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Abstract: The conventional trigonometric B-spline basis of odd order for piecewise trigonometric
polynomial space possesses a lot of good modeling properties. However, its order cannot be increased
by the integral method like B-spline because of the particularity of the trigonometric polynomials. In
the paper, a basis in an even-order trigonometric polynomial space is defined, and its integral relation
with the existing odd-order trigonometric B-spline basis is obtained. First, the condition of the knot
sequence is improved to ensure the nonnegativity of the prior odd-order trigonometric B-spline basis.
Under the revised condition, a set of truncation functions is given and used to build a basis for piecewise
trigonometric polynomial space without constant terms, which is also known as the direct current (DC)
component-free space, secondly. The basis fulfills local support and continuity properties like B-spline
of even order, and each basis function is unique under a constant multiple. Thirdly, the integral formula
from the even-order to odd-order trigonometric B-spline basis is proved.

Keywords: trigonometric B-spline; nonnegativity; knot sequence; truncation function; integral
formula
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1. Introduction

Schoenberg introduced the trigonometric spline functions defined by divided differences in [18].
And the trigonometric spline functions have been shown to possess many B-spline-like properties. In
view of this, many scholars call the trigonometric splines the trigonometric B-splines, in [4, 8]. It is
well-known that the trigonometric B-splines are piecewise functions corresponding to the spaces

T 2041 = span{l, cost,sint, cos 2t, sin 2t, - - -, cos nt, sin nt},

for odd-order, and

I o= [ 3r . 3t @n-1x . 2n-1)
m = Span 0052,31n2,cos 2,sm > , COS 5 , SIn 5 ,
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for even-order. Odd-order trigonometric B-splines in 75,,; form a partition of unity, a desirable
property for curve design. However, even-order B-splines in HH,, lack this partition of unity, creating
challenges in certain applications where this property is critical. As a result, extensive research
has focused on the odd-order basis, particularly on its normalization. The author of [8] established
the recurrence relation for the trigonometric B-splines of arbitrary order and derived trigonometric
Marsden identity. The author of [20] utilized the trigonometric Marsden identity to derive the
normalized odd-order trigonometric B-splines over uniform knots. Building on the trigonometric
Marsden identity expansion introduced by [7], [11] explicitly derived the normalization coeflicients
required to ensure that the trigonometric B-spline basis functions are properly normalized. [15]
provided the p-Bézier basis functions in the space 7,1, which is defined over any interval of
length < m. Those basis functions are a subcase of the normalized trigonometric B-splines. [2]
presented the normalized Bernstein-like basis functions in the space 75,1, which is defined over the
interval [0, /2]. [21] established the C-B spline basis. In this work, the C-B spline basis of order 3
is just the normalized trigonometric B-spline basis corresponding to the space 73. In a more general
context, the normalized trigonometric B-splines are also considered in [16] as a special case.

Curve and surface design is an important area in Computer Aided Geometric Design (CAGD),
where trigonometric B-splines are a foundational tool. Normalized trigonometric B-splines enable
enhanced construction and control of curves and surfaces, suggesting their potential applications in
aircraft design [9]. Additionally, trigonometric B-splines show promising applications in other fields,
such as physical simulations (see [5, 12,19]).

The purpose of this paper is to introduce the integral formula for odd-order trigonometric B-splines.
Given the significant applications and theoretical importance of integral formulas in Chebyshev
systems for fields such as numerical analysis, signal processing, and function approximation, it is
notable that the integral properties of sin and cos in trigonometric B-spline bases render them incapable
of being directly derived like other bases in Chebyshev systems. The aim of this study is to provide a
similar integral formula for trigonometric B-spline bases. To achieve this, this paper first constructs a
novel set of even-order trigonometric B-spline curve basis functions and, through integration of these
functions, successfully derives the traditional odd-order trigonometric B-spline basis functions, thereby
establishing the integral formula for odd-order trigonometric B-spline bases. During this derivation
process, a determinant of even order with structural symmetry is obtained. Furthermore, this study
refines the conditions for knot sequences to ensure that the corresponding normalized trigonometric
B-spline bases possess nonnegativity.

Our main contributions are

e A set of trigonometric spline bases corresponding to the DC component-free space is provided,
along with the integral representation of normalized trigonometric B-spline bases corresponding to
space %n+1 .

e Adjusting the conditions imposed on the knot sequence to guarantee the nonnegativity of the
normalized trigonometric B-spline basis functions.

e A structurally symmetric even-order determinant is presented.

The remainder of this article is organized as follows: Section 2 reviews the related concepts
and properties. The improvements to knot sequences are discussed in Section 3. In Section 4, the
trigonometric spline basis corresponding to the DC component-free space and the integral formula for
the normalized trigonometric B-spline basis are presented. The final conclusions are drawn in the last
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section.
2. Review

In this section, we will recall some established concepts and conclusions.

[1] has demonstrated that the knot sequences for B-spline basis functions can be finite, infinite,
or bi-infinite. Analogous to the case of traditional B-spline basis functions, this paper focuses on the
study of trigonometric B-spline basis functions corresponding to bi-infinite knot sequences.

The normalized trigonometric B-spline basis functions are defined in a manner analogous to the de
Boor-Cox formula [4,7,8,11].

Definition 2.1. (Normalized trigonometric B-spline basis functions) Given a knot sequence T =
{t;}7>=° | such that

[=—00’

t; <ti1,0<tiop1 — 1, <2mi€Z,né€ Z+, 2.1

the normalized trigonometric B-spline basis functions of order 2n + 1 are defined as follows:

Ki2ps1(t) = Li2ns1Nions1 (1), (2.2)
where
_ 1’ l..ftl <t< liv1,
Nia@) = { 0, otherwise. (2.3)

. =t 3 tivon—t
Slﬂ( ) ) Sll’l(—2 )

Nion(t) = —————<Njop-1(t) + —F——<Nis120-1(), (2.4)
sin (li+2n£1_t[) sin (li+2n2—ti+1 ) *
sin (=X sin ( et
7] 2
Niopn(t) = ——= t( _2 Nion(t) + ——— g — ) Ni1.24(2), (2.5)
sin ( 1+2§ 1) sin ( 1+2n+£ i+1 )
it = 1 Z ﬁ cos [ ~ lituej-n (2.6)
i2n+1 — , .
@n) 41 ] 2

and the sum is taken over all permutations u : {1,2,---,2n} — {1,2,---,2n}.

