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Abstract: The conventional trigonometric B-spline basis of odd order for piecewise trigonometric
polynomial space possesses a lot of good modeling properties. However, its order cannot be increased
by the integral method like B-spline because of the particularity of the trigonometric polynomials. In
the paper, a basis in an even-order trigonometric polynomial space is defined, and its integral relation
with the existing odd-order trigonometric B-spline basis is obtained. First, the condition of the knot
sequence is improved to ensure the nonnegativity of the prior odd-order trigonometric B-spline basis.
Under the revised condition, a set of truncation functions is given and used to build a basis for piecewise
trigonometric polynomial space without constant terms, which is also known as the direct current (DC)
component-free space, secondly. The basis fulfills local support and continuity properties like B-spline
of even order, and each basis function is unique under a constant multiple. Thirdly, the integral formula
from the even-order to odd-order trigonometric B-spline basis is proved.
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1. Introduction

Schoenberg introduced the trigonometric spline functions defined by divided differences in [18].
And the trigonometric spline functions have been shown to possess many B-spline-like properties. In
view of this, many scholars call the trigonometric splines the trigonometric B-splines, in [4, 8]. It is
well-known that the trigonometric B-splines are piecewise functions corresponding to the spaces

T2n+1 := span{1, cos t, sin t, cos 2t, sin 2t, · · ·, cos nt, sin nt},

for odd-order, and

H2n := span
{

cos
t
2
, sin

t
2
, cos

3t
2
, sin

3t
2
, · · · , cos

(2n − 1)t
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, sin
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,
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for even-order. Odd-order trigonometric B-splines in T2n+1 form a partition of unity, a desirable
property for curve design. However, even-order B-splines in H2n lack this partition of unity, creating
challenges in certain applications where this property is critical. As a result, extensive research
has focused on the odd-order basis, particularly on its normalization. The author of [8] established
the recurrence relation for the trigonometric B-splines of arbitrary order and derived trigonometric
Marsden identity. The author of [20] utilized the trigonometric Marsden identity to derive the
normalized odd-order trigonometric B-splines over uniform knots. Building on the trigonometric
Marsden identity expansion introduced by [7], [11] explicitly derived the normalization coefficients
required to ensure that the trigonometric B-spline basis functions are properly normalized. [15]
provided the p-Bézier basis functions in the space T2n+1, which is defined over any interval of
length < π. Those basis functions are a subcase of the normalized trigonometric B-splines. [2]
presented the normalized Bernstein-like basis functions in the space T2n+1, which is defined over the
interval [0, π/2]. [21] established the C-B spline basis. In this work, the C-B spline basis of order 3
is just the normalized trigonometric B-spline basis corresponding to the space T3. In a more general
context, the normalized trigonometric B-splines are also considered in [16] as a special case.

Curve and surface design is an important area in Computer Aided Geometric Design (CAGD),
where trigonometric B-splines are a foundational tool. Normalized trigonometric B-splines enable
enhanced construction and control of curves and surfaces, suggesting their potential applications in
aircraft design [9]. Additionally, trigonometric B-splines show promising applications in other fields,
such as physical simulations (see [5, 12, 19]).

The purpose of this paper is to introduce the integral formula for odd-order trigonometric B-splines.
Given the significant applications and theoretical importance of integral formulas in Chebyshev
systems for fields such as numerical analysis, signal processing, and function approximation, it is
notable that the integral properties of sin and cos in trigonometric B-spline bases render them incapable
of being directly derived like other bases in Chebyshev systems. The aim of this study is to provide a
similar integral formula for trigonometric B-spline bases. To achieve this, this paper first constructs a
novel set of even-order trigonometric B-spline curve basis functions and, through integration of these
functions, successfully derives the traditional odd-order trigonometric B-spline basis functions, thereby
establishing the integral formula for odd-order trigonometric B-spline bases. During this derivation
process, a determinant of even order with structural symmetry is obtained. Furthermore, this study
refines the conditions for knot sequences to ensure that the corresponding normalized trigonometric
B-spline bases possess nonnegativity.

Our main contributions are
• A set of trigonometric spline bases corresponding to the DC component-free space is provided,

along with the integral representation of normalized trigonometric B-spline bases corresponding to
space T2n+1.
• Adjusting the conditions imposed on the knot sequence to guarantee the nonnegativity of the

normalized trigonometric B-spline basis functions.
• A structurally symmetric even-order determinant is presented.
The remainder of this article is organized as follows: Section 2 reviews the related concepts

and properties. The improvements to knot sequences are discussed in Section 3. In Section 4, the
trigonometric spline basis corresponding to the DC component-free space and the integral formula for
the normalized trigonometric B-spline basis are presented. The final conclusions are drawn in the last
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section.

2. Review

In this section, we will recall some established concepts and conclusions.
[1] has demonstrated that the knot sequences for B-spline basis functions can be finite, infinite,

or bi-infinite. Analogous to the case of traditional B-spline basis functions, this paper focuses on the
study of trigonometric B-spline basis functions corresponding to bi-infinite knot sequences.

The normalized trigonometric B-spline basis functions are defined in a manner analogous to the de
Boor-Cox formula [4, 7, 8, 11].

Definition 2.1. (Normalized trigonometric B-spline basis functions) Given a knot sequence T =

{ti}
+∞
i=−∞, such that

ti ≤ ti+1, 0 < ti+2n+1 − ti < 2π, i ∈ Z, n ∈ Z+, (2.1)

the normalized trigonometric B-spline basis functions of order 2n + 1 are defined as follows:

Ki,2n+1(t) = ζi,2n+1Ni,2n+1(t), (2.2)

where

Ni,1(t) =

{
1, if ti ≤ t < ti+1,

0, otherwise.
(2.3)

Ni,2n(t) =
sin

(
t−ti
2

)
sin

(
ti+2n−1−ti

2

)Ni,2n−1(t) +
sin

(
ti+2n−t

2

)
sin

(
ti+2n−ti+1

2

)Ni+1,2n−1(t), (2.4)

Ni,2n+1(t) =
sin

(
t−ti
2

)
sin

(
ti+2n−ti

2

)Ni,2n(t) +
sin

(
ti+2n+1−t

2

)
sin

(
ti+2n+1−ti+1

2

)Ni+1,2n(t), (2.5)

ζi,2n+1 =
1

(2n)!

∑
µ

n∏
j=1

cos
ti+µ(2 j) − ti+µ(2 j−1)

2
, (2.6)

and the sum is taken over all permutations µ : {1, 2, · · ·, 2n} → {1, 2, · · ·, 2n}.

Remark 2.1. In [4, 8, 11], the knot sequence satisfies the condition 0 < ti+2n+1 − ti < 2π. However,
the knot sequence described in [7] satisfies a slightly different condition, 0 < ti+2n − ti < 2π. In the
subsequent section, the conditions of the knot sequence are reiterated.

If ti−1 < ti = ti+1 = · · · = ti+mi−1 < ti+mi , where 1 ≤ mi ≤ 2n, the knots t j, where j = i, i + 1, · · ·, i +

mi − 1, are referred to as knots of multiplicity mi. Especially, we set 0
0 = 0. The space of trigonometric

spline basis is defined by

Γ2n+1[T] := {Ni,2n+1(t)
∣∣∣Ni,2n+1(t)|t∈[ti,ti+1) ∈ T2n+1, and N(l)

i,2n+1(ti−) = N(l)
i,2n+1(ti+), 0 ≤ l ≤ 2n − mi, i ∈ Z}.

