 = 1.

(iv) If Z = {a} < P(U), then FΩ({a}) = (φ, {a, b}) and the rough extension lattice of fixed points is given by
Ω(Z) = {(φ, φ), (φ, {a, b}), ({a, b}, {a, b}), ({c, d}, {c, d}), ({c, d}, U), (U,U)} is a distributive rough lattice.
The accuracy measure is η(Ω(Z)) = 0+0+2+2+2+4

0+2+2+2+4+4 = 10
14 = 0.71.

(v) If Z = {a, c}, then FΩ(Z) = {φ,U} is a totally undefinable rough set. The lattice is (Ω(Z),⊆) = {(φ, φ),
(φ, {a, b}), (φ, {c, d}), ({a, b}, {a, b}), ({c, d}, {c, d}), ({a, b}, U), ({c, d},U), (U,U)}. The accuracy measure
is η(Ω(Z)) = 0+0+0+0+2+2+2+2+4

0+2+2+2+2+4+4+4+4 = 12
24 = 0.50. The rough extension lattice is shown in Figure 5.

Figure 5. Rough lattice of a total undefinable rough set.

5. Conclusions

In this research, we explored the rich mathematical landscape of lattices and rough sets, essential
tools in addressing various significant problems. Lattices, applied extensively in computer science
and approximation spaces, and rough sets, originating from Pawlak’s early work, have seen diverse
generalizations utilizing different binary relations. Our focus extended to the abstract consideration of
topological structures, where the universal set U was analyzed through its family of open sets, forming
lattices denoted as LA(U). Topological extensions were explored for Kolmogorov spaces, employing
methodologies such as ideals, algebraic concepts, matroids, graphs, and preordered topological
structures. Zhou and Hu’s exploration of rough sets on a complete completely distributive lattice
provided a foundational contribution. Their innovative approach considered the lattice itself as the
universe, defining rough sets on a CCD lattice using an arbitrary binary relation. Unlike previous
methods focusing on covers or partitions, they proposed a unified framework, demonstrating the
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generality of their approach for ordinary binary relations, rough fuzzy sets, and interval-valued rough
fuzzy sets. The significance of our manuscript lies in introducing a comprehensive study of rough sets
on lattices, through the novel use of binary relations. We believe this approach offers a fresh perspective
to rough set theory, opening new avenues for understanding and applying rough sets. Moreover, our
research introduces lower and upper extension approximations within an extension lattice framework,
showcasing promise for practical applications. These extension approximations exhibit versatility,
offering integration potential in diverse domains such as data science and artificial intelligence. The
finer granularity in defining rough and exact sets could enhance pattern recognition, data analysis
methodologies, and decision-making processes, particularly in handling uncertain or imprecise data.
While our approach presents several advantages, empirical validations and targeted studies are
crucial steps to demonstrate its efficacy within specific domains. Future research endeavors could
explore fuzzy lattices to address the complexities of data with fuzzy relationships, providing a more
comprehensive understanding of how rough set theory adapts to real-world data nuances. Additionally,
our investigation into the extension of topological structures through lattices and equivalence relations
has practical implications. The isomorphism between topology and its extension facilitates more
accurate data representation, decision-making processes, and computational efficiency. This bridging
of different topological structures enriches our understanding of complex datasets and enhances the
efficacy of algorithms and processes in real-world applications.

In conclusion, our study contributes both theoretically and practically to the field of rough set theory,
lattice theory, and topological structures. We believe that the insights gained from this research will
stimulate further exploration, leading to advancements in various applications and domains.
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