Remark 2.1. In [4, 8, 11], the knot sequence satisfies the condition 0 < ti2,,1 — t; < 2n. However,
the knot sequence described in [7] satisfies a slightly different condition, 0 < t; 5, — t; < 2n. In the
subsequent section, the conditions of the knot sequence are reiterated.

Ift;.y <t =ty =+ = tiym—1 < tism;, Where 1 < m; < 2n, the knots ¢;, where j =i,i+1,---,i +
m; — 1, are referred to as knots of multiplicity m;. Especially, we set 8 = 0. The space of trigonometric
spline basis is defined by

Lot [T := {Ni2ue1 O|Nizar1 Olietyn) € Tanet, and Niy (=) = N (6:4),0 < 1< 2n = my,i € Z),

The trigonometric B-spline basis functions possess many B-spline-like properties [3, 6, 8, 14].

Property 2.1. (Properties of the trigonometric B-spline basis functions) The trigonometric B-spline
basis functions N;,.1(t) defined in Eq (2.5) possess the following properties:
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(1) (Local support) For any i € Z and n € Z*, there exists

>0, t € (ti, tizons1),

2.7
Z0, 1€ [t ]. @.7)

Niops1(t) = {

(2) (Continuity) The continuous order of N;,.1(t) at t; (wWherei < j < i+ 2n+ 1), denoted as k'i’;2n+1,
can be described as

2n-¢, i<j<it+é—1,
J _ . .
Ko =4 2n—mj, i+&<j<i+2n+1-n, (2.8)
2n —n, i+2n+2-n<j<i+2n+1,
ifti =1 = 0 = el <live S livgrt 000 S el < livont2—p = 00 = livontl-

3. Condition improvement for knot sequence

In this section, we will adjust the conditions of the knot sequence to ensure the nonnegativity of the
normalized trigonometric B-spline basis functions K;,(f) fori € Z and n € Z*.

First, the condition (2.1) can be relaxed.

The nonnegativity of the basis function N;»,.;(?) is ensured by the condition 0 < #;5,41 — 1; < 27
as stated in (2.1). Since the length of the support intervals for N;,,(¢) and N, 2,(?) in Eq (2.4) is 2n,
replacing 0 < t;12,+1 — t; < 27 with the condition 0 < t;,,, — t; < 27 still guarantees the nonnegativity
of N;,+1(t). Therefore, the condition (2.1) can be relaxed to

tl-St,-+1,()<tl-+2n—ti<27r,iEZ,n€Z+. (31)

Second, the condition to ensure the positivity of the normalized coefficients .+ in Eq (2.6) 1s
presented. According to the representation in Eq (2.6), we obtain the condition to ensure the positivity
of the normalized coefficient {;;,1, that is

0Lty —ti<m i€ZneZ. (3.2)

The Bézier-like basis defined in the space 75,1 is a subcase of the trigonometric B-spline basis. In [13],
it was noted that the space 7,,+; does not have an NTP basis when the domain of 75, is [0, 7r]. This
implies the non-existence of normalized coefficients. Consequently, we conclude that #;,,,_1 — t; # 7.
In [15], it proved that there exist NTP bases provided that the domain of 75, is any interval of length
< m, specifically referred to as p-Bézier bases. This implies that the normalized coefficient satisfies the
condition #;,,,-1 — t; < m, in the special cases of Bézier.

Figure 1a presents an example of the basis functions N;,,.(¢) for i € Z, whose corresponding
knot sequence T satisfies condition (3.1) but fails to satisfy condition (2.1). Here n = 2 and the
knot sequence T = {t,-}l.f] = {1,1,1,1,1,3,4,5.3,6.5,7.5,8.8,10, 10, 10, 10, 10}. Figure 1b shows
the trigonometric B-spline basis functions N;3(f) and K;3(#) corresponding to the knot sequence that
satisfies condition (3.1) but does not satisfy condition (3.2), while Figure 1c presents the functions
N;5(t) and K;5(t) corresponding to the knot sequence that satisfies both conditions (3.1) and (3.2).
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Figure 1. Examples of trigonometric B-spline basis N; 5,.1(f) and K; 2,41 (?).

Although the coefficients of the normalized trigonometric B-spline basis have already been defined
in Eq (2.6), for the convenience of deriving and proving the integral formula of the normalized
trigonometric B-spline basis, this paper introduces a simplified normalized coefficient expression that
is equivalent to Eq (2.6).

Lemma 3.1. Let

1 . ti+m - li+m2 -1 .
Cime1 = ———— E | | cos —= "l e Z neZt, 3.3)
(2n - Dl y(1,2,...2n) r=1 2
where the sum is taken over all permutations y(1,2,...,2n) : {my,ma,...,my,} — {1,2,...,2n}, with

my,my, ..., My, being a permutation of 1,2,...,2n that satisfies my < mz < ... < My, and my,_| <
my, for each r = 1,...,n. Then there exists

Ci,2n+1 = gi,2n+1 )

where {;r,+1 defined in Eq (2.6).

Third, a new definition for the normalized trigonometric B-spline basis that guarantees
nonnegativity is presented.

Definition 3.1. (Nonnegative normalized trigonometric B-spline basis functions) Given a knot
sequence T = {t;}1>° _, such that

i=—00’
t <ti1, O<tim,—t; <2m and 0 < tivopo1 — L, <m, 1E€EZ,n€ Z+, (34)

the nonnegative normalized trigonometric B-spline basis functions of order 2n + 1 are defined as
follows:

1 ift; <t <tyy,
Kiy(0) = { 0, otherwise. (3.5)
Ki2p41(1) = Cippr1Njpns1 (D), (3.6)

where N;ypi1(t), Cione1 is defined in Eqs (2.5) and (3.3), respectively.
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4. Trigonometric spline basis corresponding to DC component-free space

In this section, we generally set the knot sequence to be T' = {£;}° _ that satisfies condition (3.4),
where the multiplicity of ¢; is m; with 1 < m; < 2n, and k{ oupp 18 defined in Eq (2.8) without further
explanation. Let us define the DC component-free space as 75, := span{cos?,sint, - -, cos nt, sin nt}.