The trigonometric B-spline basis functions possess many B-spline-like properties [3, 6, 8, 14].

Property 2.1. (Properties of the trigonometric B-spline basis functions) The trigonometric B-spline
basis functions Ni,2n+1(t) defined in Eq (2.5) possess the following properties:
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(1) (Local support) For any i ∈ Z and n ∈ Z+, there exists

Ni,2n+1(t) =

{
> 0, t ∈ (ti, ti+2n+1),
= 0, t < [ti, ti+2n+1].

(2.7)

(2) (Continuity) The continuous order of Ni,2n+1(t) at t j (where i ≤ j ≤ i + 2n + 1), denoted as k j
i,2n+1,

can be described as

k j
i,2n+1 =


2n − ξ, i ≤ j ≤ i + ξ − 1,
2n − m j, i + ξ ≤ j ≤ i + 2n + 1 − η,
2n − η, i + 2n + 2 − η ≤ j ≤ i + 2n + 1,

(2.8)

if ti = ti+1 = · · · = ti+ξ−1 < ti+ξ ≤ ti+ξ+1 ≤ · · · ≤ ti+2n+1−η < ti+2n+2−η = · · · = ti+2n+1.

3. Condition improvement for knot sequence

In this section, we will adjust the conditions of the knot sequence to ensure the nonnegativity of the
normalized trigonometric B-spline basis functions Ki,2n+1(t) for i ∈ Z and n ∈ Z+.

First, the condition (2.1) can be relaxed.
The nonnegativity of the basis function Ni,2n+1(t) is ensured by the condition 0 < ti+2n+1 − ti < 2π

as stated in (2.1). Since the length of the support intervals for Ni,2n(t) and Ni+1,2n(t) in Eq (2.4) is 2n,
replacing 0 < ti+2n+1 − ti < 2π with the condition 0 < ti+2n − ti < 2π still guarantees the nonnegativity
of Ni,2n+1(t). Therefore, the condition (2.1) can be relaxed to

ti ≤ ti+1, 0 < ti+2n − ti < 2π, i ∈ Z, n ∈ Z+. (3.1)

Second, the condition to ensure the positivity of the normalized coefficients ζi,2n+1 in Eq (2.6) is
presented. According to the representation in Eq (2.6), we obtain the condition to ensure the positivity
of the normalized coefficient ζi,2n+1, that is

0 ≤ ti+2n−1 − ti < π, i ∈ Z, n ∈ Z+. (3.2)

The Bézier-like basis defined in the spaceT2n+1 is a subcase of the trigonometric B-spline basis. In [13],
it was noted that the space T2n+1 does not have an NTP basis when the domain of T2n+1 is [0, π]. This
implies the non-existence of normalized coefficients. Consequently, we conclude that ti+2n−1 − ti , π.
In [15], it proved that there exist NTP bases provided that the domain of T2n+1 is any interval of length
< π, specifically referred to as p-Bézier bases. This implies that the normalized coefficient satisfies the
condition ti+2n−1 − ti < π, in the special cases of Bézier.

Figure 1a presents an example of the basis functions Ni,2n+1(t) for i ∈ Z, whose corresponding
knot sequence T satisfies condition (3.1) but fails to satisfy condition (2.1). Here n = 2 and the
knot sequence T = {ti}

16
i=1 = {1, 1, 1, 1, 1, 3, 4, 5.3, 6.5, 7.5, 8.8, 10, 10, 10, 10, 10}. Figure 1b shows

the trigonometric B-spline basis functions Ni,3(t) and Ki,3(t) corresponding to the knot sequence that
satisfies condition (3.1) but does not satisfy condition (3.2), while Figure 1c presents the functions
Ni,3(t) and Ki,3(t) corresponding to the knot sequence that satisfies both conditions (3.1) and (3.2).
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Figure 1. Examples of trigonometric B-spline basis Ni,2n+1(t) and Ki,2n+1(t).

Although the coefficients of the normalized trigonometric B-spline basis have already been defined
in Eq (2.6), for the convenience of deriving and proving the integral formula of the normalized
trigonometric B-spline basis, this paper introduces a simplified normalized coefficient expression that
is equivalent to Eq (2.6).

Lemma 3.1. Let

Ci,2n+1 =
1

(2n − 1)!!

∑
γ(1,2,...,2n)

n∏
r=1

cos
ti+m2r − ti+m2r−1

2
, i ∈ Z, n ∈ Z+, (3.3)

where the sum is taken over all permutations γ(1, 2, . . . , 2n) : {m1,m2, . . . ,m2n} → {1, 2, . . . , 2n}, with
m1,m2, . . . ,m2n being a permutation of 1, 2, . . . , 2n that satisfies m1 < m3 < . . . < m2n−1 and m2r−1 <

m2r for each r = 1, . . . , n. Then there exists

Ci,2n+1 = ζi,2n+1,

where ζi,2n+1 defined in Eq (2.6).

Third, a new definition for the normalized trigonometric B-spline basis that guarantees
nonnegativity is presented.

Definition 3.1. (Nonnegative normalized trigonometric B-spline basis functions) Given a knot
sequence T = {ti}

+∞
i=−∞, such that

ti ≤ ti+1, 0 < ti+2n − ti < 2π and 0 ≤ ti+2n−1 − ti < π, i ∈ Z, n ∈ Z+, (3.4)

the nonnegative normalized trigonometric B-spline basis functions of order 2n + 1 are defined as
follows:

Ki,1(t) =

{
1, if ti ≤ t < ti+1,

0, otherwise.
(3.5)

Ki,2n+1(t) = Ci,2n+1Ni,2n+1(t), (3.6)

where Ni,2n+1(t), Ci,2n+1 is defined in Eqs (2.5) and (3.3), respectively.

AIMS Mathematics Volume 9, Issue 12, 36470–36492.



36475

4. Trigonometric spline basis corresponding to DC component-free space

In this section, we generally set the knot sequence to be T = {ti}
+∞
i=−∞ that satisfies condition (3.4),

where the multiplicity of ti is mi with 1 ≤ mi ≤ 2n, and k j
i,2n+1 is defined in Eq (2.8) without further

explanation. Let us define the DC component-free space as T2n := span{cos t, sin t, · · ·, cos nt, sin nt}.
Its corresponding piecewise trigonometric polynomial space is

Γ2n[T] := {Fi,2n(t)
∣∣∣Fi,2n(t)|t∈[ti,ti+1) ∈ T2n, and F(l)

i,2n(ti−) = F(l)
i,2n(ti+),

0 ≤ l ≤ 2n − mi − 1, 1 ≤ mi ≤ 2n − 1, i ∈ Z}.

Clearly, Γ2n[T] is a linear space. We can derive the subspace of Γ2n[T] as follows:

Γ2n[ti, ti+2n] = {Fi,2n(t) ∈ Γ2n[T]
∣∣∣Fi,2n(t) = 0, t < [ti, ti+2n] and Fi,2n(t) , 0, t ∈ (ti, ti+2n),

F(l)
i,2n(t j−) = F(l)

i,2n(t j+), 0 ≤ l ≤ k j
i,2n, i ≤ j ≤ i + 2n}.

It can be shown that a function in the space Γ2n[ti, ti+2n] exhibits local support and a specific order of
continuity.

4.1. An important determinant

The following determinant and its accompanying proof are presented to facilitate future derivations.

Lemma 4.1. For any n ∈ Z+, then the following identity holds.