Its corresponding piecewise trigonometric polynomial space is

Dol T = {Fipu®|Fion®lietrsn) € Tons and FO) (1=) = FL) (t:+),

i,2n i,2n

0<I<2n-m—-1,1<m;<2n-1,i €Z}.

Clearly, I',,[T] is a linear space. We can derive the subspace of I',,[T] as follows:

o[, tivon] = {Fina(t) € r2n[T]|Fi,2n(t) =0,r¢ .[fi, tizon] and Fio, (1) # 0,1 € (1, tis20),
FO (tj-) = Flfgn(tj+),0 <I<kl,,i<j<i+2n}.

i,2n i,2n’

It can be shown that a function in the space I,,[#;, t;+2,] exhibits local support and a specific order of
continuity.

4.1. An important determinant

The following determinant and its accompanying proof are presented to facilitate future derivations.

Lemma 4.1. For any n € Z*, then the following identity holds.

COSt; COStr ... COSty,
sint; sint, ... Sinty,
cos2t; coS2t, ... CcOS2t, o _— " F
: : : . my, my,—
D(ti,tr, - 1py) 1 = | SIN2f; sin2f ... sin2f, | = ’ l_[ sin 2 Z 1—[ cos %,
: : : : n: I<l<j<n y(1.2,....2n) r=1
cosnt; cosnt, ... COSHby,
sinnt; sinnt, ... sinnt,

“4.1)
where y(1,2,...,2n) defined in Lemma 3.1.

Proof. According to Euler’s formula and the identity e/ — e = 2ie2®*9) sin %, it follows that
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il el o2 4emit2 ei"2n 4oitn
2 2 : o2
e”l _eﬂtl eltz _e*ltz e”Zn _eflfzn
2i 2i te 2i
D(ty,tp, -, 1op) = : : : :
e"”l +e—n[ll en[lz +e—m‘12 e"”2n+e_""2ﬂ
2 2 : 2
e””l —g*"”l e"”Z —g”“tZ e"”Zn —e’””‘Zn
2i 2i te 2i
1 1 ... 1
eitl eit2 L eitz,,
(_ 1 )n2+n : : : :
— —nity . e—ni[zn e(n—l)itl e(n—l)itz L e(n—l)itzn
n\n
(20) it ptDin Dty
eZm’tl e2nit2 e2nit2n
2
22n*=n ) ) ) . i t:—t
Y e e E e ... e"m | | 21 gjn - ) -
1<mi<mp<..<m,<2n 1<s<j<2n
For the sake of convenience, let
n
C _ tm2r - thrfl 4 2
(t1, 1, -+, 1) = cos - 5 4.2)
v(1,2,...,.2n) r=1

Therefore, it suffices to prove that

n' _. i ' ~ i,
C(ty, by, s boy) = —e "M e Z e'm ... e''m 1—[ g2ty

2n
1<mi<mp<..<m,<2n 1<s<j<2n
.omy . 2n my (43)
n! i i
= 2. o 52@—5 DN
1<mi<mp<..<m,<2n q=m h=1 g=m|

We establish the inductive hypothesis for n. For n = 1, the result is straightforward. Assume that the
conclusion holds for n < p — 1, where p is any positive integer. Specifically, we have

(r-1)! Cmpog (n2p-2 mp_1

—1). 1 1

C(tn1’ tnza ) tnzp,z) = 2(p=1) Z exp 2 Z tq ) Z t — Z tq s
&

q=mj h=ny q=mj
where the sum is taken over all permutations &:{m,my,---,m,_1} — {ny,ny,---,nyp}. Here,
ni, Ny, -+ ,Nyp_n represent a permutation of 1,2,---,2n such that ny < n, < -+ < ny,,, while

my,my, -+ ,mpy_1 is a subset of ny, ny, -+ , Ny, satisfying my <mp < --- <mp_;.
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Next, consider the case where n = p. Based on this assumption, we have

ty — 1 P

2 — bap-i ,— .

C(t), ty, - ,lzp)ZCOS% Z n o mz Iy,
y(1,2,- 2p=-2) r=1

by —lhp- by, = g,
+COS¥ Z ncosu

y(1,2,+2p=3.2p—1) r=1
1

hy,— b by, = by,
+ .-« 4+ COS {4 Z cos erTerl
y(1,3,4, 2p—1) r=1

(@)
©»

p-1
by — 4 -
p , ~ Imy,
+ cos E | |cos 2l

¥(2,3, 2p—1) r=

2
z i
( Xp (E by — t2p—l)) + CXP( 5 (t2p = Ihp- 1))) C(t1, 12, 1rp-2)

e

-+

(x
o |

1<my<mp<..<mp<2p q=m q=m|

I i
3 t2p lzp—z)) + exp( 5 (t2p - t2p—2))) C(t1, 12, op-3,12p-1)

l\)l'd[\.)l»—t

CD

I
( by — l‘z)) + exp (—5 (t2p - fz))) Ct1, 13,84,y 12p-1)

I
hy — h ) + exp (—5 (th - tl))) Ctr, 13, 1ap-1)

o3 (e
P[5

where the sum is taken over all permutations y(nj,na,--- ,np2) : {my,mp,---,my, 0} —
{ni,ny, -+ ,nypn}, with my,my, -+ ,my,_, being a permutation of n,ny, - - - ,n,y,—, that satisfies m; <
m3 < -+ < myp_3 and my,_; < my, foreach r = 1,---, p — 1. Here, the sequence {n;,ny, - , 1,5}
represents, in order, the sequences {1,2,--- ,2p-2},{1,2,--- ,2p=3,2p—1},---,{1,3,4,--- ,2p—1},
and {2,3,---,2p — 1}. Eq (4.3) is valid for any positive integer n. Thus, the lemma is proved. O

4.2. Constructing truncated functions

This subsection defines a set of truncated functions and demonstrates that any function in the space
I',[¢, tiv2,] can be expressed as a linear combination of these functions.

Let go,(f) := sinzsin®"” 2( )(n € Z"), the truncated functions G;,,(f), where i € Z and n € Z*, are
defined as follows: If t; = #;,; = -+ = fiyz-1 < lisg, then

0, t<t,
Gianlt) := { -1, t21. 4

Figure 2a—2c illustrate examples of the function g4(#) and the truncated functions G;4(¢), where
i € Z, over single and multiple knots, respectively.

To prove that any function in the space I',[#;, #;12,] can be represented as a linear combination of
{Gi2n(t)}icz, the following lemmas will be utilized.
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1) [—

—_—G

Ha — Gt

e Gy,

— Gy

—

G:
1 tats ty ¢
: A
AV

o+
ta(t2) ts(ta, ts)

(a) Function g4(t) (b) Single knots (c) Multiple knots
Figure 2. Examples of functions g4(¢) and G, 4(¢) for i € Z.

Lemma 4.2. There exist n + 1 real numbers dy, d;, - - -, d, such that

. t
sin*" (5) =dy+dycost+d,cos2t+---+d,cosnt,

where dy = (2{2’;)1!)!”.

Proof. It is well known that

. t
sin" (5) € span{l, cost,cos2t,- -, cosnt},

i (5)= o () = (55

Thus, there are n + 1 real numbers dy, d;, - - -, d,, such that

since

. t
sin?" (E) =dy+d cost+d,cos2t+---+d,cosnt.

We deduce that, based on Euler’s formula,

it =it . . . . . .
e —ez et 4 et e2zt + 6_2” Mt 4 it
| =dy+d +d> bt dyp—

2i 2 2 2
_ @n=D

Expanding the left side of Eq (4.5) using the binomial theorem results in dy = <757+

Lemma 4.3. The function G,,,(t) defined in Eq (4.4) lies in 1,,[T] for any i € Z,n € Z".

Proof. First, according to Lemma 4.2, we obtain

t
sin?"2 (5) € span{l, cost,cos?2t,---,cos(n — 1)t}

Thus, we have
) .o [ . . )
sinzsin®" 2 (E) € span{sint, sin 2t, - - -, sin nt},

4.5)

AIMS Mathematics Volume 9, Issue 12, 36470-36492.
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and
gt — 1) € Ty, fori € Z.

Second, the order of continuity of g,,(t — 1;) at ¢; is 2n — 2, because that

g0t = t)l=, =0,1=0,1,---,2n =2, and g8 V(t = 1;)|:=, # 0.

Third, it is easy to see that the order of continuity of G;,,(#) is 2n — & — 1 at #; and is oo at the other
knots.
In conclusion, G;,(t) € I',[T], fori € Z. O

Lemma 4.4. The functions G;,,(t) for i € Z in Eq (4.4) are linearly independent.

Proof. If t;iy < t; = tiy1 = -+ = tigm—1 < tiwm,» the m; functions G, (?) fori < j < i+m; —1 are linearly
independent since they have different continuous orders at ¢;.
For the sake of simplicity, let r = i + m; and t,_) < t, =t,1) = -+ = tiy,—1 < Lram,. We can then

similarly conclude that the functions G,,(t) for r < j < r + m, — 1 are linearly independent. In
addition, it is straightforward to derive that

Span{ th(t) G1+1 Zn(t) 1+m 12n(t)} N SPan{ an(t) Gr+1 Zn(t) r+m,—1 2n(t)} { }
Thus, G;2,(8), Giv120(0)s - > Gizmi-120(0)s Gr20(0), Gri120(0), -+, Grym,—120(¢) are linearly independent.
Consequently, the functlons G,,Zn(t) for i € Z are linearly 1ndependent. O

From the above lemmas, we conclude that any function in the space I',,[#;, f;12,] can be expressed
as a linear combination of G;,,(f) fori € Z.

Theorem 4.1. For any function F;,,(t) € I5,[t;, t;12,], there exist 2n — n + 1 real numbers v;, vy, - -,

Vizon—n Such that
i+2n-n

Fio, (1) = Z ViGion(t), t € [t;, tis2n),
=i
where 1 is the multiplicity of t;,,, in the interval [t;,t.2,] and the functions Gj,,(t), where i < j <
i +2n —n, are defined in Eq (4.4).

Proof. Since F;,,(t) in space I';,[t;, ti12,] 1S a piecewise function, it can first be linearly represented by
the functions Gj,,(?) for i < j < i+ 2n —n in Eq (4.4) over a non-zero interval within its support
interval.

Suppose t; = tiy) = 0+ = tipeng < lipg <000 < tigopey < tison—gel = *+ = tizo,. We consider that the
function Fj,,(?) can be linearly represented in the interval [#;, #;.z). Thus, we prove that there exist &
real numbers k;, K41, -  +, Kivz—1 Such that

i+&-1

Fin®) = Y G

[titive) j=i

For simplicity, assume that

f1(@) = Fi,(0) , T E [t tive).

[titive)
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Based on the definition of the space I,[#;, ;+2,], we know that fi(f) € 7,,, which means that there
exist 2n real numbers x;, x5, - -+ , X3, such that

fi(t) = x;cost+ xpsint + - - - + Xy, COS 1t + Xy, Sin nt,

and
D) = 2 = £0@+), 0<s<2n-é-1,

which implies that
) =0,0<s<2n—¢-1.

Letp =2n—¢—1,9Q, == {fi()i(t) € Taw £7(4;) = 0,0 < s < p}, and ¥, := span{ga,(t —1,), g}, (t —
1)y o 7t = tisg 1)} = span{gaa(t — 1), gh,(t = 1), -+, g Pt — 1)),

Since g2,(t—1;), g, (t=1), -+, g(zi"_p _2)(t—t,-) are linearly independent, we conclude that the dimension
of ¥, is 2n — p — 1. According to the definition of the function g,,(), we obtain that g(zlr)l(t - 1) € Q,,
[1=0,1,---,2n — p — 2. Hence, it follows naturally that ‘¥, is the subspace of €.

The dimension of the space €, is equal to the dimension of the solution space corresponding to the

following linear equations.