D(t1, t2, · · ·, t2n) : =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cos t1 cos t2 . . . cos t2n

sin t1 sin t2 . . . sin t2n

cos 2t1 cos 2t2 . . . cos 2t2n

sin 2t1 sin 2t2 . . . sin 2t2n
...

...
...

...

cos nt1 cos nt2 . . . cos nt2n

sin nt1 sin nt2 . . . sin nt2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

22n2−n

n!

∏
1≤l< j≤n

sin
t j − tl

2

∑
γ(1,2,...,2n)

n∏
r=1

cos
tm2r − tm2r−1

2
,

(4.1)
where γ(1, 2, . . . , 2n) defined in Lemma 3.1.

Proof. According to Euler’s formula and the identity eit j − eits = 2ie
i
2 (t j+ts) sin t j−ts

2 , it follows that
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D(t1, t2, · · ·, t2n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eit1 +e−it1

2
eit2 +e−it2

2 . . . eit2n +e−it2n

2
eit1−e−it1

2i
eit2−e−it2

2i . . . eit2n−e−it2n

2i
...

...
...

...
enit1 +e−nit1

2
enit2 +e−nit2

2 . . . enit2n +e−nit2n

2
enit1−e−nit1

2i
enit2−e−nit2

2i . . . enit2n−e−nit2n

2i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)n2+n

(2i)n e−nit1 . . . e−nit2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
eit1 eit2 . . . eit2n

...
...

...
...

e(n−1)it1 e(n−1)it2 . . . e(n−1)it2n

e(n+1)it1 e(n+1)it2 . . . e(n+1)it2n

...
...

...
...

e2nit1 e2nit2 . . . e2nit2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

22n2−n

2n e−nit1 . . . e−nit2n
∑

1≤m1<m2<...<mn≤2n

eitm1 . . . eitmn

∏
1≤s< j≤2n

e
i
2 (t j+ts) sin

t j − ts

2
.

For the sake of convenience, let

C(t1, t2, · · ·, t2n) =
∑

γ(1,2,...,2n)

n∏
r=1

cos
tm2r − tm2r−1

2
. (4.2)

Therefore, it suffices to prove that

C(t1, t2, · · ·, t2n) =
n!
2n e−nit1 . . . e−nit2n

∑
1≤m1<m2<...<mn≤2n

eitm1 . . . eitmn

∏
1≤s< j≤2n

e
i
2 (t j+ts)

=
n!
2n

∑
1≤m1<m2<...<mn≤2n

exp

 i
2

mn∑
q=m1

tq −
i
2

 2n∑
h=1

th −

mn∑
q=m1

tq


 . (4.3)

We establish the inductive hypothesis for n. For n = 1, the result is straightforward. Assume that the
conclusion holds for n ≤ p − 1, where p is any positive integer. Specifically, we have

C(tn1 , tn2 , · · ·, tn2p−2) =
(p−1)!
2(p−1)

∑
ε

exp
(

i
2

mp−1∑
q=m1

tq −
i
2

(
n2p−2∑
h=n1

th −
mp−1∑
q=m1

tq

))
,

where the sum is taken over all permutations ε:{m1,m2, · · ·,mp−1} → {n1, n2, · · ·, n2p−2}. Here,
n1, n2, · · · , n2p−2 represent a permutation of 1, 2, · · · , 2n such that n1 < n2 < · · · < n2p−2, while
m1,m2, · · · ,mp−1 is a subset of n1, n2, · · · , n2p−2 satisfying m1 < m2 < · · · < mp−1.
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Next, consider the case where n = p. Based on this assumption, we have

C(t1, t2, · · · , t2p) = cos
t2p − t2p−1

2

∑
γ(1,2,··· ,2p−2)

p−1∏
r=1

cos
tm2r − tm2r−1

2

+ cos
t2p − t2p−2

2

∑
γ(1,2,··· ,2p−3,2p−1)

p−1∏
r=1

cos
tm2r − tm2r−1

2

+ · · · + cos
t2p − t2

2

∑
γ(1,3,4,··· ,2p−1)

p−1∏
r=1

cos
tm2r − tm2r−1

2

+ cos
t2p − t1

2

∑
γ(2,3,··· ,2p−1)

p−1∏
r=1

cos
tm2r − tm2r−1

2

=
1
2

(
exp

( i
2

(
t2p − t2p−1

))
+ exp

(
−

i
2

(
t2p − t2p−1

)))
C(t1, t2, · · ·, t2p−2)

+
1
2

(
exp

( i
2

(
t2p − t2p−2

))
+ exp

(
−

i
2

(
t2p − t2p−2

)))
C(t1, t2, · · ·, t2p−3, t2p−1)

+ · · · +
1
2

(
exp

( i
2

(
t2p − t2

))
+ exp

(
−

i
2

(
t2p − t2

)))
C(t1, t3, t4, · · ·, t2p−1)

+
1
2

(
exp

( i
2

(
t2p − t1

))
+ exp

(
−

i
2

(
t2p − t1

)))
C(t2, t3, · · ·, t2p−1)

=
p!
2p

∑
1≤m1<m2<...<mp≤2p

exp

 i
2

mp∑
q=m1

tq −
i
2

 2p∑
h=1

th −

mp∑
q=m1

tq


 ,

where the sum is taken over all permutations γ(n1, n2, · · · , n2p−2) : {m1,m2, · · ·,m2p−2} →

{n1, n2, · · · , n2p−2}, with m1,m2, · · · ,m2p−2 being a permutation of n1, n2, · · · , n2p−2 that satisfies m1 <

m3 < · · · < m2p−3 and m2r−1 < m2r for each r = 1, · · · , p − 1. Here, the sequence {n1, n2, · · · , n2p−2}

represents, in order, the sequences {1, 2, · · · , 2p−2}, {1, 2, · · · , 2p−3, 2p−1}, · · · , {1, 3, 4, · · · , 2p−1},
and {2, 3, · · · , 2p − 1}. Eq (4.3) is valid for any positive integer n. Thus, the lemma is proved. �

4.2. Constructing truncated functions

This subsection defines a set of truncated functions and demonstrates that any function in the space
Γ2n[ti, ti+2n] can be expressed as a linear combination of these functions.

Let g2n(t) := sin t sin2n−2
(

t
2

)
(n ∈ Z+), the truncated functions Gi,2n(t), where i ∈ Z and n ∈ Z+, are

defined as follows: If ti = ti+1 = · · · = ti+ξ−1 < ti+ξ, then

Gi,2n(t) :=
{

0, t < ti,

g(ξ−1)
2n (t − ti), t ≥ ti.

(4.4)

Figure 2a–2c illustrate examples of the function g4(t) and the truncated functions Gi,4(t), where
i ∈ Z, over single and multiple knots, respectively.

To prove that any function in the space Γ2n[ti, ti+2n] can be represented as a linear combination of
{Gi,2n(t)}i∈Z, the following lemmas will be utilized.
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(a) Function g4(t) (b) Single knots (c) Multiple knots

Figure 2. Examples of functions g4(t) and Gi,4(t) for i ∈ Z.

Lemma 4.2. There exist n + 1 real numbers d0, d1, · · ·, dn such that

sin2n
( t
2

)
= d0 + d1 cos t + d2 cos 2t + · · · + dn cos nt,

where d0 =
(2n−1)!!

(2n)!! .

Proof. It is well known that

sin2n
( t
2

)
∈ span{1, cos t, cos 2t, · · ·, cos nt},

since

sin2n
( t
2

)
=

(
sin2

( t
2

))n
=

(
1 − cos t

2

)n

.