Si@) =0,
4
f] (tl) = 07
) (4.6)
(0) _
S @) =0.
Thus, the following linear equations holds:
X1 COS?t; + Xy Sint; + X3 COS 2t; + X4 SIN21; + + - - + Xp,_1 COS NL; + X, Sinnt; = 0,
—X1 8Int; + X, cOSt; — x328in 2t; + x42 oS 2t; + « -+ — Xy, nSinnt; + xy,ncosnt; = 0,
—X| COSt; — X sint; — x322 cos 2t; — x42% sin2t; + - -+ -+ — Xy,_1n° COS nt; — Xo,n°> sinnt; = 0,
Xy sint; — x; cos t; + x323 sin 2t; — x42% cos 2t; + - - - + xp,_ 11> sinnt; — xp,n° cosnt; = 0, (4.7)
x1cos(Gp + 1) + x28in(5p + ;) + - -+ + xp,110° cOS(Tp + nt;) + xp,1° sin(5p + nt;) = 0,
where the corresponding coefficient matrix is given as
COS t; sin ¢; cos 2t; sin 2t ... cos nt; sin nt;
—sint; cos f; —2sin 2¢; 2 cos 2t .. —n sin nt; ncos nt;
—Cost —sint —22cos 2t; -22sin2t; ... —n*cosnt; —n? sin nt
sin t; —Cost; 23 sin 21; —23cos2t; ... n’ sinnt; -n’cosnt; | (4.8)
cos(3p + 1;) sin(5p + 1;) 2 cos(5p + 21;) 2° sin(5p + 21;) ... n” cos(5p + nt;) n’ sin(Fp + nt;)

By performing elementary row operations, it is demonstrated that the matrix (4.8) maintains full row
rank, independent of the parity of p. This result establishes that the dimension of the solution space for
the linear system (4.7) is

2n—-(p+1)=2n-p-1.
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The dimension of Q, is determined to be 2n — p — 1. Consequently, it follows that Q, = '¥,,. In other
words, we know that there exist 2n —p — 1 =2n—- (2n - & — 1) — 1 = € real numbers k;, K1, * -+, Kive—1

such that
i+é—1

A= ket —1).
Jj=i

According to the definition of G;,,(?), the function f(#) can be expressed as

i+é—1

A=) kG a0).

=i

Consider the non-zero interval [f;,¢, fiy£1m,,. ). We define

fo(t) = Fiu(1)

S [ti+§, ti+f+m,‘+5)'
Uisgotivermgyg)

According to the continuous order of F;,,(?) at t;,,, we deduce that

l(s)(fi+§) = l(s)(ti+§—) = ;S)(fi+§+) = Z(S)Ui+§),0 < s<2n—mie— 1.
This implies that
L) = f0ti4e) = 0,0 < 5 < 2n = My — 1.

Thus, from the above analysis, it follows that there are m;,, real numbers ki, ¢, Kirg+15 * * * Kisgrm,e—1 SUCh
that

i+§+mi+§—1

AO=-AO = > kG0,

J=ite

Consequently, we have
i+§ +tMjye— 1

S0 = Z KiG jon(1).

=

For every non-zero subinterval of the support interval of F;,, () , we consider it this way. It can be
concluded that there exist 2n — n + 1 real numbers v;, vi,1, - - -, Vis2,—y such that

i+2n-n

Fia® = Y v,Gion(®), 1 € [t lisanyer) = [t 1i120),
Jj=i

where v; for i < j < i+ 2n— nis expressed as a linear combination of k;, Kix1, * * *, Kiz2p—p- O

4.3. The dimension of I'5,[t;, tiv2,]

The subsection demonstrates that the dimension of I',,[#;, #;12,] is 1. To support this, we first require
the following lemma.
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Lemma 4.5. Given an integer i and positive integers n,n such that n < 2n — 1, then the determinant

Gi2n(tiv2n) Givion(tiv2n) oo Gisonn—120(Tiz20)
G;,zn(ti+2n) G;+1,2n(li+2n) v Gll"+2n_,7_1,2n(ti+2n)
. . : . # 0,
(2n-n-1) (2n-n-1) (2n—-n-1)
Gi’zr,lq ! (ti+2n) Gl‘_,_r]l,zzl (ti+2n) N Gi_{_gnzn_]’zn(tHZn)

where the functions G j,(t) for i < j < i+ 2n—mn—1are defined in Eq (4.4).

Proof. Use reduction to absurdity. Assume that the determinant is equal to zero. Then, there are 2n —n
real numbers z;, Zis1, *  *, Ziv2n—y-1, Which are not all equal to zero, satisfying

Gi2n(tiv2n)
H2ny-l Gy, (tiv2n)

Z <] . =0

I=i .
2n—n-1)
Gon " (tien)

i+2n—n-1
LetY(r) = Y zGa,(t). Then, we find that the first 2n —n — 1 derivatives of Y(¢) at ¢,,,, are all zero.
P

=1
According to Theorem 4.1, there exist m;,,, real numbers, such that

i+2n+mjion—n—1

Y(t) = Z ZuGu,Zn(t)'

u=i+2n-n
Therefore,
i+2n—n—1 +2n+mjy,—1—1
Y(t) = Z ZlGl,Zn(t) = Z ZuGu,Zn(t)a
=i u=i+2n-n
and
i+2n-n-1 i+2n+mjion—n—1

D G- D G =0.

=i u=i+2n-n
According to Lemma 4.4, we obtain that z; = - -+ = z;,5,-p-1 = 0. This conflicts with the assumption.
So, the lemma is proved. O

From Theorem 4.1 and Lemma 4.5, we obtain the dimension of I'5,[#;, tj12,].
Theorem 4.2. The dimension of the linear space I',[t;, tiy2,] is 1.

Proof. Suppose that u(¢) is an arbitrary function in I'5,[#;, #;12,]. Thus, according to Theorem 4.1, there
are 2n — n + 1 real numbers v;, Vi,1, - - *, Vison— such that

i+2n-n

ut) = " viG a1 € [ty tian) = [t lsan 1),

Jj=i
where 1 denotes the multiplicity of #;,,, in the interval [#;,¢;,,]. Consider the continuous order of
function u(¢) at t,,,,. We have

u(l)(ti+2n_) = u(l)(ti+2n) = u(l)(ti+2n+) = 09l = 09 15 2, ) 2n - n - 1’
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which implies that
uP(tin) =0,1=0,1,2,---,2n —n— 1.

Thus, the equation representing the continuous order of u(t)s at t;,,, is given by

u(ti+2n) = 05
u'(tizon) = 0,

4.9)
WD (1100,) = 0.
which can be expressed in matrix form as follows:
Gion(tiv2n) Givion(tiv2n) oo Gisonnon(tivon) Vi
G,'-,Zn(.mzn) Gl,'+1,2,,f(ti+2n) . G,{+2n_n,.2n(ti+2n) vie | _ 0 4.10)
Go i) G o) o GESD (taa) J\ Vieauy

This system consists of linear equations with v;, vi,1, - - -, Viz2,—y as variables. Based on Lemma 4.5, the
coeflicient matrix of these linear equations is full row rank, with arank of 2n —n+1-2n-n) = 1.
This indicates that the dimension of I'5,[#;, fi12,] 1S 1. O

4.4. Trigonometric spline basis corresponding to DC component-free space for single knot case

In this subsection, we consider single knots and assume that #; < #;;; for any i € Z. Then the even-
order trigonometric spline basis functions corresponding to the DC component-free space 7>,, and the
integral expression for the trigonometric B-spline basis K;,,.1(f) are presented.

According to Theorem 4.2 and the definition of I,[#,#42,], it is established that F;,,(t) €
15,18, tis2,] and the dimension of I,[#;, t;10,] 1s 1. If we find a function H(¢) € I',,[t, t;12,], then it
follows that F;,,(#) = aH(t),t € [t;,ti2,) for some real number a. Thus, the following theorem is
provided.

Theorem 4.3. (The function expression in the space 1'5,[t;,t;.2,] over single knots) For any function
Fion(t) € Tyylty, tivonl, there exists a real number « such that

Fir(t) = aH(1),t € [t;, tizon),

where
Gi2n(D) Gii2n(® ... Giuo120(0)  Gig2n2n(0)
COS!;  COSliyy ... COSltiion_i  COStiyon
sin ¢ sinti,; ... SINfi0,-1 Sin 40,
cos2t; cos2tiy ... COS2ftio,—1 COS2tiio,
H(t) = sin2t; sin2t,1 ... SIN2f0,-1  SIN2t0, |’
cosnt; COSAHtiyy; ... COSHlio,—1 COS Nty
sinnt; sSinnti, ... SiNAf,—1  SIN AL,
and a = —m. Here D(t;, tiv1, -+ , tison-1) and the functions G j,,(t) fori < j < i+ 2n are
Dli+1s"" 5bi+2n— >

defined in Eqs (4.1) and (4.4), respectively.
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Proof. According to Theorem 4.1, there exist 2n real numbers a;, @41, - - -, @i42,-1 such that

i+2n—1

Fian®) = ) @G ian(0), 1 € [t ti2n), (4.11)
j=i

By the continuous order of F;,,() at t;,2,, it follows that

i+2n—1
F(twa) = )\ @G, (t20) = 0.1 € [ty fi2) d = 0, 1,2, -+, 20 = 2. (4.12)
=i
This can be expressed equivalently as a system of equations
i+2n-1
Z_:. ;G jon(tis2n) = 0,
i+]221_1:—1
@G’ (tix2n) = 0,
=IO (4.13)
i+2n-1
.Z. a-iGE',Z;rz_Z)(ti+2n) =0.
j=i
In addition, we have
f—t. i+2n—1 f—1.
sin (¢ =t sin > (2 ) = JZ:: Bsin (¢ = 1 sin 2 (<), (4.14)

where B;, Bi+1, - ,Biron—1 are real numbers. Since Eq (4.14) when ¢ = ¢,,,, is equivalent to Eq (4.13).
We obtain that «; = B, j = i,---,i + 2n — 1. Thus, we only focus on §;,i < j < i+ 2n— 1. By proving
Lemma 4.3, it can be concluded that there exist n numbers 1y, 7,, - - -, 17, such that

t—t; a
sin (¢ — 1) sin® (—’) = N sind(t =), = i+ 1oi 4 20, 4.15)
2 =1
So we can rewrite (4.14) as follows:
—1n1 Sinti0,
171 COS fiy2n

—1, 810 2142,
( cost sint ... cosnt sinnt ) 12 €08 242,

—Np SIN Nljyopn
1n COS ntiion

) ) (4.16)
—m st ... —npSinfio,-
M1 COSt ... 1M1COSLion-1 Bi
—mpsin2; ... —mpSin2t0, Bisi
= ( cost sint ... cosnt sinnt ) M2€o82t; ... 12CO8 20, :
: : :8i+2n—2
—mpSinnt; ... =1, SiNNL0, Bivon-1
n,cosnt; ... 1n,COSNtii2,-1
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Based on the properties of matrix operations, we deduce that

—mising; ... -1 Sintio, —1n1 8iN £y,
MCOSt; ... 11COSTisou Bi 11 COS fi12,
—mp8in2f; ... —mpSin2t0, Bix1 —1, 810 21,2,
M2CO82f; ... 1M2COS 20 : =| mcos2ti |. 4.17)
: : ﬁi+2n—2 :
—Npsinnt; ... =1, Sinnto, Bivan-1 —1n SN Ntjy0,
N,COSnt; ... 1,COSAti 2,1 1, COS Ntiiop,

The coefficient matrix of (4.17) is non-zero due to the linear independence of the functions
cost,sint, - - -, cosnt, sinnt. According to Cramer’s Rule, we have

D(ti"" slivj2s tivons Livjs o 9ti+2n—l)
D (&, tix1, -+ S tison-1)

Birj1 = , for j=1,2,---,2n.

We apply this result to Eq (4.11) to yield

2n
Fion(t) = Z iy j-1Gis j-1,2n(1)

J=1

Gitjo120(2)

D (ti’ ti+19 Tt ti+2n—1) A

_ Do, tiv1, fi+2n—1)G 0+ D (t;, tivon, tivas 5 bivon-1)
= 2

D(tia li+1" o ’li+2n—1) . D(ti’ Z‘i+]7”' 9ti+2n—])

+ D (t;, -, tivan—2, tison)

i D(fi, o i Livons iyt ,fi+2n—1)
J=1

Git124(2)

+- Giton-1,24(1)
D(titivrs  stiponr)
_ D(t 9"'at'2) — D(t'at'29"'at'2)
= (- — S G(t) + (-1 "G (1)
Dt tis1, -+ S tivon-1) D (i, tiv1s -+ S tivon-1)
D(t;,- -+, tivon—2, tison) D, tizon-2, tisan—1)
Gizon—12n(1) + Gitonon(1)
D(th ti+17”' 7ti+2n—]) e " D(ti’ ti+1,”' 7ti+2n—1) e
1
= - H(t)a re [ta liv2 )a
D(ti’ ti+19" * ’ti+2n—1) S
where G 2,2,(f) = 0,1 € [1;, i120). i

The linear space I'5,[t;, t;12,] corresponds to space 7,,. Similarly, the space I5,41(#;, ti12,4+1] , Which
corresponds to space 75,+1, can be defined as follows:

Dopiiltis tivone1] = AM;2p41(t) € Dopar [T1M;2441(2) = 0,8 € [t;, tisone1] and M, 5,1 (2) # 0,
1€ (ttioms1)s Moy (=) =M (t74),01=0,1,--k i<j<i+2n+1}

J
i,2n+1 i,2n+1 i,2n+1°
We can derive the following theorem analogously.