Thus, there are n + 1 real numbers d0, d1, · · ·, dn such that

sin2n
( t
2

)
= d0 + d1 cos t + d2 cos 2t + · · · + dn cos nt.

We deduce that, based on Euler’s formula,e
it
2 − e

−it
2

2i

2n

= d0 + d1
eit + e−it

2
+ d2

e2it + e−2it

2
+ · · · + dn

enit + e−nit

2
. (4.5)

Expanding the left side of Eq (4.5) using the binomial theorem results in d0 =
(2n−1)!!

(2n)!! . �

Lemma 4.3. The function Gi,2n(t) defined in Eq (4.4) lies in Γ2n[T] for any i ∈ Z, n ∈ Z+.

Proof. First, according to Lemma 4.2, we obtain

sin2n−2
( t
2

)
∈ span{1, cos t, cos 2t, · · ·, cos(n − 1)t},

Thus, we have
sin t sin2n−2

( t
2

)
∈ span{sin t, sin 2t, · · ·, sin nt},
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and
g2n(t − ti) ∈ T2n for i ∈ Z.

Second, the order of continuity of g2n(t − ti) at ti is 2n − 2, because that

g(l)
2n(t − ti)|t=ti = 0, l = 0, 1, · · ·, 2n − 2, and g(2n−1)

2n (t − ti)|t=ti , 0.

Third, it is easy to see that the order of continuity of Gi,2n(t) is 2n − ξ − 1 at ti and is ∞ at the other
knots.

In conclusion, Gi,2n(t) ∈ Γ2n[T], for i ∈ Z. �

Lemma 4.4. The functions Gi,2n(t) for i ∈ Z in Eq (4.4) are linearly independent.

Proof. If ti−1 < ti = ti+1 = · · · = ti+mi−1 < ti+mi , the mi functions G j,2n(t) for i ≤ j ≤ i + mi − 1 are linearly
independent since they have different continuous orders at ti.

For the sake of simplicity, let r = i + mi and tr−1 < tr = tr+1 = · · · = tr+mr−1 < tr+mr . We can then
similarly conclude that the functions G j,2n(t) for r ≤ j ≤ r + mr − 1 are linearly independent. In
addition, it is straightforward to derive that

span{Gi,2n(t),Gi+1,2n(t), · · ·,Gi+mi−1,2n(t)} ∩ span{Gr,2n(t),Gr+1,2n(t), · · ·,Gr+mr−1,2n(t)} = {0}.

Thus, Gi,2n(t),Gi+1,2n(t), · · ·,Gi+mi−1,2n(t),Gr,2n(t),Gr+1,2n(t), · · ·,Gr+mr−1,2n(t) are linearly independent.
Consequently, the functions Gi,2n(t) for i ∈ Z are linearly independent. �

From the above lemmas, we conclude that any function in the space Γ2n[ti, ti+2n] can be expressed
as a linear combination of Gi,2n(t) for i ∈ Z.

Theorem 4.1. For any function Fi,2n(t) ∈ Γ2n[ti, ti+2n], there exist 2n − η + 1 real numbers νi, νi+1, · · ·,

νi+2n−η such that

Fi,2n(t) =

i+2n−η∑
j=i

ν jG j,2n(t), t ∈ [ti, ti+2n),

where η is the multiplicity of ti+2n in the interval [ti, ti+2n] and the functions G j,2n(t), where i ≤ j ≤
i + 2n − η, are defined in Eq (4.4).

Proof. Since Fi,2n(t) in space Γ2n[ti, ti+2n] is a piecewise function, it can first be linearly represented by
the functions G j,2n(t) for i ≤ j ≤ i + 2n − η in Eq (4.4) over a non-zero interval within its support
interval.

Suppose ti = ti+1 = · · · = ti+ξ−1 < ti+ξ ≤ · · · ≤ ti+2n−η < ti+2n−η+1 = · · · = ti+2n. We consider that the
function Fi,2n(t) can be linearly represented in the interval [ti, ti+ξ). Thus, we prove that there exist ξ
real numbers κi, κi+1, · · ·, κi+ξ−1 such that

Fi,2n(t)
∣∣∣∣∣
[ti,ti+ξ)

=

i+ξ−1∑
j=i

κ jG j,2n(t).

For simplicity, assume that

f1(t) = Fi,2n(t)
∣∣∣∣∣
[ti,ti+ξ)

, t ∈ [ti, ti+ξ).
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Based on the definition of the space Γ2n[ti, ti+2n], we know that f1(t) ∈ T2n, which means that there
exist 2n real numbers x1, x2, · · · , x2n such that

f1(t) = x1 cos t + x2 sin t + · · · + x2n−1 cos nt + x2n sin nt,

and
f (s)
1 (ti−) = f (s)

1 (ti) = f (s)
1 (ti+), 0 ≤ s ≤ 2n − ξ − 1,

which implies that
f (s)
1 (ti) = 0, 0 ≤ s ≤ 2n − ξ − 1.

Let ρ = 2n− ξ− 1, Ωρ := { f1(t)| f1(t) ∈ T2n, f (s)
1 (ti) = 0, 0 ≤ s ≤ ρ}, and Ψρ := span{g2n(t− ti), g′2n(t−

ti+1), · · ·, g(2n−ρ−2)
2n (t − ti+ξ−1)} = span{g2n(t − ti), g′2n(t − ti), · · ·, g

(2n−ρ−2)
2n (t − ti)}.

Since g2n(t−ti), g′2n(t−ti), · · ·, g
(2n−ρ−2)
2n (t−ti) are linearly independent, we conclude that the dimension

of Ψρ is 2n − ρ − 1. According to the definition of the function g2n(t), we obtain that g(l)
2n(t − ti) ∈ Ωρ,

l = 0, 1, · · ·, 2n − ρ − 2. Hence, it follows naturally that Ψρ is the subspace of Ωρ.
The dimension of the space Ωρ is equal to the dimension of the solution space corresponding to the

following linear equations. 
f1(ti) = 0,
f ′1(ti) = 0,

...

f (ρ)
1 (ti) = 0.

(4.6)

Thus, the following linear equations holds:

x1 cos ti + x2 sin ti + x3 cos 2ti + x4 sin 2ti + · · · + x2n−1 cos nti + x2n sin nti = 0,
−x1 sin ti + x2 cos ti − x32 sin 2ti + x42 cos 2ti + · · · − x2n−1n sin nti + x2nn cos nti = 0,
−x1 cos ti − x2 sin ti − x322 cos 2ti − x422 sin 2ti + · · · − x2n−1n2 cos nti − x2nn2 sin nti = 0,
x1 sin ti − x2 cos ti + x323 sin 2ti − x423 cos 2ti + · · · + x2n−1n3 sin nti − x2nn3 cos nti = 0,

...

x1 cos(π2ρ + ti) + x2 sin(π2ρ + ti) + · · · + x2n−1nρ cos(π2ρ + nti) + x2nnρ sin(π2ρ + nti) = 0,

(4.7)

where the corresponding coefficient matrix is given as

cos ti sin ti cos 2ti sin 2ti . . . cos nti sin nti

− sin ti cos ti −2 sin 2ti 2 cos 2ti . . . −n sin nti n cos nti

− cos ti − sin ti −22 cos 2ti −22 sin 2ti . . . −n2 cos nti −n2 sin nti

sin ti − cos ti 23 sin 2ti −23 cos 2ti . . . n3 sin nti −n3 cos nti
...