Theorem 4.4. The dimension of the linear space 15,4 1[t;, tizone1] is 1.
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The proof is similar to the proof of Theorem 4.2.

Inspired by the method for constructing normalized B-basis in extended Chebyshev space presented
in [10], we use the functions F),,(f), where i € Z, to construct the normalized function M;;,.(?).
Therefore, the following theorem holds.

Theorem 4.5. (The normalized function) Suppose that

f  Fian(s)ds f « Fir1oa(8)ds
Mi,2n+1(t) = +00 - +00 ’
[ Fiu(Odt [ Fin(tdt

where Fi5,(t) € Ty, lty, tivon] and Fipy2,(t) € Uopltivy,s tivons1] are defined in Theorem 4.3, with i € Z and
n e zZ*. Then we have

(4.18)

+00
Z Mir1(t) =1, t € [t),141).

[=—00

Proof. Fort € [t;,t;:1), there exists

iy ([ Fionds [ Fiaion(s)ds
M, 1) = (‘% - - )
,Em iant1(7) ,E?o [ Foadt [T Fria(oydt
EJ] ( Sy, Fioa(9)ds f_’meH,zn(s)ds)

i o N Fiande [ Fiuiaa(t)dt

J ( f; Finds 1 FHl,z,,(s)ds)

1. 1}
i=j—2n f,’_”z" Fipn(t)dt f,[_':lz"“ Fis1pn(t)dt

[y Firanands [ Fioion(s)ds

I '
J . JH2n+l
ﬁj_h F jononqdt ﬁjﬂ F 1 on(0dt

Fjanan(s)ds+ f,; Fjann(s)ds
1j
J;_/,_Zn F i onpn@dt
ftj Finan(s)ds

.It‘jj,zn Fj72n‘2n(t)dt

—oo

J
tj—2n

Lemma 4.6. The function M;,.(t) in Eq (4.18) lies in the space Iy,.1[t, tivons1]-

Proof. First, Eq (4.18) indicates that the support interval of the function M;,,,;(¢) is the union of the
interval of F;,,(f) and F;,;2,(f), denoted as [#;, ti420+1)-
Second, since the integral operator increases the continuous order by 1, the continuous order of
M, 5,,1(?) at ¢; is greater than or equal to
k., +1=k

i i<it2n+l.

So, it is natural that
M;2n1(1) € Topii [t tivans -

O

According to Theorem 4.4 and Lemma 4.6, the normalized function M, ,.(¢) in Eq (4.18) must be
equal to the trigonometric B-spline function N;;,.1(¢) in Eq (2.5) multiplied by a constant. Therefore,
the following theorem is established.
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Theorem 4.6. (Integral representation of the normalized trigonometric B-spline basis) Given a knot
sequence T = {t;}>  satisfying
t; <tip1, 0<tipoy—t; <2mand 0 < tipoyy —t; <m i €Z,n€Z",
then there holds
Kizn1(t) = Miopi1 (1), t € [t tisons),
where K;,.1(t) and M;»,.(t) are separately defined in Definition 3.1 and Eq (4.18).
Proof. We will demonstrate that the expression of M;,,,(f), as defined in Eq (4.18), is identical

to that of K;,,.1(¢) defined in Definition 3.1. The notations C(t;;1, fi+2,  *, ti4+2,) in Lemma 4.1 and
U(ti,tiv1, -+, tison) (see [17]) are used in the following proof, where

1 1 .. 1 1
COS f; COStiy1 ... COSliton—1 COS ti40
sint;  Sintyq ... SINfi0,-1 Sin t;,0,,
cos2t; cos2tiy ... COS2tliiou_1 COS2tiio,
Ulti tisr, -+ tisan) = | i 2t; sin2tiyy ... SIN2%ti,—1 SN 2fi0,
(4.19)
cosnt; cosntiyy ... COSntio,—1 COSnNtio,
sinnt; sinnti, ... SINAl,—1 SINALL,
= o’ l—[ sin il .
i<I<j<i+2n 2

Based on Definition 2.1, it suffices to prove the explicit expression of the function M;,,,(f) over a
non-zero subinterval within its support interval. Therefore, according to Lemmas 3.1, 4.1, and 4.2, and
Theorems 4.3 and 4.5, we deduce that

[ Fiou(s)ds
(" Fion(n)dt

D(ti11, b2, *5 tivan) . (f - l‘,’)
S

= 2n—1)!!
((rzln)!)! U(ti, tiv1, -5 tison)
22)12—n . fiet
n! H Sin ]T[C(tHl’ Livos oo, ti+2n)
i+1<i<j<i+2n o (t _ t,-)
- sin

G T sing :

M;on11 (1) =

2
i<l<j<i+2n

_ C(tigs tigas o5 tion) sin” (t - fi)
- _ " S Y e
Cn-D! T sin—=5—

j=1,2,--2n
Cionsi r—1
y - 2n 1
= = sin ( 3 ), tet,tin).
[T sin—=—
j=1.2,2n
Since
sin*" (%)
Ni,2n+1(t) = . it ? re [tia ti+1)’
[ sin—=—
j=122n
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we have
M;2n11(8) = Ci2ps1 Nions1 (D), t € [t tis1),

consequently
M;2011(t) = Ci2ps1Niops1 (1) = Kin1(2), t € [1i, tivans1)-

4.5. Trigonometric spline basis corresponding to DC component-free space for multiple knot case

In this subsection, we consider multiple knots and assume that the multiplicity of the knot #; in the
interval [t;, t;10,) 1s &, while the multiplicity of the knot #;,,, in the same interval is . Similarly to the
single knot case, there exist the following theorems.

Theorem 4.7. (The function expression in the space I'»,[t;, t;12,] over multiple knots) Let

, (sin(z + Ju))
t=t,

, oo n(cos(nt + Ju))
t=t,

, n“(sin(nt + Ju))
t=t,

T
b
t=t,

Ay = ( (cos(t + Fu))

Bu,v = ( (_1)u_lAu—1,va (_I)M_ZAM—Z,V, Tt a(_l)lAl,va (_I)OAO,V )»
E.=( G50, GH20), - .G, 1), Guanl) ).

v,2n v,2n

For any function F;,,(t) € Iy,lt;, tivonl, there exists a real number « such that

Fi2n(t) = aH(0),t € [t;, tison),

where 1y
= b
| Bf,i Bmi+§,i+§ Bmi+§+mi+f,i+‘f+mi+f e Bmi+2n—qsi+2n_7] B’l—l,i+2n
and
H _ Ef,i Em;+5,i+§ Emi+5+,,li+§,i+§+m,v+5 e Em,~+2n_,,,i+2n—r] En,i+2n
O=\B.. By e B ~ oo B B,
&, Mg, i+€ m,-+§+mi+£,l+§+m,-+§ Miy2n—n,i+2n—1 n,i+2n

Here the functions G ;»,(1) for i < j <i+ 2n are defined in Eq (4.4).

Proof. To simplify the notation, we define

t—1,\\*
Guy = (sin (t —1,) sin®"? (T)) .

Thus, we conclude that
Oy-1,iv2n =PiPe-1,i t Pir1Pe—2i + -+ + Bise-190,i +Bz‘+§‘pmi+§—1,i+§ +-- +:8i+f+m,~+§—l‘p0,i+§
+ ot Birons l-g-misany Prisany—Lit2n-n T+ + Bison-nPo,iv2n— (4.20)
+ Bivon-nt190i+2n T+ + Biron-1Pp-2,i42n-
Similar to Theorem 4.3, there exist

i+2n-n

Fion(t) = Z @ ;G2 (1),t € [tj, tis2n) = [t Livonsi—)s 4.21)

j=i
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i+2n-n

Fo(tion) = D ;G (tia) = 0,1 € [ty tisaer ), d = 0,1,2,++,2n = 1 = 1. (4.22)
j=i

Additionally, it follows that Eq (4.20) is equivalent to Eq (4.22) when ¢ = t,,,,. Thus, by applying the
proof strategy from Theorem 4.3, we derive that

E:f,i Emi+§,i+§ Emi+§+m,~+§,i+§+mi+g T Emi+2n7,,,i+2n—n En,i+2n
n B«_’f,i Bmi+§,i+f Bmi+.§+m,-+5,i+§+mi+§ T Bmi+2n—rpi+2n_7] BTI,i+2n

Fin(®) = (-1)
| B,f,i Bmi+§»i+§ Bmi+§+mi+£»i+§+mi+§ T Bmi+2n—rpi+2n_n B’I—l,i+2n

O

Theorem 4.8. (The normalized function over generalized knots) Suppose that Eq (4.18) still holds,
where F;,(t) € Ipplt;, tivon] and Fip12,(t) € Dopltivi, tivons1] are defined in Theorem 4.7, with i € Z and
nezt, then

+00
Z Mioni1(t) = 1, 1 € [1),141).

[=—00

In addition, when F;,(t) = 0, we set

Lt - 0 t<t,
f f Fi,ln(s)ds Fi,Zn(S) dS =
—00 —00 1 > t;.

Theorem 4.9. (Integral representation of the normalized trigonometric B-spline basis over generalized
knots) Given a knot sequence T = {t;}[  satisfying condition (3.4), then there holds

Kioni1(t) = Minys1 (1), t € [t tisons1)s

where K;,.1(t) and M;,,(t) are separately defined in Definition 3.1 and Theorem 4.8.

4.6. Examples

This subsection presents examples of curve modeling to demonstrate that a curve possesses the
convex hull property when the knot sequence satisfies condition (3.4).

Figures 3 and 4 illustrate examples of open and closed curves over different knot sequences,
respectively. The red curves correspond to the knot sequences that satisfy condition (3.4)
as defined in Definition 3.1, while the orange curves correspond to the knot sequences
that satisfy condition (2.1) as defined in Definition 2.1.  Additionally, the knot sequences
in Figure 3 are T = {0,2,3,3,3.5,53,6.1,6.6,8.4,9.1,9.5,11.2,12.2,12.6,14.2,15}, and
T =1{0,0.8,3,3,3.5,5.3,6.6,8.6,9.1,9.1,10,12.2,12.2, 13, 14.2, 15}, while those in Figure 4 are T' =
{-8,-8,-8,-8,-8,-7,-6.3,-5.6,-4.9,-45,-1.2,-1.2,-1.2,0,1.2,1.2,1.2,4.5,4.9,5.6,6.3,7,8, 8,
8,8,8,and T = {-8,-8,-8,-8,-8,-7,-6.3,-5.3,-4,-3.3,-1.2,-1.2,-1.2,0,1.2,1.2,1.2,3.3,4,5.3,
6.3,7,8,8,8,8,8}. Clearly, if the knot sequence only satisfies condition (2.1), the convex hull property
of the curve cannot be guaranteed.
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o o

— satisfies the condition (3.4)| Satisfies the condition (2.1)]

() (b)
Figure 3. Open curve.

) | |

~

Satisfies the condition (3.4) \ \ Satisfies the condition (2.1) \

(@ (b)
Figure 4. Closed curve.

5. Conclusions

In the Chebyshev system, due to the integral properties of sine and cosine in the trigonometric
B-spline basis, the trigonometric B-spline basis cannot be directly derived from lower-order bases
through integration, which leads to an unnormal Chebyshev system. This paper successfully derives
the integral formula for the normalized odd-order trigonometric B-spline basis by constructing a new
set of even-order trigonometric B-spline bases. This integral formula allows for the transition from
even-order to odd-order bases but cannot be obtained through stepwise integration, indicating that it is
only similar to a segment of the integral formula in the Chebyshev system. Although we are currently
unable to provide a direct recursive formula for integrating from lower-order trigonometric spline bases
to higher-order ones, we hope to use this as a foundation for further exploration of this issue in future
work.
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