...
...

...
...

...

cos(π2ρ + ti) sin(π2ρ + ti) 2ρ cos(π2ρ + 2ti) 2ρ sin(π2ρ + 2ti) . . . nρ cos(π2ρ + nti) nρ sin(π2ρ + nti)


. (4.8)

By performing elementary row operations, it is demonstrated that the matrix (4.8) maintains full row
rank, independent of the parity of ρ. This result establishes that the dimension of the solution space for
the linear system (4.7) is

2n − (ρ + 1) = 2n − ρ − 1.
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The dimension of Ωρ is determined to be 2n−ρ−1. Consequently, it follows that Ωρ = Ψρ. In other
words, we know that there exist 2n − ρ − 1 = 2n − (2n − ξ − 1) − 1 = ξ real numbers κi, κi+1, · · ·, κi+ξ−1

such that

f1(t) =

i+ξ−1∑
j=i

κ jg
( j−i)
2n (t − t j).

According to the definition of Gi,2n(t), the function f1(t) can be expressed as

f1(t) =

i+ξ−1∑
j=i

κ jG j,2n(t).

Consider the non-zero interval [ti+ξ, ti+ξ+mi+ξ). We define

f2(t) = Fi,2n(t)
∣∣∣∣∣
[ti+ξ ,ti+ξ+mi+ξ )

, t ∈ [ti+ξ, ti+ξ+mi+ξ).

According to the continuous order of Fi,2n(t) at ti+ξ, we deduce that

f (s)
1 (ti+ξ) = f (s)

1 (ti+ξ−) = f (s)
2 (ti+ξ+) = f (s)

2 (ti+ξ), 0 ≤ s ≤ 2n − mi+ξ − 1.

This implies that
f (s)
2 (ti+ξ) − f (s)

1 (ti+ξ) = 0, 0 ≤ s ≤ 2n − mi+ξ − 1.

Thus, from the above analysis, it follows that there are mi+ξ real numbers κi+ξ, κi+ξ+1, · · ·, κi+ξ+mi+ξ−1 such
that

f2(t) − f1(t) =

i+ξ+mi+ξ−1∑
j=i+ξ

κ jG j,2n(t).

Consequently, we have

f2(t) =

i+ξ+mi+ξ−1∑
j=i

κ jG j,2n(t).

For every non-zero subinterval of the support interval of Fi,2n(t) , we consider it this way. It can be
concluded that there exist 2n − η + 1 real numbers νi, νi+1, · · ·, νi+2n−η such that

Fi,2n(t) =

i+2n−η∑
j=i

ν jG j,2n(t), t ∈ [ti, ti+2n−η+1) = [ti, ti+2n),

where ν j for i ≤ j ≤ i + 2n − η is expressed as a linear combination of κi, κi+1, · · ·, κi+2n−η. �

4.3. The dimension of Γ2n[ti, ti+2n]

The subsection demonstrates that the dimension of Γ2n[ti, ti+2n] is 1. To support this, we first require
the following lemma.
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Lemma 4.5. Given an integer i and positive integers n, η such that η ≤ 2n − 1, then the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣
Gi,2n(ti+2n) Gi+1,2n(ti+2n) . . . Gi+2n−η−1,2n(ti+2n)
G′i,2n(ti+2n) G′i+1,2n(ti+2n) . . . G′i+2n−η−1,2n(ti+2n)

...
...

...
...

G(2n−η−1)
i,2n (ti+2n) G(2n−η−1)

i+1,2n (ti+2n) . . . G(2n−η−1)
i+2n−η−1,2n(ti+2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, 0,

where the functions G j,2n(t) for i ≤ j ≤ i + 2n − η − 1 are defined in Eq (4.4).

Proof. Use reduction to absurdity. Assume that the determinant is equal to zero. Then, there are 2n− η
real numbers zi, zi+1, · · ·, zi+2n−η−1, which are not all equal to zero, satisfying

i+2n−η−1∑
l=i

zl


Gl,2n(ti+2n)
G′l,2n(ti+2n)

...

G(2n−η−1)
l,2n (ti+2n)

 = 0.

Let Y(t) =
i+2n−η−1∑

l=i
zlGl,2n(t). Then, we find that the first 2n−η−1 derivatives of Y(t) at ti+2n are all zero.

According to Theorem 4.1, there exist mi+2n real numbers, such that

Y(t) =

i+2n+mi+2n−η−1∑
u=i+2n−η

zuGu,2n(t).

Therefore,

Y(t) =

i+2n−η−1∑
l=i

zlGl,2n(t) =

i+2n+mi+2n−η−1∑
u=i+2n−η

zuGu,2n(t),

and
i+2n−η−1∑

l=i

zlGl,2n(t) −
i+2n+mi+2n−η−1∑

u=i+2n−η

zuGu,2n(t) = 0.

According to Lemma 4.4, we obtain that zi = · · · = zi+2n−η−1 = 0. This conflicts with the assumption.
So, the lemma is proved. �

From Theorem 4.1 and Lemma 4.5, we obtain the dimension of Γ2n[ti, ti+2n].

Theorem 4.2. The dimension of the linear space Γ2n[ti, ti+2n] is 1.

Proof. Suppose that u(t) is an arbitrary function in Γ2n[ti, ti+2n]. Thus, according to Theorem 4.1, there
are 2n − η + 1 real numbers νi, νi+1, · · ·, νi+2n−η such that

u(t) =

i+2n−η∑
j=i

ν jG j,2n(t), t ∈ [ti, ti+2n) = [ti, ti+2n−η+1),

where η denotes the multiplicity of ti+2n in the interval [ti, ti+2n]. Consider the continuous order of
function u(t) at ti+2n. We have

u(l)(ti+2n−) = u(l)(ti+2n) = u(l)(ti+2n+) = 0, l = 0, 1, 2, · · ·, 2n − η − 1,
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which implies that
u(l)(ti+2n) = 0, l = 0, 1, 2, · · ·, 2n − η − 1.

Thus, the equation representing the continuous order of u(t)s at ti+2n is given by
u(ti+2n) = 0,
u′(ti+2n) = 0,

...

u(2n−η−1)(ti+2n) = 0.

(4.9)

which can be expressed in matrix form as follows:
Gi,2n(ti+2n) Gi+1,2n(ti+2n) . . . Gi+2n−η,2n(ti+2n)
G′i,2n(ti+2n) G′i+1,2n(ti+2n) . . . G′i+2n−η,2n(ti+2n)

...
...

...
...

G(2n−η−1)
i,2n (ti+2n) G(2n−η−1)

i+1,2n (ti+2n) . . . G(2n−η−1)
i+2n−η,2n(ti+2n)




νi

νi+1
...

νi+2n−η

 = 0. (4.10)

This system consists of linear equations with νi, νi+1, · · ·, νi+2n−η as variables. Based on Lemma 4.5, the
coefficient matrix of these linear equations is full row rank, with a rank of 2n − η + 1 − (2n − η) = 1.
This indicates that the dimension of Γ2n[ti, ti+2n] is 1. �

4.4. Trigonometric spline basis corresponding to DC component-free space for single knot case

In this subsection, we consider single knots and assume that ti < ti+1 for any i ∈ Z. Then the even-
order trigonometric spline basis functions corresponding to the DC component-free space T2n, and the
integral expression for the trigonometric B-spline basis Ki,2n+1(t) are presented.

According to Theorem 4.2 and the definition of Γ2n[ti, ti+2n], it is established that Fi,2n(t) ∈
Γ2n[ti, ti+2n] and the dimension of Γ2n[ti, ti+2n] is 1. If we find a function H(t) ∈ Γ2n[ti, ti+2n], then it
follows that Fi,2n(t) = αH(t), t ∈ [ti, ti+2n) for some real number α. Thus, the following theorem is
provided.

Theorem 4.3. (The function expression in the space Γ2n[ti, ti+2n] over single knots) For any function
Fi,2n(t) ∈ Γ2n[ti, ti+2n], there exists a real number α such that

Fi,2n(t) = αH(t), t ∈ [ti, ti+2n),

where

H(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Gi,2n(t) Gi+1,2n(t) . . . Gi+2n−1,2n(t) Gi+2n,2n(t)
cos ti cos ti+1 . . . cos ti+2n−1 cos ti+2n

sin ti sin ti+1 . . . sin ti+2n−1 sin ti+2n

cos 2ti cos 2ti+1 . . . cos 2ti+2n−1 cos 2ti+2n

sin 2ti sin 2ti+1 . . . sin 2ti+2n−1 sin 2ti+2n
...

...
...

...
...

cos nti cos nti+1 . . . cos nti+2n−1 cos nti+2n

sin nti sin nti+1 . . . sin nti+2n−1 sin nti+2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and α = − 1
D(ti,ti+1,··· ,ti+2n−1) . Here D(ti, ti+1, · · · , ti+2n−1) and the functions G j,2n(t) for i ≤ j ≤ i + 2n are

defined in Eqs (4.1) and (4.4), respectively.
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Proof. According to Theorem 4.1, there exist 2n real numbers αi, αi+1, · · ·, αi+2n−1 such that

Fi,2n(t) =

i+2n−1∑
j=i

α jG j,2n(t), t ∈ [ti, ti+2n), (4.11)

By the continuous order of Fi,2n(t) at ti+2n, it follows that

F(d)
i,2n(ti+2n) =

i+2n−1∑
j=i

α jG
(d)
j,2n(ti+2n) = 0, t ∈ [ti, ti+2n), d = 0, 1, 2, · · ·, 2n − 2. (4.12)

This can be expressed equivalently as a system of equations

i+2n−1∑
j=i

α jG j,2n(ti+2n) = 0,

i+2n−1∑
j=i

α jG′j,2n(ti+2n) = 0,

...
i+2n−1∑

j=i
α jG

(2n−2)
j,2n (ti+2n) = 0.

(4.13)

In addition, we have

sin (t − ti+2n) sin2n−2
( t − ti+2n

2

)
=

i+2n−1∑
j=i

β j sin (t − t j) sin2n−2
( t − t j

2

)
, (4.14)

where βi, βi+1, · · · , βi+2n−1 are real numbers. Since Eq (4.14) when t = ti+2n is equivalent to Eq (4.13).
We obtain that α j = β j, j = i, · · ·, i + 2n − 1. Thus, we only focus on β j, i ≤ j ≤ i + 2n − 1. By proving
Lemma 4.3, it can be concluded that there exist n numbers η1, η2, · · ·, ηn such that

sin (t − t j) sin2n−2
( t − t j

2

)
=

n∑
l=1

ηl sin l(t − t j), j = i, i + 1, · · ·, i + 2n. (4.15)

So we can rewrite (4.14) as follows:

(
cos t sin t . . . cos nt sin nt

)


−η1 sin ti+2n

η1 cos ti+2n

−η2 sin 2ti+2n

η2 cos 2ti+2n
...

−ηn sin nti+2n

ηn cos nti+2n



=
(

cos t sin t . . . cos nt sin nt
)


−η1 sin ti . . . −η1 sin ti+2n−1

η1 cos ti . . . η1 cos ti+2n−1

−η2 sin 2ti . . . −η2 sin 2ti+2n−1

η2 cos 2ti . . . η2 cos 2ti+2n−1
...

...
...

−ηn sin nti . . . −ηn sin nti+2n−1

ηn cos nti . . . ηn cos nti+2n−1





βi

βi+1
...

βi+2n−2

βi+2n−1


.

(4.16)
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Based on the properties of matrix operations, we deduce that

−η1 sin ti . . . −η1 sin ti+2n−1

η1 cos ti . . . η1 cos ti+2n−1

−η2 sin 2ti . . . −η2 sin 2ti+2n−1

η2 cos 2ti . . . η2 cos 2ti+2n−1
...

...
...

−ηn sin nti . . . −ηn sin nti+2n−1

ηn cos nti . . . ηn cos nti+2n−1





βi

βi+1
...

βi+2n−2

βi+2n−1


=



−η1 sin ti+2n

η1 cos ti+2n

−η2 sin 2ti+2n

η2 cos 2ti+2n
...

−ηn sin nti+2n

ηn cos nti+2n


. (4.17)

The coefficient matrix of (4.17) is non-zero due to the linear independence of the functions
cos t, sin t, · · ·, cos nt, sin nt. According to Cramer’s Rule, we have

βi+ j−1 =
D

(
ti, · · · , ti+ j−2, ti+2n, ti+ j, · · · , ti+2n−1

)
D (ti, ti+1, · · · , ti+2n−1)

, for j = 1, 2, · · ·, 2n.

We apply this result to Eq (4.11) to yield

Fi,2n(t) =

2n∑
j=1

αi+ j−1Gi+ j−1,2n(t)

=

2n∑
j=1

D
(
ti, · · · , ti+ j−2, ti+2n, ti+ j, · · · , ti+2n−1

)
D (ti, ti+1, · · · , ti+2n−1)

Gi+ j−1,2n(t)

=
D (ti+2n, ti+1, · · · , ti+2n−1)

D (ti, ti+1, · · · , ti+2n−1)
Gi,2n(t) +

D (ti, ti+2n, ti+2, · · · , ti+2n−1)
D (ti, ti+1, · · · , ti+2n−1)

Gi+1,2n(t)

+ · · · +
D (ti, · · ·, ti+2n−2, ti+2n)
D (ti, ti+1, · · · , ti+2n−1)

Gi+2n−1,2n(t)

= (−1)2n−1 D (ti+1, · · · , ti+2n)
D (ti, ti+1, · · · , ti+2n−1)

Gi,2n(t) + (−1)2n−2 D (ti, ti+2, · · · , ti+2n)
D (ti, ti+1, · · · , ti+2n−1)

Gi+1,2n(t)

+ · · · +
D (ti, · · · , ti+2n−2, ti+2n)
D (ti, ti+1, · · · , ti+2n−1)

Gi+2n−1,2n(t) +
D (ti, · · · , ti+2n−2, ti+2n−1)

D (ti, ti+1, · · · , ti+2n−1)
Gi+2n,2n(t)

= −
1

D(ti, ti+1, · · · , ti+2n−1)
H(t), t ∈ [ti, ti+2n),

where Gi+2n,2n(t) = 0, t ∈ [ti, ti+2n). �

The linear space Γ2n[ti, ti+2n] corresponds to space T2n. Similarly, the space Γ2n+1[ti, ti+2n+1] , which
corresponds to space T2n+1, can be defined as follows:

Γ2n+1[ti, ti+2n+1] := {Mi,2n+1(t) ∈ Γ2n+1[T]|Mi,2n+1(t) = 0, t < [ti, ti+2n+1] and Mi,2n+1(t) , 0,
t ∈ (ti, ti+2n+1), M(l)

i,2n+1(t j−) = M(l)
i,2n+1(t j+), l = 0, 1, · · ·, k j

i,2n+1, i ≤ j ≤ i + 2n + 1.}

We can derive the following theorem analogously.

Theorem 4.4. The dimension of the linear space Γ2n+1[ti, ti+2n+1] is 1.
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The proof is similar to the proof of Theorem 4.2.
Inspired by the method for constructing normalized B-basis in extended Chebyshev space presented

in [10], we use the functions Fi,2n(t), where i ∈ Z, to construct the normalized function Mi,2n+1(t).
Therefore, the following theorem holds.

Theorem 4.5. (The normalized function) Suppose that

Mi,2n+1(t) =

∫ t

−∞
Fi,2n(s)ds∫ +∞

−∞
Fi,2n(t)dt

−

∫ t

−∞
Fi+1,2n(s)ds∫ +∞

−∞
Fi+1,2n(t)dt

, (4.18)

where Fi,2n(t) ∈ Γ2n[ti, ti+2n] and Fi+1,2n(t) ∈ Γ2n[ti+1, ti+2n+1] are defined in Theorem 4.3, with i ∈ Z and
n ∈ Z+. Then we have

+∞∑
i=−∞

Mi,2n+1(t) ≡ 1, t ∈ [t j, t j+1).

Proof. For t ∈ [t j, t j+1), there exists

+∞∑
i=−∞

Mi,2n+1(t) =
+∞∑

i=−∞

( ∫ t
−∞

Fi,2n(s)ds∫ +∞

−∞
Fi,2n(t)dt

−

∫ t
−∞

Fi+1,2n(s)ds∫ +∞

−∞
Fi+1,2n(t)dt

)
=

j∑
i= j−2n

( ∫ t
−∞

Fi,2n(s)ds∫ +∞

−∞
Fi,2n(t)dt

−

∫ t
−∞

Fi+1,2n(s)ds∫ +∞

−∞
Fi+1,2n(t)dt

)
=

j∑
i= j−2n

( ∫ t
ti

Fi,2n(s)ds∫ ti+2n
ti

Fi,2n(t)dt
−

∫ t
ti+1

Fi+1,2n(s)ds∫ ti+2n+1
ti+1

Fi+1,2n(t)dt

)
=

∫ t
t j−2n

F j−2n,2n(s)ds∫ t j
t j−2n

F j−2n,2n(t)dt
−

∫ t
t j+1

F j+1,2n(s)ds∫ t j+2n+1
t j+1

F j+1,2n(t)dt

=

∫ t j
t j−2n

F j−2n,2n(s)ds+
∫ t

t j
F j−2n,2n(s)ds∫ t j

t j−2n
F j−2n,2n(t)dt

− 0

= 1 +

∫ t
t j

F j−2n·2n(s)ds∫ t j
t j−2n

F j−2n·2n(t)dt
− 0 = 1.

�

Lemma 4.6. The function Mi,2n+1(t) in Eq (4.18) lies in the space Γ2n+1[ti, ti+2n+1].

Proof. First, Eq (4.18) indicates that the support interval of the function Mi,2n+1(t) is the union of the
interval of Fi,2n(t) and Fi+1,2n(t), denoted as [ti, ti+2n+1).

Second, since the integral operator increases the continuous order by 1, the continuous order of
Mi,2n+1(t) at t j is greater than or equal to

k j
i,2n + 1 = k j

i,2n+1, i ≤ j ≤ i + 2n + 1.

So, it is natural that
Mi,2n+1(t) ∈ Γ2n+1[ti, ti+2n+1].

�

According to Theorem 4.4 and Lemma 4.6, the normalized function Mi,2n+1(t) in Eq (4.18) must be
equal to the trigonometric B-spline function Ni,2n+1(t) in Eq (2.5) multiplied by a constant. Therefore,
the following theorem is established.
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Theorem 4.6. (Integral representation of the normalized trigonometric B-spline basis) Given a knot
sequence T = {ti}

+∞
i=−∞ satisfying

ti < ti+1, 0 < ti+2n − ti < 2π and 0 ≤ ti+2n−1 − ti < π, i ∈ Z, n ∈ Z+,

then there holds
Ki,2n+1(t) = Mi,2n+1(t), t ∈ [ti, ti+2n+1),

where Ki,2n+1(t) and Mi,2n+1(t) are separately defined in Definition 3.1 and Eq (4.18).

Proof. We will demonstrate that the expression of Mi,2n+1(t), as defined in Eq (4.18), is identical
to that of Ki,2n+1(t) defined in Definition 3.1. The notations C(ti+1, ti+2, · · ·, ti+2n) in Lemma 4.1 and
U(ti, ti+1, · · ·, ti+2n) (see [17]) are used in the following proof, where

U(ti, ti+1, · · ·, ti+2n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1 1
cos ti cos ti+1 . . . cos ti+2n−1 cos ti+2n

sin ti sin ti+1 . . . sin ti+2n−1 sin ti+2n

cos 2ti cos 2ti+1 . . . cos 2ti+2n−1 cos 2ti+2n

sin 2ti sin 2ti+1 . . . sin 2ti+2n−1 sin 2ti+2n
...

...
...

...
...

cos nti cos nti+1 . . . cos nti+2n−1 cos nti+2n

sin nti sin nti+1 . . . sin nti+2n−1 sin nti+2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 22n2

∏
i≤l< j≤i+2n

sin
t j − tl

2
.

(4.19)

Based on Definition 2.1, it suffices to prove the explicit expression of the function Mi,2n+1(t) over a
non-zero subinterval within its support interval. Therefore, according to Lemmas 3.1, 4.1, and 4.2, and
Theorems 4.3 and 4.5, we deduce that

Mi,2n+1(t) =

∫ t

ti
Fi,2n(s)ds∫ ti+2n

ti
Fi,2n(t)dt

=
D(ti+1, ti+2, · · ·, ti+2n)

(2n−1)!!
(2n)!! U(ti, ti+1, · · ·, ti+2n)

sin2n
( t − ti

2

)

=

22n2−n

n!

∏
i+1≤l< j≤i+2n

sin t j−tl
2 C(ti+1, ti+2, · · ·, ti+2n)

(2n−1)!!
(2n)!! 22n2 ∏

i≤l< j≤i+2n
sin t j−tl

2

sin2n
( t − ti

2

)

=
C(ti+1, ti+2, · · ·, ti+2n)

(2n − 1)!!
∏

j=1,2,···,2n
sin ti+ j−ti

2

sin2n
( t − ti

2

)

=
Ci,2n+1∏

j=1,2,···,2n
sin ti+ j−ti

2

sin2n
( t − ti

2

)
, t ∈ [ti, ti+1).

Since

Ni,2n+1(t) =
sin2n

(
t−ti
2

)
∏

j=1,2,···,2n
sin ti+ j−ti

2

, t ∈ [ti, ti+1),
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we have
Mi,2n+1(t) = Ci,2n+1Ni,2n+1(t), t ∈ [ti, ti+1),

consequently
Mi,2n+1(t) = Ci,2n+1Ni,2n+1(t) = Ki,2n+1(t), t ∈ [ti, ti+2n+1).

�

4.5. Trigonometric spline basis corresponding to DC component-free space for multiple knot case

In this subsection, we consider multiple knots and assume that the multiplicity of the knot ti in the
interval [ti, ti+2n) is ξ, while the multiplicity of the knot ti+2n in the same interval is η. Similarly to the
single knot case, there exist the following theorems.

Theorem 4.7. (The function expression in the space Γ2n[ti, ti+2n] over multiple knots) Let

Au,v =

(
(cos(t + π

2 u))
∣∣∣∣∣
t=tv
, (sin(t + π

2 u))
∣∣∣∣∣
t=tv
, · · · , nu(cos(nt + π

2 u))
∣∣∣∣∣
t=tv
, nu(sin(nt + π

2 u))
∣∣∣∣∣
t=tv

)T

,

Bu,v =
(

(−1)u−1Au−1,v, (−1)u−2Au−2,v, · · · , (−1)1A1,v, (−1)0A0,v

)
,

Eu,v =
(

G(u−1)
v,2n (t), G(u−2)

v,2n (t), · · · ,G′v,2n(t), Gv,2n(t)
)
.

For any function Fi,2n(t) ∈ Γ2n[ti, ti+2n], there exists a real number α such that

Fi,2n(t) = αH(t), t ∈ [ti, ti+2n),

where
α =

(−1)η∣∣∣ Bξ,i Bmi+ξ ,i+ξ Bmi+ξ+mi+ξ ,i+ξ+mi+ξ · · · Bmi+2n−η,i+2n−η Bη−1,i+2n
∣∣∣ ,

and

H(t) =

∣∣∣∣∣∣ Eξ,i Emi+ξ ,i+ξ Emi+ξ+mi+ξ ,i+ξ+mi+ξ · · · Emi+2n−η,i+2n−η Eη,i+2n

Bξ,i Bmi+ξ ,i+ξ Bmi+ξ+mi+ξ ,i+ξ+mi+ξ · · · Bmi+2n−η,i+2n−η Bη,i+2n

∣∣∣∣∣∣ .
Here the functions G j,2n(t) for i ≤ j ≤ i + 2n are defined in Eq (4.4).

Proof. To simplify the notation, we define

ϕu,v =

(
sin (t − tv) sin2n−2

( t − tv

2

))(u)
.

Thus, we conclude that

ϕη−1,i+2n =βiϕξ−1,i + βi+1ϕξ−2,i + · · · + βi+ξ−1ϕ0,i + βi+ξϕmi+ξ−1,i+ξ + · · · + βi+ξ+mi+ξ−1ϕ0,i+ξ

+ · · · + βi+2n+1−η−mi+2n−ηϕmi+2n−η−1,i+2n−η + · · · + βi+2n−ηϕ0,i+2n−η

+ βi+2n−η+1ϕ0,i+2n + · · · + βi+2n−1ϕη−2,i+2n.

(4.20)

Similar to Theorem 4.3, there exist

Fi,2n(t) =

i+2n−η∑
j=i

α jG j,2n(t), t ∈ [ti, ti+2n) = [ti, ti+2n+1−η), (4.21)
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F(d)
i,2n(ti+2n) =

i+2n−η∑
j=i

α jG
(d)
j,2n(ti+2n) = 0, t ∈ [ti, ti+2n+1−η), d = 0, 1, 2, · · ·, 2n − 1 − η. (4.22)

Additionally, it follows that Eq (4.20) is equivalent to Eq (4.22) when t = ti+2n. Thus, by applying the
proof strategy from Theorem 4.3, we derive that

Fi,2n(t) = (−1)η

∣∣∣∣∣∣ Eξ,i Emi+ξ ,i+ξ Emi+ξ+mi+ξ ,i+ξ+mi+ξ · · · Emi+2n−η,i+2n−η Eη,i+2n

Bξ,i Bmi+ξ ,i+ξ Bmi+ξ+mi+ξ ,i+ξ+mi+ξ · · · Bmi+2n−η,i+2n−η Bη,i+2n

∣∣∣∣∣∣∣∣∣ Bξ,i Bmi+ξ ,i+ξ Bmi+ξ+mi+ξ ,i+ξ+mi+ξ · · · Bmi+2n−η,i+2n−η Bη−1,i+2n
∣∣∣ .

�

Theorem 4.8. (The normalized function over generalized knots) Suppose that Eq (4.18) still holds,
where Fi,2n(t) ∈ Γ2n[ti, ti+2n] and Fi+1,2n(t) ∈ Γ2n[ti+1, ti+2n+1] are defined in Theorem 4.7, with i ∈ Z and
n ∈ Z+, then

+∞∑
i=−∞

Mi,2n+1(t) ≡ 1, t ∈ [t j, t j+1).

In addition, when Fi,2n(t) = 0, we set

∫ t

−∞

(∫ +∞

−∞

Fi,2n(s)ds
)−1

Fi,2n(s) ds =

0 t < ti,

1 t ≥ ti.

Theorem 4.9. (Integral representation of the normalized trigonometric B-spline basis over generalized
knots) Given a knot sequence T = {ti}

+∞
i=−∞ satisfying condition (3.4), then there holds

Ki,2n+1(t) = Mi,2n+1(t), t ∈ [ti, ti+2n+1),

where Ki,2n+1(t) and Mi,2n+1(t) are separately defined in Definition 3.1 and Theorem 4.8.

4.6. Examples

This subsection presents examples of curve modeling to demonstrate that a curve possesses the
convex hull property when the knot sequence satisfies condition (3.4).

Figures 3 and 4 illustrate examples of open and closed curves over different knot sequences,
respectively. The red curves correspond to the knot sequences that satisfy condition (3.4)
as defined in Definition 3.1, while the orange curves correspond to the knot sequences
that satisfy condition (2.1) as defined in Definition 2.1. Additionally, the knot sequences
in Figure 3 are T = {0, 2, 3, 3, 3.5, 5.3, 6.1, 6.6, 8.4, 9.1, 9.5, 11.2, 12.2, 12.6, 14.2, 15}, and
T = {0, 0.8, 3, 3, 3.5, 5.3, 6.6, 8.6, 9.1, 9.1, 10, 12.2, 12.2, 13, 14.2, 15}, while those in Figure 4 are T =

{−8,−8,−8,−8,−8,−7,−6.3,−5.6,−4.9,−4.5,−1.2,−1.2,−1.2, 0, 1.2, 1.2, 1.2, 4.5, 4.9, 5.6, 6.3, 7, 8, 8,
8, 8, 8}, and T = {−8,−8,−8,−8,−8,−7,−6.3,−5.3,−4,−3.3,−1.2,−1.2,−1.2, 0, 1.2, 1.2, 1.2, 3.3, 4, 5.3,
6.3, 7, 8, 8, 8, 8, 8}. Clearly, if the knot sequence only satisfies condition (2.1), the convex hull property
of the curve cannot be guaranteed.
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Satisfies the condition (3.4)

(a)

Satisfies the condition (2.1)

(b)

Figure 3. Open curve.

Satisfies the condition (3.4)

(a)

Satisfies the condition (2.1)

(b)

Figure 4. Closed curve.

5. Conclusions

In the Chebyshev system, due to the integral properties of sine and cosine in the trigonometric
B-spline basis, the trigonometric B-spline basis cannot be directly derived from lower-order bases
through integration, which leads to an unnormal Chebyshev system. This paper successfully derives
the integral formula for the normalized odd-order trigonometric B-spline basis by constructing a new
set of even-order trigonometric B-spline bases. This integral formula allows for the transition from
even-order to odd-order bases but cannot be obtained through stepwise integration, indicating that it is
only similar to a segment of the integral formula in the Chebyshev system. Although we are currently
unable to provide a direct recursive formula for integrating from lower-order trigonometric spline bases
to higher-order ones, we hope to use this as a foundation for further exploration of this issue in future
work.
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